REFERENCES

1. Klerke A, Christensen CH, Nørskov JK, Vegge T. Ammonia for hydrogen storage: challenges and opportunities. J Mater Chem 2008;18:2304-10.

2. Wang Y, Zhou X, Liu L. Theoretical investigation of the combustion performance of ammonia/hydrogen mixtures on a marine diesel engine. Int J Hydrog Energy 2021;46:14805-12.

3. Chehade G, Dincer I. Progress in green ammonia production as potential carbon-free fuel. Fuel 2021;299:120845.

4. Guo Y, Pan Z, An L. Carbon-free sustainable energy technology: direct ammonia fuel cells. J Power Sources 2020;476:228454.

5. Valera-Medina A, Xiao H, Owen-Jones M, David W, Bowen P. Ammonia for power. Prog Energy Combust Sci 2018;69:63-102.

6. Cheng S, Logan BE. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 2007;9:492-6.

7. Giddey S, Badwal SPS, Munnings C, Dolan M. Ammonia as a renewable energy transportation media. ACS Sustain Chem Eng 2017;5:10231-9.

8. Wang W, Herreros JM, Tsolakis A, York AP. Ammonia as hydrogen carrier for transportation; investigation of the ammonia exhaust gas fuel reforming. Int J Hydrog Energy 2013;38:9907-17.

9. Fu E, Gong F, Wang S, Xiao R. Chemical looping technology in mild-condition ammonia production: a comprehensive review and analysis. Small 2024;20:e2305095.

10. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nature Geosci 2008;1:636-9.

11. Gao Y, Wang R, Li Y, et al. Regulating dynamic equilibrium of active hydrogen for super-efficient nitrate electroreduction to ammonia. Chem Eng J 2023;474:145546.

12. Yang B, Ding W, Zhang H, Zhang S. Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy Environ Sci 2021;14:672-87.

13. Noh H, Kang K, Seo Y. Environmental and energy efficiency assessments of offshore hydrogen supply chains utilizing compressed gaseous hydrogen, liquefied hydrogen, liquid organic hydrogen carriers and ammonia. Int J Hydrog Energy 2023;48:7515-32.

14. Asif M, Sidra Bibi S, Ahmed S, et al. Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking. Chem Eng J 2023;473:145381.

15. Soloveichik G. Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process. Nat Catal 2019;2:377-80.

16. El-shafie M, Kambara S. Recent advances in ammonia synthesis technologies: toward future zero carbon emissions. Int J Hydrog Energy 2023;48:11237-73.

17. Lazouski N, Chung M, Williams K, Gala ML, Manthiram K. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat Catal 2020;3:463-9.

18. Verleysen K, Parente A, Contino F. How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage). Energy 2021;232:121016.

19. Guo J, Chen P. Catalyst: NH3 as an energy carrier. Chem 2017;3:709-12.

20. Zhang L, Ji X, Ren X, et al. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies. Adv Mater 2018;30:e1800191.

21. Montoya JH, Tsai C, Vojvodic A, Nørskov JK. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 2015;8:2180-6.

22. Wu D, Peng X, Li L, et al. Commercial biogas plants: review on operational parameters and guide for performance optimization. Fuel 2021;303:121282.

23. Giddey S, Badwal S, Kulkarni A. Review of electrochemical ammonia production technologies and materials. Int J Hydrog Energy 2013;38:14576-94.

24. Shen H, Choi C, Masa J, et al. Electrochemical ammonia synthesis: mechanistic understanding and catalyst design. Chem 2021;7:1708-54.

25. Long J, Chen S, Zhang Y, et al. Direct electrochemical ammonia synthesis from nitric oxide. Angew Chem Int Ed 2020;59:9711-8.

26. Jiang H, Chen GF, Hai G, et al. A nitrogen battery electrode involving eight-electron transfer per nitrogen for energy storage. Angew Chem Int Ed 2023;62:e202305695.

27. Smith C, Hill AK, Torrente-murciano L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy Environ Sci 2020;13:331-44.

28. Thakur IS, Medhi K. Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: challenges and opportunities. Bioresour Technol 2019;282:502-13.

29. Hon WM, Lee KH, Khoo HE. Nitric oxide in liver diseases: friend, foe, or just passerby? Ann N Y Acad Sci 2002;962:275-95.

30. Knobeloch L, Salna B, Hogan A, Postle J, Anderson H. Blue babies and nitrate-contaminated well water. Environ Health Perspect 2000;108:675-8.

