REFERENCES
1. Chen Y, Sun H, Guo J, et al. Research on carbon-based and metal-based negative electrode materials via DFT calculation for high potassium storage performance: a review. Energy Mater 2023;3:300045.
2. Bianchi F, Bosio B, Conte F, et al. Modelling and optimal management of renewable energy communities using reversible solid oxide cells. Appl Energy 2023;334:120657.
3. Zhu B, Mi Y, Xia C, et al. A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology. Energy Mater 2022;1:100002.
4. van Biert L, Godjevac M, Visser K, Aravind P. A review of fuel cell systems for maritime applications. J Power Sources 2016;327:345-64.
5. Zhang Y, Zhang M, Zhao H. Double perovskite material as anode for solid oxide fuel cells. Prog Chem 2022;34:272-84.
6. Abdalla AM, Hossain S, Azad AT, et al. Nanomaterials for solid oxide fuel cells: a review. Renew Sustain Energ Rev 2018;82:353-68.
7. Shu L, Sunarso J, Hashim SS, Mao J, Zhou W, Liang F. Advanced perovskite anodes for solid oxide fuel cells: a review. Int J Hydrog Energy 2019;44:31275-304.
8. Singh M, Zappa D, Comini E. Solid oxide fuel cell: decade of progress, future perspectives and challenges. Int J Hydrog Energy 2021;46:27643-74.
9. Wang J, Liu M, Lin M. Oxygen reduction reactions in the SOFC cathode of Ag/CeO2. Solid State Ion 2006;177:939-47.
10. Horita T, Yamaji K, Sakai N, et al. Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique. J Power Sources 2002;106:224-30.
11. Radhakrishnan R, Virkar AV, Singhal SC. Estimation of charge-transfer resistivity of Pt Cathode on YSZ Electrolyte Using Patterned Electrodes. J Electrochem Soc 2005;152:A927.
12. Lee SY, Yun J, Tai W. Synthesis of Ni-doped LaSrMnO3 nanopowders by hydrothermal method for SOFC interconnect applications. Adv Powder Technol 2018;29:2423-8.
13. Cai C, Xie M, Xue K, et al. Enhanced electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells. Nano Res 2022;15:3264-72.
14. Xie M, Cai C, Liu X, et al. Improved durability of high-performance intermediate-temperature solid oxide fuel cells with a Ba-doped La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. ACS Appl Mater Interfaces 2022;14:33052-63.
15. Guo D, Li A, Lu C, Qiu D, Niu B, Wang B. High activity and stability of cobalt-free SmBa0.5Sr0.5Fe2O5+δ perovskite oxide as cathode material for solid oxide fuel cells. Ceram Int 2023;49:34277-90.
16. Carneiro JSA, Brocca RA, Lucena MLRS, Nikolla E. Optimizing cathode materials for intermediate-temperature solid oxide fuel cells (SOFCs): oxygen reduction on nanostructured lanthanum nickelate oxides. Appl Catal B Environ 2017;200:106-13.
17. Zhang M, Du Z, Sun Z, Zhao H. Unraveling the promotional role of BaCO3 in the electrode reaction kinetics of an SmBaFe2O5+δ air electrode of reversible solid oxide cells. J Mater Chem A 2023;11:21645-54.
18. Wang Y, Liu T. A highly active and stable Sr2Fe1.5Mo0.5O6-δ-Ce0.8Sm0.2O1.95 ceramic fuel electrode for efficient hydrogen production via a steam electrolyzer without safe gas. Int J Coal Sci Technol 2022;9:4.
19. Zhang B, Wan Y, Hua Z, Tang K, Xia C. Tungsten-doped PrBaFe2O5+δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells. ACS Appl Energy Mater 2021;4:8401-9.
20. Yang M, Yao Z, Liu S, et al. Bismuth doped Sr2Fe1.5Mo0.5O6-δ double perovskite as a robust fuel electrode in ceramic oxide cells for direct CO2 electrolysis. J Mater Sci Technol 2023;164:160-7.
21. Zhu Z, Sun K, Xu D, et al. Enhancing the performance of symmetrical solid oxide fuel cells with Sr2Fe1.5Mo0.5O6-δ electrodes via infiltration of Pr6O11 bifunctional catalyst. Electrochim Acta 2022;402:139569.
