REFERENCES

1. Ausfelder F, Bazzanella A. Hydrogen in the chemical industry. In: Detlef Stolten, Bernd Emonts, editors. Hydrogen science and engineering : materials, processes, systems and technology. Weinheim: Wiley-VCH; 2016. pp. 19-39.

2. Chaubey R, Sahu S, James OO, Maity S. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew Sustain Energy Rev 2013;23:443-62.

3. Hasanuzzaman M, Zubir US, Ilham NI, Seng Che H. Global electricity demand, generation, grid system, and renewable energy polices: a review. WIREs Energy Environ 2017;6:e222.

4. Liu Z, Ciais P, Deng Z, et al. Carbon monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production. Sci Data 2020;7:392.

5. Aghahosseini A, Solomon A, Breyer C, et al. Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness. Appl Energy 2023;331:120401.

6. Lippkau F, Franzmann D, Addanki T, et al. Global hydrogen and synfuel exchanges in an emission-free energy system. Energies 2023;16:3277.

7. Chi J, Yu H. Water electrolysis based on renewable energy for hydrogen production. Chinese J Catal 2018;39:390-4.

8. Younas M, Shafique S, Hafeez A, Javed F, Rehman F. An overview of hydrogen production: current status, potential, and challenges. Fuel 2022;316:123317.

9. Anwar S, Khan F, Zhang Y, Djire A. Recent development in electrocatalysts for hydrogen production through water electrolysis. Int J Hydrog Energy 2021;46:32284-317.

10. Kumar S, Lim H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep 2022;8:13793-813.

11. Wu T, Qiu Z, Hsieh C. Obtaining Ni P electrocatalyst in minutes via electroless plating on carbon nanotubes decorated substrate for alkaline urea electrolysis. Appl Surf Sci 2024;645:158831.

12. Kovač A, Paranos M, Marciuš D. Hydrogen in energy transition: a review. Int J Hydrogen Energy 2021;46:10016-35.

13. Moradi R, Groth KM. Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis. Int J Hydrog Energy 2019;44:12254-69.

14. Tang D, Tan G, Li G, et al. State-of-the-art hydrogen generation techniques and storage methods: a critical review. J Energy Stor 2023;64:107196.

15. Ong B, Kamarudin S, Basri S. Direct liquid fuel cells: a review. Int J Hydrog Energy 2017;42:10142-57.

16. Alias M, Kamarudin S, Zainoodin A, Masdar M. Active direct methanol fuel cell: an overview. Int J Hydrog Energy 2020;45:19620-41.

17. Ud Din MA, Idrees M, Jamil S, et al. Advances and challenges of methanol-tolerant oxygen reduction reaction electrocatalysts for the direct methanol fuel cell. J Energy Chem 2023;77:499-513.

18. Ma Z, Legrand U, Pahija E, Tavares JR, Boffito DC. From CO2 to formic acid fuel cells. Ind Eng Chem Res 2021;60:803-15.

19. Zhang Y, Li F, Dong J, Jia K, Sun T, Xu L. Recent advances in designing efficient electrocatalysts for electrochemical carbon dioxide reduction to formic acid/formate. J Electroanal Chem 2023;928:117018.

20. Shi Y, Ma ZR, Xiao YY, et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat Commun 2021;12:3021.

21. Shi Y, Lee C, Tan X, et al. Atomic-level metal electrodeposition: synthetic strategies, applications, and catalytic mechanism in electrochemical energy conversion. Small Struct 2022;3:2100185.

22. Tryk DA, Kuzume A. The electrochemistry of platinum-group and noble metals as it relates to fuel cells and water electrolysis: vibrational spectroscopic and computational insights. Curr Opin Electrochem 2023;41:101372.

23. Jeong H, Oh J, Yi GS, et al. High-performance water electrolyzer with minimum platinum group metal usage: iron nitride-iridium oxide core-shell nanostructures for stable and efficient oxygen evolution reaction. Appl Catal B Environ 2023;330:122596.

24. Hou J, Yang M, Ke C, et al. Platinum-group-metal catalysts for proton exchange membrane fuel cells: from catalyst design to electrode structure optimization. EnergyChem 2020;2:100023.

25. Seselj N, Alfaro SM, Bompolaki E, Cleemann LN, Torres T, Azizi K. Catalyst development for high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) applications. Adv Mater 2023;35:e2302207.

26. Wang J, Zhang B, Guo W, et al. Toward electrocatalytic methanol oxidation reaction: longstanding debates and emerging catalysts. Adv Mater 2023;35:e2211099.

27. Sun Y, Chen W, Zhang W, et al. Trimetallic porous PtIrBi nanoplates with robust CO tolerance for enhanced formic acid oxidation catalysis. Adv Funct Mater 2023;33:2303299.

28. Kim H, Hong S, Kim H, Jun Y, Kim SY, Ahn SH. Recent progress in Pt-based electrocatalysts for ammonia oxidation reaction. Appl Mater Today 2022;29:101640.

29. Lin HY, Lou ZX, Ding Y, et al. Oxygen evolution electrocatalysts for the proton exchange membrane electrolyzer: challenges on stability. Small Methods 2022;6:e2201130.