31. WHO. Nitrate and nitrite in drinking-water. 2016. Avaliable from: https://www.who.int/docs/default-source/wash-documents/wash-chemicals/nitrate-nitrite-background-document.pdf [Last accessed on 20 Feb 2024].

32. Schoeman J, Steyn A. Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination 2003;155:15-26.

33. Cliford D, Liu X. Ion exchange for nitrate removal. J Am Water Works Assoc 1993;85:135-43.

34. Wei L, Liu D, Rosales BA, Evans JW, Vela J. Mild and selective hydrogenation of nitrate to ammonia in the absence of noble metals. ACS Catal 2020;10:3618-28.

35. Zhang X, Wang Y, Liu C, Yu Y, Lu S, Zhang B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem Eng J 2021;403:126269.

36. Xu H, Ma Y, Chen J, Zhang WX, Yang J. Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle. Chem Soc Rev 2022;51:2710-58.

37. Wang Y, Shu S, Peng M, et al. Dual-site electrocatalytic nitrate reduction to ammonia on oxygen vacancy-enriched and Pd-decorated MnO2 nanosheets. Nanoscale 2021;13:17504-11.

38. Cui Y, Yang H, Dai C, Ren P, Song C, Ma X. Coupling of LaFeO3 - plasma catalysis and Cu+/Cu0 electrocatalysis for direct ammonia synthesis from air. Ind Eng Chem Res 2022;61:4816-23.

39. Deng X, Yang Y, Wang L, Fu XZ, Luo JL. Metallic Co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A cm-2. Adv Sci 2021;8:2004523.

40. Rosca V, Duca M, de Groot MT, Koper MT. Nitrogen cycle electrocatalysis. Chem Rev 2009;109:2209-44.

41. Jung W, Hwang YJ. Material strategies in the electrochemical nitrate reduction reaction to ammonia production. Mater Chem Front 2021;5:6803-23.

42. Wang Q, Zhao X, Zhang J, Zhang X. Investigation of nitrate reduction on polycrystalline Pt nanoparticles with controlled crystal plane. J Electroanal Chem 2015;755:210-4.

43. Lim J, Liu C, Park J, et al. Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catal 2021;11:7568-77.

44. Liu H, Park J, Chen Y, et al. Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia. ACS Catal 2021;11:8431-42.

45. Siriwatcharapiboon W, Kwon Y, Yang J, et al. Promotion effects of Sn on the electrocatalytic reduction of nitrate at Rh nanoparticles. ChemElectroChem 2014;1:172-9.

46. Wang Y, Zhou W, Jia R, Yu Y, Zhang B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew Chem Int Ed 2020;59:5350-4.

47. He W, Zhang J, Dieckhöfer S, et al. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat Commun 2022;13:1129.

48. Wang C, Ye F, Shen J, Xue KH, Zhu Y, Li C. In situ loading of Cu2O active sites on island-like copper for efficient electrochemical reduction of nitrate to ammonia. ACS Appl Mater Interfaces 2022;14:6680-8.

49. Anastasiadou D, van Beek Y, Hensen EJM, Costa Figueiredo M. Ammonia electrocatalytic synthesis from nitrate. Electrochem Sci Adv 2023;3:e2100220.

50. Chia X, Pumera M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat Catal 2018;1:909-21.

51. Tao H, Fan Q, Ma T, et al. Two-dimensional materials for energy conversion and storage. Prog Mater Sci 2020;111:100637.

52. Du F, Li J, Wang C, et al. Active sites-rich layered double hydroxide for nitrate-to-ammonia production with high selectivity and stability. Chem Eng J 2022;434:134641.

53. Kim K, Lee H, Huang X, et al. Energy-efficient electrochemical ammonia production from dilute nitrate solution. Energy Environ Sci 2023;16:663-72.

54. Li J, Zhang Y, Liu C, et al. 3.4% Solar-to-ammonia efficiency from nitrate using Fe single atomic catalyst supported on MoS2 nanosheets. Adv Funct Mater 2022;32:2108316.

55. Li H, Xu X, Lin X, et al. Cooperative interaction between Cu and sulfur vacancies in SnS2 nanoflowers for highly efficient nitrate electroreduction to ammonia. J Mater Chem A 2023;11:2014-22.

56. Li Y, Ma J, Waite TD, Hoffmann MR, Wang Z. Development of a mechanically flexible 2D-MXene membrane cathode for selective electrochemical reduction of nitrate to N2: mechanisms and implications. Environ Sci Technol 2021;55:10695-703.