22. Zhang W, Zhang Z, Guo L, Ma T. Double perovskite material as an electrode for intermediate-temperature solid oxide fuel cells application. Prog Chem 2016;28:961-74. Available from: https://manu56.magtech.com.cn/progchem/EN/abstract/abstract11656.shtml [Last accessed on 6 Feb 2024].
23. Hussain S, Li Y. Review of solid oxide fuel cell materials: cathode, anode, and electrolyte. Energy Transit 2020;4:113-26.
24. Afroze S, Karim A, Cheok Q, Eriksson S, Azad AK. Latest development of double perovskite electrode materials for solid oxide fuel cells: a review. Front Energy 2019;13:770-97.
25. Ishihara T. Perovskite oxide for solid oxide fuel cells. New York: Springer; 2009. pp. 1-16.
26. Anderson M, Greenwood K, Taylor G, Poeppelmeier K. B-cation arrangements in double perovskites. Prog Solid State Chem 1993;22:197-233.
28. Zheng K, Świerczek K, Bratek J, Klimkowicz A. Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ion 2014;262:354-8.
29. Rosas J, Cervantes J, León-flores J, et al. DFT study on the electronic and magnetic properties of the Sr2FeNbO6 compound. Mater Today Commun 2020;23:100844.
30. Skutina L, Filonova E, Medvedev D, Maignan A. Undoped Sr2MMoO6 double perovskite molybdates (M = Ni, Mg, Fe) as promising anode materials for solid oxide fuel cells. Materials 2021;14:1715.
31. Kumar P, Jena P, Patro PK, et al. Influence of lanthanum doping on structural and electrical/electrochemical properties of double perovskite Sr2CoMoO6 as anode materials for intermediate-temperature solid oxide fuel cells. ACS Appl Mater Interfaces 2019;11:24659-67.
32. Zhang P, Huang Y, Cheng J, Mao Z, Goodenough JB. Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels. J Power Sources 2011;196:1738-43.
33. Zheng K, Lach J, Zhao H, Huang X, Qi K. Magnesium-doped Sr2(Fe,Mo)O6-δ double perovskites with excellent redox stability as stable electrode materials for symmetrical solid oxide fuel cells. Membranes 2022;12:1006.
34. Qiu P, Sun S, Li J, Jia L. A review on the application of Sr2Fe1.5Mo0.5O6-based oxides in solid oxide electrochemical cells. Sep Purif Technol 2022;298:121581.
35. Liu Q, Yang C, Dong X, Chen F. Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells. Int J Hydrog Energy 2010;35:10039-44.
36. Zhang Y, Zhao H, Du Z, Świerczek K, Li Y. High-performance SmBaMn2O5+δ electrode for symmetrical solid oxide fuel cell. Chem Mater 2019;31:3784-93.
37. Ding H, Xue X. BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte-based solid oxide fuel cells with cobalt-free PrBaFe2O5+δ layered perovskite cathode. J Power Sources 2010;195:7038-41.
38. Zhao L, Shen J, He B, Chen F, Xia C. Synthesis, characterization and evaluation of PrBaCo2-xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells. Int J Hydrog Energy 2011;36:3658-65.
39. Li H, Lü Z. High-performance fluorine-doped cobalt-free oxide as a potential cathode material for solid oxide fuel cells. Int J Hydrog Energy 2021;46:2503-10.
40. Yu A, Xia T, Sun L, Li Q, Huo L, Zhao H. Effects of rare earth doping on electrochemical properties of NdBaCo2O6-δ cathode materials. J Alloy Compd 2020;837:155563.
41. Alvarado-flores JJ, Mondragón-sánchez R, Ávalos-rodríguez ML, Alcaraz-vera JV, Rutiaga-quiñones JG, Guevara-martínez SJ. Synthesis, characterization and kinetic study of the Sr2FeMoO6-δ double perovskite: new findings on the calcination of one of its precursors. Int J Hydrog Energy 2021;46:26185-96.
42. Zhang Z, Li X, Xu H. A highly operating stability, oxygen reduction reaction active and CO2/Cr tolerance perovskite cathode for solid oxide fuel cells. J Alloy Compd 2022;922:166119.