30. Ren X, Wang Y, Liu A, Zhang Z, Lv Q, Liu B. Current progress and performance improvement of Pt/C catalysts for fuel cells. J Mater Chem A 2020;8:24284-306.

31. Liu M, Zhao Z, Duan X, Huang Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv Mater 2019;31:1802234.

32. Hu S, Ge S, Liu H, Kang X, Yu Q, Liu B. Low-dimensional electrocatalysts for acidic oxygen evolution: intrinsic activity, high current density operation, and long-term stability. Adv Funct Mater 2022;32:2201726.

33. Ruban A, Hammer B, Stoltze P, Skriver H, Nørskov J. Surface electronic structure and reactivity of transition and noble metals. J Mol Catal A Chem 1997;115:421-9.

34. You B, Tang MT, Tsai C, Abild-Pedersen F, Zheng X, Li H. Enhancing electrocatalytic water splitting by strain engineering. Adv Mater 2019;31:e1807001.

35. Gawande MB, Goswami A, Asefa T, et al. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 2015;44:7540-90.

36. Kunene T, Kwanda Tartibu L, Ukoba K, Jen T. Review of atomic layer deposition process, application and modeling tools. Mater Today Proc 2022;62:S95-109.

37. Vasilyev VY, Morozova NB, Basova TV, Igumenov IK, Hassan A. Chemical vapour deposition of Ir-based coatings: chemistry, processes and applications. RSC Adv 2015;5:32034-63.

38. Pandey PA, Bell GR, Rourke JP, et al. Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions. Small 2011;7:3202-10.

39. Liang J, Liu Q, Li T, et al. Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chem 2021;23:2834-67.

40. Kim J, Kim H, Han GH, et al. Electrodeposition: an efficient method to fabricate self-supported electrodes for electrochemical energy conversion systems. Exploration 2022;2:20210077.

41. Yeo K, Eo J, Kim MJ, Kim S. Shape control of metal nanostructures by electrodeposition and their applications in electrocatalysis. J Electrochem Soc 2022;169:112502.

42. Kale MB, Borse RA, Mohamed AGA, Wang Y. Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion. Adv Funct Mater 2021;31:2101313.

43. Dimitrov N. Recent advances in the growth of metals, alloys, and multilayers by surface limited redox replacement (SLRR) based approaches. Electrochim Acta 2016;209:599-622.

44. Liu Y, Gokcen D, Bertocci U, Moffat TP. Self-terminating growth of platinum films by electrochemical deposition. Science 2012;338:1327-30.

45. Switzer JA. Atomic layer electrodeposition. Science 2012;338:1300-1.

46. Liu Y, Hangarter CM, Garcia D, Moffat TP. Self-terminating electrodeposition of ultrathin Pt films on Ni: an active, low-cost electrode for H2 production. Surf Sci 2015;631:141-54.

47. Ahn SH, Liu Y, Moffat TP. Ultrathin platinum films for methanol and formic acid oxidation: activity as a function of film thickness and coverage. ACS Catal 2015;5:2124-36.

48. Ahn SH, Tan H, Haensch M, Liu Y, Bendersky LA, Moffat TP. Self-terminated electrodeposition of iridium electrocatalysts. Energy Environ Sci 2015;8:3557-62.

49. Liu Y, You H, Kimmel YC, Esposito DV, Chen JG, Moffat TP. Self-terminating electrodeposition of Pt on WC electrocatalysts. Chem Mater 2020;504:144472.

50. Kim H, Kim J, Han GH, Jang HW, Kim SY, Ahn SH. Hydrogen evolving electrode with low Pt loading fabricated by repeated pulse electrodeposition. Korean J Chem Eng 2020;37:1340-5.

51. Kim H, Kim J, Kim J, et al. Dendritic gold-supported iridium/iridium oxide ultra-low loading electrodes for high-performance proton exchange membrane water electrolyzer. Appl Catal B Environ 2021;283:119596.

52. Hong S, Kim H, Kim J, Kim S, Ahn S. Electrochemical synthesis of Pt-decorated Au dendrite anode for constructing a direct formic acid fuel cell. Mater Today Chem 2022;26:101162.

53. Kim J, Kim H, Kim S, et al. Atomic Pt clusters on Au dendrite for formic acid oxidation. Chem Eng J 2023;451:138664.

54. Kim H, Choe S, Park H, Jang JH, Ahn SH, Kim SK. An extremely low Pt loading cathode for a highly efficient proton exchange membrane water electrolyzer. Nanoscale 2017;9:19045-9.

55. Kim D, Kim H, Park H, et al. Performance enhancement of high-temperature polymer electrolyte membrane fuel cells using Pt pulse electrodeposition. J Power Sources 2019;438:227022.

56. Byun J, Ahn SH, Kim JJ. Self-terminated electrodeposition of platinum on titanium nitride for methanol oxidation reaction in acidic electrolyte. Int J Hydrog Energy 2020;45:9603-11.

57. Li M, Ma Q, Zi W, Liu X, Zhu X, Liu SF. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction. Sci Adv 2015;1:e1400268.

