REFERENCES

1. Chen Y, Sun H, Guo J, et al. Research on carbon-based and metal-based negative electrode materials via DFT calculation for high potassium storage performance: a review. Energy Mater 2023;3:300045.

2. Bianchi F, Bosio B, Conte F, et al. Modelling and optimal management of renewable energy communities using reversible solid oxide cells. Appl Energy 2023;334:120657.

3. Zhu B, Mi Y, Xia C, et al. A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology. Energy Mater 2022;1:100002.

4. van Biert L, Godjevac M, Visser K, Aravind P. A review of fuel cell systems for maritime applications. J Power Sources 2016;327:345-64.

5. Zhang Y, Zhang M, Zhao H. Double perovskite material as anode for solid oxide fuel cells. Prog Chem 2022;34:272-84.

6. Abdalla AM, Hossain S, Azad AT, et al. Nanomaterials for solid oxide fuel cells: a review. Renew Sustain Energ Rev 2018;82:353-68.

7. Shu L, Sunarso J, Hashim SS, Mao J, Zhou W, Liang F. Advanced perovskite anodes for solid oxide fuel cells: a review. Int J Hydrog Energy 2019;44:31275-304.

8. Singh M, Zappa D, Comini E. Solid oxide fuel cell: decade of progress, future perspectives and challenges. Int J Hydrog Energy 2021;46:27643-74.

9. Wang J, Liu M, Lin M. Oxygen reduction reactions in the SOFC cathode of Ag/CeO2. Solid State Ion 2006;177:939-47.

10. Horita T, Yamaji K, Sakai N, et al. Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique. J Power Sources 2002;106:224-30.

11. Radhakrishnan R, Virkar AV, Singhal SC. Estimation of charge-transfer resistivity of Pt Cathode on YSZ Electrolyte Using Patterned Electrodes. J Electrochem Soc 2005;152:A927.

12. Lee SY, Yun J, Tai W. Synthesis of Ni-doped LaSrMnO3 nanopowders by hydrothermal method for SOFC interconnect applications. Adv Powder Technol 2018;29:2423-8.

13. Cai C, Xie M, Xue K, et al. Enhanced electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells. Nano Res 2022;15:3264-72.

14. Xie M, Cai C, Liu X, et al. Improved durability of high-performance intermediate-temperature solid oxide fuel cells with a Ba-doped La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. ACS Appl Mater Interfaces 2022;14:33052-63.

15. Guo D, Li A, Lu C, Qiu D, Niu B, Wang B. High activity and stability of cobalt-free SmBa0.5Sr0.5Fe2O5+δ perovskite oxide as cathode material for solid oxide fuel cells. Ceram Int 2023;49:34277-90.

16. Carneiro JSA, Brocca RA, Lucena MLRS, Nikolla E. Optimizing cathode materials for intermediate-temperature solid oxide fuel cells (SOFCs): oxygen reduction on nanostructured lanthanum nickelate oxides. Appl Catal B Environ 2017;200:106-13.

17. Zhang M, Du Z, Sun Z, Zhao H. Unraveling the promotional role of BaCO3 in the electrode reaction kinetics of an SmBaFe2O5+δ air electrode of reversible solid oxide cells. J Mater Chem A 2023;11:21645-54.

18. Wang Y, Liu T. A highly active and stable Sr2Fe1.5Mo0.5O6-δ-Ce0.8Sm0.2O1.95 ceramic fuel electrode for efficient hydrogen production via a steam electrolyzer without safe gas. Int J Coal Sci Technol 2022;9:4.

19. Zhang B, Wan Y, Hua Z, Tang K, Xia C. Tungsten-doped PrBaFe2O5+δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells. ACS Appl Energy Mater 2021;4:8401-9.

20. Yang M, Yao Z, Liu S, et al. Bismuth doped Sr2Fe1.5Mo0.5O6-δ double perovskite as a robust fuel electrode in ceramic oxide cells for direct CO2 electrolysis. J Mater Sci Technol 2023;164:160-7.

21. Zhu Z, Sun K, Xu D, et al. Enhancing the performance of symmetrical solid oxide fuel cells with Sr2Fe1.5Mo0.5O6-δ electrodes via infiltration of Pr6O11 bifunctional catalyst. Electrochim Acta 2022;402:139569.