43. Yang Y, Shi N, Xie Y, et al. K doping as a rational method to enhance the sluggish air-electrode reaction kinetics for proton-conducting solid oxide cells. Electrochim Acta 2021;389:138453.
44. Akkurt S, Sindiraç C, Özmen Egesoy T, ERĞEN E. A review on new cobalt-free cathode materials for reversible solid oxide fuel cells. J Met Mater Miner 2023;33:1654.
45. Gao Y, Zhang M, Fu M, Hu W, Tong H, Tao Z. A comprehensive review of recent progresses in cathode materials for proton-conducting SOFCs. Energy Rev 2023;2:100038.
46. Rath MK, Lee K. Superior electrochemical performance of non-precious Co-Ni-Mo alloy catalyst-impregnated Sr2FeMoO6-δ as an electrode material for symmetric solid oxide fuel cells. Electrochim Acta 2016;212:678-85.
47. Qiu P, Lin J, Lei L, et al. Evaluation of Cr-tolerance of Sr2Fe1.5Mo0.5O6-δ cathode for solid oxide fuel cells. ACS Appl Energy Mate 2019;2:7619-27.
48. Liu J, Lei Y, Li Y, et al. Infiltrated Sr2Fe1.5Mo0.5O6-δ/La0.9Sr0.1Ga0.8Mg0.2O3 electrodes towards high performance symmetrical solid oxide fuel cells fabricated by an ultra-fast and time-saving procedure. Electrochem Commun 2017;78:6-10.
49. Han X, Chen P, Wu M, et al. A redox-reversible perovskite electrode for CeO2-and LaGaO3-based symmetric solid oxide fuel cells. Ceram Int 2022;48:26440-51.
50. Li Y, Zou S, Ju J, Xia C. Characteristics of nano-structured SFM infiltrated onto YSZ backbone for symmetrical and reversible solid oxide cells. Solid State Ion 2018;319:98-104.
51. Xiao G, Liu Q, Wang S, et al. Synthesis and characterization of Mo-doped SrFeO3-δ as cathode materials for solid oxide fuel cells. J Power Sources 2012;202:63-9.
52. Patrakeev M, Leonidov I, Kozhevnikov V, Kharton V. Ion-electron transport in strontium ferrites: relationships with structural features and stability. Solid State Sci 2004;6:907-13.
53. Schmidt M, Campbell S. Crystal and magnetic structures of Sr2Fe2O5 at elevated temperature. J Solid State Chem 2001;156:292-304.
54. Savinskaya O, Nemudry AP. Oxygen transport properties of nanostructured SrFe1-xMoxO2.5+3/2x (0 < x < 0.1) perovskites. J Solid State Electrochem 2011;15:269-75.
55. Liu G, Rao G, Feng X, et al. Structural transition and atomic ordering in the non-stoichiometric double perovskite Sr2FexMo2-xO6. J Alloy Compd 2003;353:42-7.
56. Zhang L, Zhou Q, He Q, He T. Double-perovskites A2FeMoO6-δ (A=Ca, Sr, Ba) as anodes for solid oxide fuel cells. J Power Sources 2010;195:6356-66.
57. Xiao G, Liu Q, Dong X, Huang K, Chen F. Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells. J Power Sources 2010;195:8071-4.
58. Markov A, Leonidov I, Patrakeev M, et al. Structural stability and electrical transport in SrFe1-xMoxO3-δ. Solid State Ion 2008;179:1050-3.
59. Zhang SL, Zhang AP, Li CX, Yang GJ, Li CJ. Suspension plasma sprayed Sr2Fe1.4Mo0.6O6-δ electrodes for solid oxide fuel cells. J Therm Spray Tech 2017;26:432-40.
60. Li H, Zhao Y, Wang Y, Li Y. Sr2Fe2-xMoxO6-δ perovskite as an anode in a solid oxide fuel cell: Effect of the substitution ratio. Catal Today 2016;259:417-22.
61. Rager J, Zipperle M, Sharma A, Macmanus-driscoll JL. Oxygen Stoichiometry in Sr2FeMoO6, the determination of Fe and Mo valence states, and the chemical phase diagram of SrO-Fe3O4-MoO3. J Am Ceram Soc 2004;87:1330-5.