57. Karthikeyan P, Elanchezhiyan S, Preethi J, Talukdar K, Meenakshi S, Park CM. Two-dimensional (2D) Ti3C2Tx MXene nanosheets with superior adsorption behavior for phosphate and nitrate ions from the aqueous environment. Ceram Int 2021;47:732-9.

58. Pan F, Zhou J, Wang T, et al. Revealing the activity origin of ultrathin nickel metal-organic framework nanosheet catalysts for selective electrochemical nitrate reduction to ammonia: experimental and density functional theory investigations. J Colloid Interface Sci 2023;638:26-38.

59. Sivan SE, Kang KH, Han SJ, et al. Facile MOF-derived one-pot synthetic approach toward Ru single atoms, nanoclusters, and nanoparticles dispersed on CeO2 supports for enhanced ammonia synthesis. J Catal 2022;408:316-28.

60. Wang H, Guo Y, Li C, et al. Cu/CuOx in-plane heterostructured nanosheet arrays with rich oxygen vacancies enhance nitrate electroreduction to ammonia. ACS Appl Mater Interfaces 2022;14:34761-9.

61. Zhao F, Hai G, Li X, Jiang Z, Wang H. Enhanced electrocatalytic nitrate reduction to ammonia on cobalt oxide nanosheets via multiscale defect modulation. Chem Eng J 2023;461:141960.

62. Wu ZY, Karamad M, Yong X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat Commun 2021;12:2870.

63. Wang H, Liu X, Niu P, Wang S, Shi J, Li L. Porous Two-dimensional materials for photocatalytic and electrocatalytic applications. Matter 2020;2:1377-413.

64. Jia R, Wang Y, Wang C, Ling Y, Yu Y, Zhang B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal 2020;10:3533-40.

65. Liu Y, Deng P, Wu R, Zhang X, Sun C, Li H. Oxygen vacancies for promoting the electrochemical nitrogen reduction reaction. J Mater Chem A 2021;9:6694-709.

66. Wang C, Liu Z, Hu T, et al. Metasequoia-like nanocrystal of iron-doped copper for efficient electrocatalytic nitrate reduction into ammonia in neutral media. ChemSusChem 2021;14:1825-9.

67. Cui X, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv Energy Mater 2018;8:1800369.

68. Chen G, Ren S, Zhang L, et al. Advances in electrocatalytic N2 reduction - strategies to tackle the selectivity challenge. Small Methods 2019;3:1800337.

69. Wang Q, O'Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 2012;112:4124-55.

70. Yi H, Liu S, Lai C, et al. Recent advance of transition-metal-based layered double hydroxide nanosheets: synthesis, properties, modification, and electrocatalytic applications. Adv Energy Mater 2021;11:2002863.

71. Zhang S, Zhao Y, Shi R, et al. Efficient photocatalytic nitrogen fixation over Cuδ+ -modified defective ZnAl-layered double hydroxide nanosheets. Adv Energy Mater 2020;10:1901973.

72. Li T, Li R, Luo H. Facile in situ growth of Ni/Co-LDH arrays by hypothermal chemical coprecipitation for all-solid-state asymmetric supercapacitors. J Mater Chem A 2016;4:18922-30.

73. Xu J, Deng H, Song J, Zhao J, Zhang L, Hou W. Synthesis of hierarchical flower-like Mg2Al-Cl layered double hydroxide in a surfactant-free reverse microemulsion. J Colloid Interface Sci 2017;505:816-23.

74. Li J, Lian R, Wang J, He S, Jiang SP, Rui Z. Oxygen vacancy defects modulated electrocatalytic activity of iron-nickel layered double hydroxide on Ni foam as highly active electrodes for oxygen evolution reaction. Electrochim Acta 2020;331:135395.

75. Li L, Yang J, Yun Y, Hu S, Huang Y. Characterization and electrochemical behaviour of nanoscale hydrotalcite-like compounds toward the reduction of nitrate. Nanomaterials 2020;10:1926.

76. Yu MS, Jesudass SC, Surendran S, Kim JY, Sim U, Han MK. Synergistic interaction of MoS2 nanoflakes on La2Zr2O7 nanofibers for improving photoelectrochemical nitrogen reduction. ACS Appl Mater Interfaces 2022;14:31889-99.

77. Whittingham MS. Lithium batteries and cathode materials. Chem Rev 2004;104:4271-301.

78. Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today 2017;20:116-30.