22. Zhang W, Zhang Z, Guo L, Ma T. Double perovskite material as an electrode for intermediate-temperature solid oxide fuel cells application. Prog Chem 2016;28:961-74. Available from: https://manu56.magtech.com.cn/progchem/EN/abstract/abstract11656.shtml [Last accessed on 6 Feb 2024].

23. Hussain S, Li Y. Review of solid oxide fuel cell materials: cathode, anode, and electrolyte. Energy Transit 2020;4:113-26.

24. Afroze S, Karim A, Cheok Q, Eriksson S, Azad AK. Latest development of double perovskite electrode materials for solid oxide fuel cells: a review. Front Energy 2019;13:770-97.

25. Ishihara T. Perovskite oxide for solid oxide fuel cells. New York: Springer; 2009. pp. 1-16.

26. Anderson M, Greenwood K, Taylor G, Poeppelmeier K. B-cation arrangements in double perovskites. Prog Solid State Chem 1993;22:197-233.

27. King G, Woodward PM. Cation ordering in perovskites. J Mater Chem 2010;20:5785-96.

28. Zheng K, Świerczek K, Bratek J, Klimkowicz A. Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ion 2014;262:354-8.

29. Rosas J, Cervantes J, León-flores J, et al. DFT study on the electronic and magnetic properties of the Sr2FeNbO6 compound. Mater Today Commun 2020;23:100844.

30. Skutina L, Filonova E, Medvedev D, Maignan A. Undoped Sr2MMoO6 double perovskite molybdates (M = Ni, Mg, Fe) as promising anode materials for solid oxide fuel cells. Materials 2021;14:1715.

31. Kumar P, Jena P, Patro PK, et al. Influence of lanthanum doping on structural and electrical/electrochemical properties of double perovskite Sr2CoMoO6 as anode materials for intermediate-temperature solid oxide fuel cells. ACS Appl Mater Interfaces 2019;11:24659-67.

32. Zhang P, Huang Y, Cheng J, Mao Z, Goodenough JB. Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels. J Power Sources 2011;196:1738-43.

33. Zheng K, Lach J, Zhao H, Huang X, Qi K. Magnesium-doped Sr2(Fe,Mo)O6-δ double perovskites with excellent redox stability as stable electrode materials for symmetrical solid oxide fuel cells. Membranes 2022;12:1006.

34. Qiu P, Sun S, Li J, Jia L. A review on the application of Sr2Fe1.5Mo0.5O6-based oxides in solid oxide electrochemical cells. Sep Purif Technol 2022;298:121581.

35. Liu Q, Yang C, Dong X, Chen F. Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells. Int J Hydrog Energy 2010;35:10039-44.

36. Zhang Y, Zhao H, Du Z, Świerczek K, Li Y. High-performance SmBaMn2O5+δ electrode for symmetrical solid oxide fuel cell. Chem Mater 2019;31:3784-93.

37. Ding H, Xue X. BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte-based solid oxide fuel cells with cobalt-free PrBaFe2O5+δ layered perovskite cathode. J Power Sources 2010;195:7038-41.

38. Zhao L, Shen J, He B, Chen F, Xia C. Synthesis, characterization and evaluation of PrBaCo2-xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells. Int J Hydrog Energy 2011;36:3658-65.

39. Li H, Lü Z. High-performance fluorine-doped cobalt-free oxide as a potential cathode material for solid oxide fuel cells. Int J Hydrog Energy 2021;46:2503-10.

40. Yu A, Xia T, Sun L, Li Q, Huo L, Zhao H. Effects of rare earth doping on electrochemical properties of NdBaCo2O6-δ cathode materials. J Alloy Compd 2020;837:155563.

41. Alvarado-flores JJ, Mondragón-sánchez R, Ávalos-rodríguez ML, Alcaraz-vera JV, Rutiaga-quiñones JG, Guevara-martínez SJ. Synthesis, characterization and kinetic study of the Sr2FeMoO6-δ double perovskite: new findings on the calcination of one of its precursors. Int J Hydrog Energy 2021;46:26185-96.

42. Zhang Z, Li X, Xu H. A highly operating stability, oxygen reduction reaction active and CO2/Cr tolerance perovskite cathode for solid oxide fuel cells. J Alloy Compd 2022;922:166119.

43. Yang Y, Shi N, Xie Y, et al. K doping as a rational method to enhance the sluggish air-electrode reaction kinetics for proton-conducting solid oxide cells. Electrochim Acta 2021;389:138453.