62. Liu Q, Dong X, Xiao G, Chen F. Sr2Fe1.5Mo0.5O6-δ as both anode and cathode materials for symmetrical SOFCs. Proceedings of the 218th ECS Meeting; 2010 Oct 10-15; Las Vegas, USA. Pennington: Electrochemical Society; 2011.
63. Liu Q, Dong X, Xiao G, Zhao F, Chen F. A novel electrode material for symmetrical SOFCs. Adv Mater 2010;22:5478-82.
64. Liu Q, Bugaris DE, Xiao G, et al. Sr2Fe1.5Mo0.5O6-δ as a regenerative anode for solid oxide fuel cells. J Power Sources 2011;196:9148-53.
65. Zheng K, Świerczek K, Polfus JM, Sunding MF, Pishahang M, Norby T. Carbon deposition and sulfur poisoning in SrFe0.75Mo0.25O3-δ and SrFe0.5Mn0.25Mo0.25O3-δ electrode materials for symmetrical SOFCs. J Electrochem Soc 2015;162:F1078-87.
66. Li H, Tian Y, Wang Z, Qie F, Li Y. An all perovskite direct methanol solid oxide fuel cell with high resistance to carbon formation at the anode. RSC Adv 2012;2:3857-63.
67. Qiao J, Chen W, Wang W, et al. The Ca element effect on the enhancement performance of Sr2Fe1.5Mo0.5O6-δ perovskite as cathode for intermediate-temperature solid oxide fuel cells. J Power Sources 2016;331:400-7.
68. Xu Z, Hu X, Wan Y, et al. Electrochemical performance and anode reaction process for Ca doped Sr2Fe1.5Mo0.5O6-δ as electrodes for symmetrical solid oxide fuel cells. Electrochim Acta 2020;341:136067.
70. Dai N, Wang Z, Jiang T, et al. A new family of barium-doped Sr2Fe1.5Mo0.5O6-δ perovskites for application in intermediate temperature solid oxide fuel cells. J Power Sources 2014;268:176-82.
71. Forbess MJ, Seraji S, Wu Y, Nguyen CP, Cao GZ. Dielectric properties of layered perovskite Sr1-xAxBi2Nb2O9 ferroelectrics (A=La, Ca and x=0,0.1). Appl Phys Lett 2000;76:2934-6.
72. Qi H, Thomas T, Li W, et al. Reduced thermal expansion and enhanced redox reversibility of La0.5Sr1.5Fe1.5Mo0.5O6-δ anode material for solid oxide fuel cells. ACS Appl Energy Mater 2019;2:4244-54.
73. Zhen S, Sun W, Tang G, Rooney D, Sun K, Ma X. Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides as intermediate temperature solid oxide fuel cell cathodes. Int J Hydrog Energy 2016;41:9538-46.
74. Yang G, Feng J, Sun W, et al. The characteristic of strontium-site deficient perovskites SrxFe1.5Mo0.5O6-δ (x = 1.9-2.0) as intermediate-temperature solid oxide fuel cell cathodes. J Power Sources 2014;268:771-7.
75. Dai N, Feng J, Wang Z, et al. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5-xNixMo0.5O6-δ
76. Osinkin D, Antonova E, Shubin K, Bogdanovich N. Influence of nickel exsolution on the electrochemical performance and rate-determining stages of hydrogen oxidation on Sr1.95Fe1.4Ni0.1Mo0.5O6-δ promising electrode for solid state electrochemical devices. Electrochim Acta 2021;369:137673.
77. Meng X, Wang Y, Zhao Y, et al. In-situ exsolution of nanoparticles from Ni substituted Sr2Fe1.5Mo0.5O6-δ perovskite oxides with different Ni doping contents. Electrochim Acta 2020;348:136351.
78. Tian C, Cheng J, Yang J. A highly active cathode material of Cu-doped Sr2Fe1.5Mo0.5O6 for symmetrical solid oxide fuel cells. J Mater Sci Mater Electron 2021;32:1258-64.
79. Pan X, Wang Z, He B, Wang S, Wu X, Xia C. Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6 electrode for solid oxide fuel cell. Int J Hydrog Energy 2013;38:4108-15.