79. Sukanya R, da Silva Alves DC, Breslin CB. Review - recent developments in the applications of 2D transition metal dichalcogenides as electrocatalysts in the generation of hydrogen for renewable energy conversion. J Electrochem Soc 2022;169:064504.

80. Wang J, Sun Z, Li Y, et al. Sulfur vacancy MoS2 for electrocatalytic reduction of nitrate to ammonia with enhanced selectivity. J Alloys Compd 2023;955:170199.

81. Mohanty B, Jena BK, Basu S. Single atom on the 2D matrix: an emerging electrocatalyst for energy applications. ACS Omega 2020;5:1287-95.

82. Fan M, Cui J, Wu J, Vajtai R, Sun D, Ajayan PM. Improving the catalytic activity of carbon-supported single atom catalysts by polynary metal or heteroatom doping. Small 2020;16:e1906782.

83. Ding J, Hou X, Qiu Y, et al. Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. Inorg Chem Commun 2023;151:110621.

84. Xu T, Liang J, Li S, et al. Recent advances in nonprecious metal oxide electrocatalysts and photocatalysts for N2 reduction reaction under ambient condition. Small Sci 2021;1:2000069.

85. Cui X, Tang C, Liu XM, Wang C, Ma W, Zhang Q. Highly selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts. Chemistry 2018;24:18494-501.

86. Xiong W, Yin H, Wu T, Li H. Challenges and opportunities of transition metal oxides as electrocatalysts. Chemistry 2023;29:e202202872.

87. Sun Z, Liao T, Dou Y, et al. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat Commun 2014;5:3813.

88. Sun Y, Liu Q, Gao S, et al. Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation. Nat Commun 2013;4:2899.

89. Huang Z, Zhou A, Wu J, et al. Bottom-up preparation of ultrathin 2D aluminum oxide nanosheets by duplicating graphene oxide. Adv Mater 2016;28:1703-8.

90. Li C, Liu L, Kang J, et al. Pristine MOF and COF materials for advanced batteries. Energy Stor Mater 2020;31:115-34.

91. Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dincă M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 2017;16:220-4.

92. Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev 2020;120:1438-511.

93. Wu T, Liu X, Liu Y, et al. Application of QD-MOF composites for photocatalysis: energy production and environmental remediation. Coord Chem Rev 2020;403:213097.

94. Ma T, Li H, Ma JG, Cheng P. Application of MOF-based materials in electrochemical sensing. Dalton Trans 2020;49:17121-9.

95. Chae HK, Siberio-Pérez DY, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004;427:523-7.

96. Freund R, Zaremba O, Arnauts G, et al. The current status of MOF and COF applications. Angew Chem Int Ed 2021;60:23975-4001.

97. Wang J, Li N, Xu Y, Pang H. Two-dimensional MOF and COF nanosheets: synthesis and applications in electrochemistry. Chemistry 2020;26:6402-22.

98. Lv Y, Su J, Gu Y, et al. Atomically precise integration of multiple functional motifs in catalytic metal-organic frameworks for highly efficient nitrate electroreduction. JACS Au 2022;2:2765-77.

99. Liu P, Yan J, Huang H, Song W. Cu/Co bimetallic conductive MOFs: electronic modulation for enhanced nitrate reduction to ammonia. Chem Eng J 2023;466:143134.

100. Fang Z, Jin Z, Tang S, Li P, Wu P, Yu G. Porous two-dimensional iron-cyano nanosheets for high-rate electrochemical nitrate reduction. ACS Nano 2022;16:1072-81.

101. Zhang T, Pan L, Tang H, et al. Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination. J Alloys Compd 2017;695:818-26.

102. Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges and prospects. Chem Eng J 2020;388:124340.

103. Wyatt BC, Rosenkranz A, Anasori B. 2D MXenes: tunable mechanical and tribological properties. Adv Mater 2021;33:e2007973.

104. Qian A, Seo JY, Shi H, Lee JY, Chung CH. Surface functional groups and electrochemical behavior in dimethyl sulfoxide-delaminated Ti3C2Tx MXene. ChemSusChem 2018;11:3719-23.

105. Tsounis C, Kumar PV, Masood H, et al. Advancing MXene electrocatalysts for energy conversion reactions: surface, stoichiometry, and stability. Angew Chem Int Ed 2023;62:e202210828.

106. Yorulmaz U, Özden A, Perkgöz NK, Ay F, Sevik C. Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation. Nanotechnology 2016;27:335702.