44. Akkurt S, Sindiraç C, Özmen Egesoy T, ERĞEN E. A review on new cobalt-free cathode materials for reversible solid oxide fuel cells. J Met Mater Miner 2023;33:1654.

45. Gao Y, Zhang M, Fu M, Hu W, Tong H, Tao Z. A comprehensive review of recent progresses in cathode materials for proton-conducting SOFCs. Energy Rev 2023;2:100038.

46. Rath MK, Lee K. Superior electrochemical performance of non-precious Co-Ni-Mo alloy catalyst-impregnated Sr2FeMoO6-δ as an electrode material for symmetric solid oxide fuel cells. Electrochim Acta 2016;212:678-85.

47. Qiu P, Lin J, Lei L, et al. Evaluation of Cr-tolerance of Sr2Fe1.5Mo0.5O6-δ cathode for solid oxide fuel cells. ACS Appl Energy Mate 2019;2:7619-27.

48. Liu J, Lei Y, Li Y, et al. Infiltrated Sr2Fe1.5Mo0.5O6-δ/La0.9Sr0.1Ga0.8Mg0.2O3 electrodes towards high performance symmetrical solid oxide fuel cells fabricated by an ultra-fast and time-saving procedure. Electrochem Commun 2017;78:6-10.

49. Han X, Chen P, Wu M, et al. A redox-reversible perovskite electrode for CeO2-and LaGaO3-based symmetric solid oxide fuel cells. Ceram Int 2022;48:26440-51.

50. Li Y, Zou S, Ju J, Xia C. Characteristics of nano-structured SFM infiltrated onto YSZ backbone for symmetrical and reversible solid oxide cells. Solid State Ion 2018;319:98-104.

51. Xiao G, Liu Q, Wang S, et al. Synthesis and characterization of Mo-doped SrFeO3-δ as cathode materials for solid oxide fuel cells. J Power Sources 2012;202:63-9.

52. Patrakeev M, Leonidov I, Kozhevnikov V, Kharton V. Ion-electron transport in strontium ferrites: relationships with structural features and stability. Solid State Sci 2004;6:907-13.

53. Schmidt M, Campbell S. Crystal and magnetic structures of Sr2Fe2O5 at elevated temperature. J Solid State Chem 2001;156:292-304.

54. Savinskaya O, Nemudry AP. Oxygen transport properties of nanostructured SrFe1-xMoxO2.5+3/2x (0 < x < 0.1) perovskites. J Solid State Electrochem 2011;15:269-75.

55. Liu G, Rao G, Feng X, et al. Structural transition and atomic ordering in the non-stoichiometric double perovskite Sr2FexMo2-xO6. J Alloy Compd 2003;353:42-7.

56. Zhang L, Zhou Q, He Q, He T. Double-perovskites A2FeMoO6-δ (A=Ca, Sr, Ba) as anodes for solid oxide fuel cells. J Power Sources 2010;195:6356-66.

57. Xiao G, Liu Q, Dong X, Huang K, Chen F. Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells. J Power Sources 2010;195:8071-4.

58. Markov A, Leonidov I, Patrakeev M, et al. Structural stability and electrical transport in SrFe1-xMoxO3-δ. Solid State Ion 2008;179:1050-3.

59. Zhang SL, Zhang AP, Li CX, Yang GJ, Li CJ. Suspension plasma sprayed Sr2Fe1.4Mo0.6O6-δ electrodes for solid oxide fuel cells. J Therm Spray Tech 2017;26:432-40.

60. Li H, Zhao Y, Wang Y, Li Y. Sr2Fe2-xMoxO6-δ perovskite as an anode in a solid oxide fuel cell: Effect of the substitution ratio. Catal Today 2016;259:417-22.

61. Rager J, Zipperle M, Sharma A, Macmanus-driscoll JL. Oxygen Stoichiometry in Sr2FeMoO6, the determination of Fe and Mo valence states, and the chemical phase diagram of SrO-Fe3O4-MoO3. J Am Ceram Soc 2004;87:1330-5.

62. Liu Q, Dong X, Xiao G, Chen F. Sr2Fe1.5Mo0.5O6-δ as both anode and cathode materials for symmetrical SOFCs. Proceedings of the 218th ECS Meeting; 2010 Oct 10-15; Las Vegas, USA. Pennington: Electrochemical Society; 2011.