80. Song Y, Zhong Q, Wang D, Xu Y, Tan W. Interaction between electrode materials Sr2FeCo0.5Mo0.5O6-δ and hydrogen sulfide in symmetrical solid oxide fuel cells. Int J Hydrog Energy 2017;42:22266-72.
81. Stanley P, Hussain AM, Huang Y, Gritton JE, Wachsman ED. Defect chemistry and oxygen non-stoichiometry in
82. He B, Gong C, Wang Z, Jia L, Zhao L. Novel, cobalt-free, and highly active Sr2Fe1.5Mo0.5-xSnxO6-δ cathode materials for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 2017;42:10308-16.
83. Jiang Y, Yang Y, Xia C, Bouwmeester HJM. Sr2Fe1.4Mn0.1Mo0.5O6-δ perovskite cathode for highly efficient CO2 electrolysis. J Mater Chem A 2019;7:22939-49.
84. Sun W, Li P, Xu C, et al. Investigation of Sc doped Sr2Fe1.5Mo0.5O6 as a cathode material for intermediate temperature solid oxide fuel cells. J Power Sources 2017;343:237-45.
85. Zhang L, Yin Y, Xu Y, Yu S, Bi L. Tailoring Sr2Fe1.5Mo0.5O6-δ with Sc as a new single-phase cathode for proton-conducting solid oxide fuel cells. Sci China Mater 2022;65:1485-94.
86. Xu C, Sun K, Yang X, et al. Highly active and CO2-tolerant Sr2Fe1.3Ga0.2Mo0.5O6-δ cathode for intermediate-temperature solid oxide fuel cells. J Power Sources 2020;450:227722.
87. Hou M, Sun W, Li P, et al. Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fe1.5Mo0.5O6-δ for intermediate temperature solid oxide fuel cells. J Power Sources 2014;272:759-65.
88. Gou M, Ren R, Sun W, et al. Nb-doped Sr2Fe1.5Mo0.5O6-δ electrode with enhanced stability and electrochemical performance for symmetrical solid oxide fuel cells. Ceram Int 2019;45:15696-704.
89. Zhang Z, Zhu Y, Zhong Y, Zhou W, Shao Z. Anion doping: a new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv Energy Mater 2017;7:1700242.
90. Zhang L, Sun W, Xu C, et al. Attenuating a metal-oxygen bond of a double perovskite oxide via anion doping to enhance its catalytic activity for the oxygen reduction reaction. J Mater Chem A 2020;8:14091-8.
91. Zhang Y, Zhu Z, Gu Y, Chen H, Zheng Y, Ge L. Effect of Cl doping on the electrochemical performance of Sr2Fe1.5Mo0.5O6-δ cathode material for solid oxide fuel cells. Ceram Inter 2020;46:22787-96.
92. Zare A, Salari H, Babaei A, Abdoli H, Aslannejad H. Electrochemical evaluation of Sr2Fe1.5Mo0.5O6-δ/Ce0.9Gd0.1O1.95 cathode of SOFCs by EIS and DRT analysis. J Electroanal Chem 2023;936:117376.
93. Xu J, Wan S, Wang Y, et al. Enhancing performance of molybdenum doped strontium ferrite electrode by surface modification through Ni infiltration. Int J Hydrog Energy 2021;46:10876-91.
94. Dong X, Tian L, Li J, Zhao Y, Tian Y, Li Y. Single layer fuel cell based on a composite of Ce0.8Sm0.2O2-δ-Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo0.5O6-δ. J Power Sources 2014;249:270-6.
95. Li M, Ni M, Su F, Xia C. Proton conducting intermediate-temperature solid oxide fuel cells using new perovskite type cathodes. J Power Sources 2014;260:197-204.
96. Zhang L, Xu C, Sun W, et al. Constructing perovskite/alkaline-earth metal composite heterostructure by infiltration to revitalize CO2 electrolysis. Sep Purif Technol 2022;298:121475.
97. Guo Y, Guo T, Zhou S, et al. Characterization of Sr2Fe1.5Mo0.5O6-δ-Gd0.1Ce0.9O1.95 symmetrical electrode for reversible solid oxide cells. Ceram Int 2019;45:10969-75.