107. Wu Y, Nie P, Wu L, Dou H, Zhang X. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chem Eng J 2018;334:932-8.

108. Wu B, Cai X, Shui L, Gao E, Liu Z. Extraordinary electromechanical actuation of Ti2C MXene. J Phys Chem C 2021;125:1060-8.

109. Hu C, Du Z, Wei Z, Li L, Shen G. Functionalized Ti3C2Tx MXene with layer-dependent band gap for flexible NIR photodetectors. Appl Phys Rev 2023;10:021402.

110. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 2014;6:11173-9.

111. Yang Q, Huang Z, Li X, et al. A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano 2019;13:8275-83.

112. Le TA, Tran NQ, Hong Y, Kim M, Lee H. Porosity-engineering of MXene as a support material for a highly efficient electrocatalyst toward overall water splitting. ChemSusChem 2020;13:945-55.

113. Zhou Z, Yu F, You Y, Zhan J, Zhang L. Tunable functional groups on MXene regulating the catalytic property of anchored cobalt phthalocyanine for electrochemical CO2 reduction. Inorg Chem Front 2023;10:5371-8.

114. Wang X, Bak S, Han M, et al. Surface redox pseudocapacitance of partially oxidized titanium carbide mxene in water-in-salt electrolyte. ACS Energy Lett 2022;7:30-5.

115. Cai J, Huang J, Cao A, et al. Interfacial hydrogen bonding-involved electrocatalytic ammonia synthesis on OH-terminated MXene. Appl Catal B 2023;328:122473.

116. Hu T, Wang M, Guo C, Li CM. Functionalized MXenes for efficient electrocatalytic nitrate reduction to ammonia. J Mater Chem A 2022;10:8923-31.

117. Brownson DA, Kampouris DK, Banks CE. An overview of graphene in energy production and storage applications. J Power Sources 2011;196:4873-85.

118. Zhuo HY, Zhang X, Liang JX, Yu Q, Xiao H, Li J. Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem Rev 2020;120:12315-41.

119. Cheng N, Zhang L, Doyle-davis K, Sun X. Single-atom catalysts: from design to application. Electrochem Energ Rev 2019;2:539-73.

120. Rehman F, Kwon S, Musgrave CB, Tamtaji M, Goddard WA, Luo Z. High-throughput screening to predict highly active dual-atom catalysts for electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022;103:107866.

121. Zhao T, Chen K, Xu X, et al. Homonuclear dual-atom catalysts embedded on N-doped graphene for highly efficient nitrate reduction to ammonia: from theoretical prediction to experimental validation. Appl Catal B 2023;339:123156.

122. Huang L, Cheng L, Ma T, et al. Direct synthesis of ammonia from nitrate on amorphous graphene with near 100% efficiency. Adv Mater 2023;35:e2211856.

123. Luo Y, Chen K, Shen P, et al. B-doped MoS2 for nitrate electroreduction to ammonia. J Colloid Interface Sci 2023;629:950-7.

124. Li J, Liu H, Du F, et al. Microenvironmental corrosion and hydrolysis induced two-dimensional heterojunction of copper oxide@ferriferrous oxide for efficient electrochemical nitrate reduction to ammonia. Chem Eng J 2023;471:144488.

125. Wang S, Song C, Cai Y, et al. Interfacial polarization triggered by covalent-bonded MXene and black phosphorus for enhanced electrochemical nitrate to ammonia conversion. Adv Energy Mater 2023;13:2301136.

126. Zhang H, Li L, Sun W, He J, Xu Q, Lu J. Highly dispersed in-situ grown Bi2O3 nanosheets on Ti3C2Tx MXene for selective electroreduction of nitrate to ammonia. ChemElectroChem 2023;10:e202201001.

127. Wang Y, Rahimnejad S, Sun WJ, et al. Bimetallic Cu-Fe catalysts on MXene for synergistically electrocatalytic conversion of nitrate to ammonia. J Colloid Interface Sci 2023;648:595-603.

128. Sun W, Li L, Zhang H, He J, Lu J. A bioinspired iron-centered electrocatalyst for selective catalytic reduction of nitrate to ammonia. ACS Sustain Chem Eng 2022;10:5958-65.

129. Sun WJ, Ji HQ, Li LX, et al. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew Chem Int Ed Engl 2021;60:22933-9.

130. Zhu D, Li G, Yan X, Geng C, Gao L. Electrochemical nitrate reduction to high-value ammonia on two-dimensional molybdenum carbide nanosheets for nitrate-containing wastewater upcycling. Sci Total Environ 2023;878:163145.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/