63. Liu Q, Dong X, Xiao G, Zhao F, Chen F. A novel electrode material for symmetrical SOFCs. Adv Mater 2010;22:5478-82.

64. Liu Q, Bugaris DE, Xiao G, et al. Sr2Fe1.5Mo0.5O6-δ as a regenerative anode for solid oxide fuel cells. J Power Sources 2011;196:9148-53.

65. Zheng K, Świerczek K, Polfus JM, Sunding MF, Pishahang M, Norby T. Carbon deposition and sulfur poisoning in SrFe0.75Mo0.25O3-δ and SrFe0.5Mn0.25Mo0.25O3-δ electrode materials for symmetrical SOFCs. J Electrochem Soc 2015;162:F1078-87.

66. Li H, Tian Y, Wang Z, Qie F, Li Y. An all perovskite direct methanol solid oxide fuel cell with high resistance to carbon formation at the anode. RSC Adv 2012;2:3857-63.

67. Qiao J, Chen W, Wang W, et al. The Ca element effect on the enhancement performance of Sr2Fe1.5Mo0.5O6-δ perovskite as cathode for intermediate-temperature solid oxide fuel cells. J Power Sources 2016;331:400-7.

68. Xu Z, Hu X, Wan Y, et al. Electrochemical performance and anode reaction process for Ca doped Sr2Fe1.5Mo0.5O6-δ as electrodes for symmetrical solid oxide fuel cells. Electrochim Acta 2020;341:136067.

69. Goldschmidt VM. Die gesetze der krystallochemie. Naturwissenschaften 1926;14:477-85.

70. Dai N, Wang Z, Jiang T, et al. A new family of barium-doped Sr2Fe1.5Mo0.5O6-δ perovskites for application in intermediate temperature solid oxide fuel cells. J Power Sources 2014;268:176-82.

71. Forbess MJ, Seraji S, Wu Y, Nguyen CP, Cao GZ. Dielectric properties of layered perovskite Sr1-xAxBi2Nb2O9 ferroelectrics (A=La, Ca and x=0,0.1). Appl Phys Lett 2000;76:2934-6.

72. Qi H, Thomas T, Li W, et al. Reduced thermal expansion and enhanced redox reversibility of La0.5Sr1.5Fe1.5Mo0.5O6-δ anode material for solid oxide fuel cells. ACS Appl Energy Mater 2019;2:4244-54.

73. Zhen S, Sun W, Tang G, Rooney D, Sun K, Ma X. Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides as intermediate temperature solid oxide fuel cell cathodes. Int J Hydrog Energy 2016;41:9538-46.

74. Yang G, Feng J, Sun W, et al. The characteristic of strontium-site deficient perovskites SrxFe1.5Mo0.5O6-δ (x = 1.9-2.0) as intermediate-temperature solid oxide fuel cell cathodes. J Power Sources 2014;268:771-7.

75. Dai N, Feng J, Wang Z, et al. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5-xNixMo0.5O6-δ(x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs. J Mater Chem A 2013;1:14147-53.

76. Osinkin D, Antonova E, Shubin K, Bogdanovich N. Influence of nickel exsolution on the electrochemical performance and rate-determining stages of hydrogen oxidation on Sr1.95Fe1.4Ni0.1Mo0.5O6-δ promising electrode for solid state electrochemical devices. Electrochim Acta 2021;369:137673.

77. Meng X, Wang Y, Zhao Y, et al. In-situ exsolution of nanoparticles from Ni substituted Sr2Fe1.5Mo0.5O6-δ perovskite oxides with different Ni doping contents. Electrochim Acta 2020;348:136351.

78. Tian C, Cheng J, Yang J. A highly active cathode material of Cu-doped Sr2Fe1.5Mo0.5O6 for symmetrical solid oxide fuel cells. J Mater Sci Mater Electron 2021;32:1258-64.

79. Pan X, Wang Z, He B, Wang S, Wu X, Xia C. Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6 electrode for solid oxide fuel cell. Int J Hydrog Energy 2013;38:4108-15.

80. Song Y, Zhong Q, Wang D, Xu Y, Tan W. Interaction between electrode materials Sr2FeCo0.5Mo0.5O6-δ and hydrogen sulfide in symmetrical solid oxide fuel cells. Int J Hydrog Energy 2017;42:22266-72.