98. Maide M, Lillmaa K, Salvan LK, et al. Influence of electrolyte scaffold microstructure and loading of MIEC material on the electrochemical performance of RSOC fuel electrode. Fuel Cells 2018;18:789-99.
99. Skafte TL, Sudireddy BR, Blennow P, Graves C. Carbon and redox tolerant infiltrated oxide fuel-electrodes for solid oxide cells. ECS Trans 2016;72:201-14.
100. He B, Zhao L, Song S, Liu T, Chen F, Xia C. Sr2Fe1.5Mo0.5O6-δ-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells. J Electrochem Soc 2012;159:B619-26.
101. Dai N, Lou Z, Wang Z, et al. Synthesis and electrochemical characterization of Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 composite cathode for intermediate-temperature solid oxide fuel cells. J Power Sources 2013;243:766-72.
102. Hu B, Wang Y, Zhu Z, Xia C, Bouwmeester HJM. Measuring oxygen surface exchange kinetics on mixed-conducting composites by electrical conductivity relaxation. J Mater Chem A 2015;3:10296-302.
103. Wang Y, Liu T, Fang S, Xiao G, Wang H, Chen F. A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process. J Power Sources 2015;277:261-7.
104. Wang Y, Liu T, Fang S, Chen F. Syngas production on a symmetrical solid oxide H2O/CO2 co-electrolysis cell with Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 electrodes. J Power Sources 2016;305:240-8.
105. Osinkin D, Lobachevskaya N, Suntsov AY. The electrochemical behavior of the promising Sr2Fe1.5Mo0.5O6-δ+Ce0.8Sm0.2O1.9-δ anode for the intermediate temperature solid oxide fuel cells. J Alloy Compd 2017;708:451-5.
106. Wang Y, Liu T, Lei L, Chen F. Methane assisted solid oxide co-electrolysis process for syngas production. J Power Sources 2017;344:119-27.
107. Farzin YA, Babaei A, Skafte TL, Stamate E, Ataie A, Jensen SH. Low-temperature preparation and investigation of electrochemical properties of SFM/CGO composite electrode. Solid State Ion 2020;356:115435.
108. Li C, Zhang Q, Liu W, Tian X, Zheng R, Liu J. Tailoring the electrolyte and cathode properties for optimizing the performance of symmetrical solid oxide fuel cells fabricated by one-step co-sintering method. J Asian Ceram Soc 2022;10:386-95.
109. Osinkin D, Beresnev S, Bogdanovich N. Influence of Pr6O11 on oxygen electroreduction kinetics and electrochemical performance of Sr2Fe1.5Mo0.5O6-δ based cathode. J Power Sources 2018;392:41-7.
110. Chen D, Wang F, Shi H, Ran R, Shao Z. Systematic evaluation of Co-free LnBaFe2O5+δ (Ln=Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells. Electrochim Acta 2012;78:466-74.
111. Wen C, Chen K, Guo D, et al. High performance and stability of PrBa0.5Sr0.5Fe2O5+δ symmetrical electrode for intermediate temperature solid oxide fuel cells. Solid State Ion 2022;386:116048.
112. Liu C, Wang F, Ni Y, et al. Ta-doped PrBaFe2O5+δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells. Int J Hydrog Energy 2023;48:9812-22.
113. Mao X, Yu T, Ma G. Performance of cobalt-free double-perovskite NdBaFe2-xMnxO5+δ cathode materials for proton-conducting IT-SOFC. J Alloy Compd 2015;637:286-90.
114. Mao X, Wang W, Ma G. A novel cobalt-free double-perovskite NdBaFe1.9Nb0.1O5+δ cathode material for proton-conducting IT-SOFC. Ceram Int 2015;41:10276-80.
115. Zhang H, Yang J, Wang P, Yao C, Yu X, Shi F. Novel cobalt-free perovskite PrBaFe1.9Mo0.1O5+δ as a cathode material for solid oxide fuel cells. Solid State Ion 2023;391:116144.
116. Zhang B, Zhang S, Han H, Tang K, Xia C. Cobalt-free double perovskite oxide as a promising cathode for solid oxide fuel cells. ACS Appl Mater Interfaces 2023;15:8253-62.