81. Stanley P, Hussain AM, Huang Y, Gritton JE, Wachsman ED. Defect chemistry and oxygen non-stoichiometry in SrFe0.2Co0.4Mo0.4O3-δ ceramic oxide for solid oxide fuel cells. Ionics 2020;26:5641-9.

82. He B, Gong C, Wang Z, Jia L, Zhao L. Novel, cobalt-free, and highly active Sr2Fe1.5Mo0.5-xSnxO6-δ cathode materials for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 2017;42:10308-16.

83. Jiang Y, Yang Y, Xia C, Bouwmeester HJM. Sr2Fe1.4Mn0.1Mo0.5O6-δ perovskite cathode for highly efficient CO2 electrolysis. J Mater Chem A 2019;7:22939-49.

84. Sun W, Li P, Xu C, et al. Investigation of Sc doped Sr2Fe1.5Mo0.5O6 as a cathode material for intermediate temperature solid oxide fuel cells. J Power Sources 2017;343:237-45.

85. Zhang L, Yin Y, Xu Y, Yu S, Bi L. Tailoring Sr2Fe1.5Mo0.5O6-δ with Sc as a new single-phase cathode for proton-conducting solid oxide fuel cells. Sci China Mater 2022;65:1485-94.

86. Xu C, Sun K, Yang X, et al. Highly active and CO2-tolerant Sr2Fe1.3Ga0.2Mo0.5O6-δ cathode for intermediate-temperature solid oxide fuel cells. J Power Sources 2020;450:227722.

87. Hou M, Sun W, Li P, et al. Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fe1.5Mo0.5O6-δ for intermediate temperature solid oxide fuel cells. J Power Sources 2014;272:759-65.

88. Gou M, Ren R, Sun W, et al. Nb-doped Sr2Fe1.5Mo0.5O6-δ electrode with enhanced stability and electrochemical performance for symmetrical solid oxide fuel cells. Ceram Int 2019;45:15696-704.

89. Zhang Z, Zhu Y, Zhong Y, Zhou W, Shao Z. Anion doping: a new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv Energy Mater 2017;7:1700242.

90. Zhang L, Sun W, Xu C, et al. Attenuating a metal-oxygen bond of a double perovskite oxide via anion doping to enhance its catalytic activity for the oxygen reduction reaction. J Mater Chem A 2020;8:14091-8.

91. Zhang Y, Zhu Z, Gu Y, Chen H, Zheng Y, Ge L. Effect of Cl doping on the electrochemical performance of Sr2Fe1.5Mo0.5O6-δ cathode material for solid oxide fuel cells. Ceram Inter 2020;46:22787-96.

92. Zare A, Salari H, Babaei A, Abdoli H, Aslannejad H. Electrochemical evaluation of Sr2Fe1.5Mo0.5O6-δ/Ce0.9Gd0.1O1.95 cathode of SOFCs by EIS and DRT analysis. J Electroanal Chem 2023;936:117376.

93. Xu J, Wan S, Wang Y, et al. Enhancing performance of molybdenum doped strontium ferrite electrode by surface modification through Ni infiltration. Int J Hydrog Energy 2021;46:10876-91.

94. Dong X, Tian L, Li J, Zhao Y, Tian Y, Li Y. Single layer fuel cell based on a composite of Ce0.8Sm0.2O2-δ-Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo0.5O6-δ. J Power Sources 2014;249:270-6.

95. Li M, Ni M, Su F, Xia C. Proton conducting intermediate-temperature solid oxide fuel cells using new perovskite type cathodes. J Power Sources 2014;260:197-204.

96. Zhang L, Xu C, Sun W, et al. Constructing perovskite/alkaline-earth metal composite heterostructure by infiltration to revitalize CO2 electrolysis. Sep Purif Technol 2022;298:121475.

97. Guo Y, Guo T, Zhou S, et al. Characterization of Sr2Fe1.5Mo0.5O6-δ-Gd0.1Ce0.9O1.95 symmetrical electrode for reversible solid oxide cells. Ceram Int 2019;45:10969-75.

98. Maide M, Lillmaa K, Salvan LK, et al. Influence of electrolyte scaffold microstructure and loading of MIEC material on the electrochemical performance of RSOC fuel electrode. Fuel Cells 2018;18:789-99.

99. Skafte TL, Sudireddy BR, Blennow P, Graves C. Carbon and redox tolerant infiltrated oxide fuel-electrodes for solid oxide cells. ECS Trans 2016;72:201-14.

100. He B, Zhao L, Song S, Liu T, Chen F, Xia C. Sr2Fe1.5Mo0.5O6-δ-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells. J Electrochem Soc 2012;159:B619-26.

101. Dai N, Lou Z, Wang Z, et al. Synthesis and electrochemical characterization of Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 composite cathode for intermediate-temperature solid oxide fuel cells. J Power Sources 2013;243:766-72.

102. Hu B, Wang Y, Zhu Z, Xia C, Bouwmeester HJM. Measuring oxygen surface exchange kinetics on mixed-conducting composites by electrical conductivity relaxation. J Mater Chem A 2015;3:10296-302.

103. Wang Y, Liu T, Fang S, Xiao G, Wang H, Chen F. A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process. J Power Sources 2015;277:261-7.

104. Wang Y, Liu T, Fang S, Chen F. Syngas production on a symmetrical solid oxide H2O/CO2 co-electrolysis cell with Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 electrodes. J Power Sources 2016;305:240-8.

105. Osinkin D, Lobachevskaya N, Suntsov AY. The electrochemical behavior of the promising Sr2Fe1.5Mo0.5O6-δ+Ce0.8Sm0.2O1.9-δ anode for the intermediate temperature solid oxide fuel cells. J Alloy Compd 2017;708:451-5.

106. Wang Y, Liu T, Lei L, Chen F. Methane assisted solid oxide co-electrolysis process for syngas production. J Power Sources 2017;344:119-27.

107. Farzin YA, Babaei A, Skafte TL, Stamate E, Ataie A, Jensen SH. Low-temperature preparation and investigation of electrochemical properties of SFM/CGO composite electrode. Solid State Ion 2020;356:115435.

108. Li C, Zhang Q, Liu W, Tian X, Zheng R, Liu J. Tailoring the electrolyte and cathode properties for optimizing the performance of symmetrical solid oxide fuel cells fabricated by one-step co-sintering method. J Asian Ceram Soc 2022;10:386-95.

109. Osinkin D, Beresnev S, Bogdanovich N. Influence of Pr6O11 on oxygen electroreduction kinetics and electrochemical performance of Sr2Fe1.5Mo0.5O6-δ based cathode. J Power Sources 2018;392:41-7.

110. Chen D, Wang F, Shi H, Ran R, Shao Z. Systematic evaluation of Co-free LnBaFe2O5+δ (Ln=Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells. Electrochim Acta 2012;78:466-74.

111. Wen C, Chen K, Guo D, et al. High performance and stability of PrBa0.5Sr0.5Fe2O5+δ symmetrical electrode for intermediate temperature solid oxide fuel cells. Solid State Ion 2022;386:116048.

112. Liu C, Wang F, Ni Y, et al. Ta-doped PrBaFe2O5+δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells. Int J Hydrog Energy 2023;48:9812-22.

113. Mao X, Yu T, Ma G. Performance of cobalt-free double-perovskite NdBaFe2-xMnxO5+δ cathode materials for proton-conducting IT-SOFC. J Alloy Compd 2015;637:286-90.

114. Mao X, Wang W, Ma G. A novel cobalt-free double-perovskite NdBaFe1.9Nb0.1O5+δ cathode material for proton-conducting IT-SOFC. Ceram Int 2015;41:10276-80.

115. Zhang H, Yang J, Wang P, Yao C, Yu X, Shi F. Novel cobalt-free perovskite PrBaFe1.9Mo0.1O5+δ as a cathode material for solid oxide fuel cells. Solid State Ion 2023;391:116144.

116. Zhang B, Zhang S, Han H, Tang K, Xia C. Cobalt-free double perovskite oxide as a promising cathode for solid oxide fuel cells. ACS Appl Mater Interfaces 2023;15:8253-62.

117. Li G, Gou Y, Cheng X, et al. Enhanced electrochemical performance of the Fe-based layered perovskite oxygen electrode for reversible solid oxide cells. ACS Appl Mater Interfaces 2021;13:34282-91.

118. Lü S, Zhu Y, Fu X, et al. A-site deficient Fe-based double perovskite oxides PrxBaFe2O5+δ as cathodes for solid oxide fuel cells. J Alloy Compd 2022;911:165002.