117. Li G, Gou Y, Cheng X, et al. Enhanced electrochemical performance of the Fe-based layered perovskite oxygen electrode for reversible solid oxide cells. ACS Appl Mater Interfaces 2021;13:34282-91.
118. Lü S, Zhu Y, Fu X, et al. A-site deficient Fe-based double perovskite oxides PrxBaFe2O5+δ as cathodes for solid oxide fuel cells. J Alloy Compd 2022;911:165002.
119. Zhang K, Ge L, Ran R, Shao Z, Liu S. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater 2008;56:4876-89.
120. Lu C, Niu B, Yi W, Ji Y, Xu B. Efficient symmetrical electrodes of PrBaFe2-xCoxO5+δ (x=0, 0.2,0.4) for solid oxide fuel cells and solid oxide electrolysis cells. Electrochim Acta 2020;358:136916.
121. Chavez E, Mueller M, Mogni L, Caneiro A. Study of LnBaCo2O6-δ (Ln = Pr, Nd, Sm and Gd) double perovskites as new cathode material for IT-SOFC. J Phys Conf Ser 2009;167:012043.
122. Li H, Lü Z. A highly stable cobalt-free LaBa0.5Sr0.5Fe2O6-δ oxide as a high performance cathode material for solid oxide fuel cells. Int J Hydrog Energy 2020;45:19831-9.
123. He Z, Xia L, Chen Y, Yu J, Huang X, Yu Y. Layered perovskite Sm1-xLaxBaFe2O5+δ as cobalt-free cathodes for IT-SOFCs. RSC Adv 2015;5:57592-8.
124. Wang L, Xie P, Bian L, Liu X, Chou K. Performance of Ca-doped GdBa1-xCaxFe2O5+δ (x = 0, 0.1) as cathode materials for IT-SOFC application. Catal Today 2018;318:132-6.
125. Dong G, Yang C, He F, et al. Tin doped PrBaFe2O5+δ anode material for solid oxide fuel cells. RSC Adv 2017;7:22649-61.
126. Li H, Lü Z. Highly active and stable tin-doped perovskite-type oxides as cathode materials for solid oxide fuel cells. Electrochim Acta 2020;361:137054.
127. Chen T, Pang S, Shen X, Jiang X, Wang W. Evaluation of Ba-deficient PrBa1-xFe2O5+δ oxides as cathode materials for intermediate-temperature solid oxide fuel cells. RSC Adv 2016;6:13829-36.
128. Guo RH, Guo L, Zhang JY, Zhou GZ, An SL. Synthesis and characterization of double perovskite cathode material
129. Ivanov AI, Kolotygin VA, Tsipis EV, Bredikhin SI, Kharton VV. Electrical conductivity, thermal expansion and electrochemical properties of perovskites PrBaFe2-xNixO5+δ. Russ J Electrochem 2018;54:533-40.
130. He W, Wu X, Dong F, Ni M. A novel layered perovskite electrode for symmetrical solid oxide fuel cells: PrBa(Fe0.8Sc0.2)2O5+δ. J Power Sources 2017;363:16-9.
131. Li H, Wei B, Su C, Wang C, Lü Z. Novel cobalt-free layered perovskite LaBaFe2-xNbxO6-δ (x = 0-0.1) as cathode for solid oxide fuel cells. J Power Sources 2020;453:227875.
132. Ren R, Wang Z, Meng X, et al. Boosting the electrochemical performance of Fe-based layered double perovskite cathodes by Zn2+ doping for solid oxide fuel cells. ACS Appl Mater Interfaces 2020;12:23959-67.
133. Li L, Jin F, Shen Y, He T. Cobalt-free double perovskite cathode GdBaFeNiO5+δ and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate-temperature solid oxide fuel cells. Electrochim Acta 2015;182:682-92.
134. Sengodan S, Ju Y, Kwon O, et al. Self-decorated MnO nanoparticles on double perovskite solid oxide fuel cell anode by in situ exsolution. ACS Sustain Chem Eng 2017;5:9207-13.
135. Lai K, Manthiram A. Self-regenerating Co-Fe nanoparticles on perovskite oxides as a hydrocarbon fuel oxidation catalyst in solid oxide fuel cells. Chem Mater 2018;30:2515-25.