119. Zhang K, Ge L, Ran R, Shao Z, Liu S. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater 2008;56:4876-89.

120. Lu C, Niu B, Yi W, Ji Y, Xu B. Efficient symmetrical electrodes of PrBaFe2-xCoxO5+δ (x=0, 0.2,0.4) for solid oxide fuel cells and solid oxide electrolysis cells. Electrochim Acta 2020;358:136916.

121. Chavez E, Mueller M, Mogni L, Caneiro A. Study of LnBaCo2O6-δ (Ln = Pr, Nd, Sm and Gd) double perovskites as new cathode material for IT-SOFC. J Phys Conf Ser 2009;167:012043.

122. Li H, Lü Z. A highly stable cobalt-free LaBa0.5Sr0.5Fe2O6-δ oxide as a high performance cathode material for solid oxide fuel cells. Int J Hydrog Energy 2020;45:19831-9.

123. He Z, Xia L, Chen Y, Yu J, Huang X, Yu Y. Layered perovskite Sm1-xLaxBaFe2O5+δ as cobalt-free cathodes for IT-SOFCs. RSC Adv 2015;5:57592-8.

124. Wang L, Xie P, Bian L, Liu X, Chou K. Performance of Ca-doped GdBa1-xCaxFe2O5+δ (x = 0, 0.1) as cathode materials for IT-SOFC application. Catal Today 2018;318:132-6.

125. Dong G, Yang C, He F, et al. Tin doped PrBaFe2O5+δ anode material for solid oxide fuel cells. RSC Adv 2017;7:22649-61.

126. Li H, Lü Z. Highly active and stable tin-doped perovskite-type oxides as cathode materials for solid oxide fuel cells. Electrochim Acta 2020;361:137054.

127. Chen T, Pang S, Shen X, Jiang X, Wang W. Evaluation of Ba-deficient PrBa1-xFe2O5+δ oxides as cathode materials for intermediate-temperature solid oxide fuel cells. RSC Adv 2016;6:13829-36.

128. Guo RH, Guo L, Zhang JY, Zhou GZ, An SL. Synthesis and characterization of double perovskite cathode material SmBaFe2-xCoxO5+δ for solid oxide fuel cells. New Chem Mater 2018;46:183-6. Avaliable from: https://webofscience.clarivate.cn/wos/alldb/full-record/CSCD:6207444 [Last accessed on 6 Feb 2024].

129. Ivanov AI, Kolotygin VA, Tsipis EV, Bredikhin SI, Kharton VV. Electrical conductivity, thermal expansion and electrochemical properties of perovskites PrBaFe2-xNixO5+δ. Russ J Electrochem 2018;54:533-40.

130. He W, Wu X, Dong F, Ni M. A novel layered perovskite electrode for symmetrical solid oxide fuel cells: PrBa(Fe0.8Sc0.2)2O5+δ. J Power Sources 2017;363:16-9.

131. Li H, Wei B, Su C, Wang C, Lü Z. Novel cobalt-free layered perovskite LaBaFe2-xNbxO6-δ (x = 0-0.1) as cathode for solid oxide fuel cells. J Power Sources 2020;453:227875.

132. Ren R, Wang Z, Meng X, et al. Boosting the electrochemical performance of Fe-based layered double perovskite cathodes by Zn2+ doping for solid oxide fuel cells. ACS Appl Mater Interfaces 2020;12:23959-67.

133. Li L, Jin F, Shen Y, He T. Cobalt-free double perovskite cathode GdBaFeNiO5+δ and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate-temperature solid oxide fuel cells. Electrochim Acta 2015;182:682-92.

134. Sengodan S, Ju Y, Kwon O, et al. Self-decorated MnO nanoparticles on double perovskite solid oxide fuel cell anode by in situ exsolution. ACS Sustain Chem Eng 2017;5:9207-13.

135. Lai K, Manthiram A. Self-regenerating Co-Fe nanoparticles on perovskite oxides as a hydrocarbon fuel oxidation catalyst in solid oxide fuel cells. Chem Mater 2018;30:2515-25.

136. Jiang J, Zhang Y, Yang X, Shen Y, He T. NdBaFe2-xCoxO5+δ double perovskites with exsolved Co-Fe alloy nanoparticles as highly efficient and stable anodes for direct hydrocarbon solid oxide fuel cells. ACS Appl Energy Mater 2021;4:134-45.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/