58. Pang L, Li M, Ma Q, et al. Controlled Pt monolayer fabrication on complex carbon fiber structures for superior catalytic applications. Electrochim Acta 2016;222:1522-7.

59. Pang L, Zhang Y, Liu SF. Monolayer-by-monolayer growth of platinum films on complex carbon fiber paper structure. Appl Surf Sci 2017;407:386-90.

60. Kim D, Kim J. Effect of anionic electrolytes and precursor concentrations on the electrodeposited Pt structures. Electroanalysis 2017;29:387-91.

61. Jeong H, Kim J. Insights into the electrooxidation mechanism of formic acid on Pt layers on Au examined by electrochemical SERS. J Phys Chem C 2016;120:24271-8.

62. Lee E, Sung M, Wang Y, Kim J. Atomic layer electrodeposition of Pt on nanoporous Au and its application in pH sensing. Electroanalysis 2018;30:2028-34.

63. Jeong H, Kim J. Methanol dehydrogenation reaction at Au@Pt catalysts: insight into the methanol electrooxidation. Electrochim Acta 2018;283:11-7.

64. Wang Y, Kim J. Oxygen evolution reaction on nanoporous gold modified with Ir and Pt: synergistic electrocatalysis between structure and composition. Electroanalysis 2019;31:1026-33.

65. Elezović N, Branković G, Zabinski P, Marzec M, Jović V. Ultra-thin layers of iridium electrodeposited on Ti2AlC support as cost effective catalysts for hydrogen production by water electrolysis. J Electroanal Chem 2020;878:114575.

66. Elezović N, Krstajić-pajić M, Jović V. Sub-monolayers of iridium electrodeposited on Ti2AlC substrate as catalysts for hydrogen evolution reaction in sulfuric acid solution. Zaštita Materijala 2020;61:181-91.

67. Elezović NR, Zabinski P, Lačnjevac UČ, Pajić MNK, Jović VD. Electrochemical deposition and characterization of iridium oxide films on Ti2AlC support for oxygen evolution reaction. J Solid State Electrochem 2021;25:351-63.

68. Petričević A, Jović V, Krstajić-pajić M, Zabinski P, Elezović N. Oxygen reduction reaction on electrochemically deposited sub-monolayers and ultra-thin layers of Pt on (Nb-Ti)2AlC substrate. Zaštita Materijala 2022;63:153-64.

69. Deng Y, Tripkovic V, Rossmeisl J, Arenz M. Oxygen reduction reaction on Pt overlayers deposited onto a gold film: ligand, strain, and ensemble effect. ACS Catal 2016;6:671-6.

70. Lapp AS, Duan Z, Marcella N, et al. Experimental and theoretical structural investigation of AuPt nanoparticles synthesized using a direct electrochemical method. J Am Chem Soc 2018;140:6249-59.

71. Proch S, Yoshino S, Kitazumi K, Seki J, Kodama K, Morimoto Y. Over-potential deposited hydrogen (Hopd) as terminating agent for platinum and gold electro(co)deposition. Electrocatalysis 2019;10:591-603.

72. Lapp AS, Crooks RM. Multilayer electrodeposition of Pt onto 1-2 nm Au nanoparticles using a hydride-termination approach. Nanoscale 2020;12:11026-39.

73. Pfisterer JHK, Liang Y, Schneider O, Bandarenka AS. Direct instrumental identification of catalytically active surface sites. Nature 2017;549:74-7.

74. Chang JC, Garner CS. Kinetics of aquation of aquopentachloroiridate(III) and chloride anation of diaquotetrachloroiridate(III) anions. Inorg Chem 1965;4:209-15.

75. Poulsen IA, Garner CS. A thermodynamic and kinetic study of hexachloro and aquopentachloro complexes of iridium(III) in aqueous solutions. J Am Chem Soc 1962;84:2032-7.

76. Ahn M, Kim J. Insights into the electrooxidation of formic acid on Pt and Pd shells on Au core surfaces via SERS at dendritic Au rod electrodes. J Phys Chem C 2013;117:24438-45.

77. Hyun M, Choi S, Lee YW, Kwon SH, Han SW, Kim J. Simple electrodeposition of dendritic Au rods from sulfite-based Au(I) electrolytes with high electrocatalytic and SERS activities. Electroanalysis 2011;23:2030-5.

78. Choi S, Ahn M, Kim J. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates. Anal Chim Acta 2013;779:1-7.

79. Cao D, Lu GQ, Wieckowski A, Wasileski SA, Neurock M. Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach. J Phys Chem B 2005;109:11622-33.

80. Musthafa OT, Sampath S. High performance platinized titanium nitride catalyst for methanol oxidation. Chem Commun 2008;67-9.

81. Markovića NM, Sarraf ST, Gasteiger HA, Ross PN. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J Chem Soc Faraday Trans 1996;92:3719-25.

82. Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011;334:1256-60.

83. Danilovic N, Subbaraman R, Chang KC, et al. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J Phys Chem Lett 2014;5:2474-8.

84. Cherevko S, Geiger S, Kasian O, et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today 2016;262:170-80.

85. Kasian O, Grote JP, Geiger S, Cherevko S, Mayrhofer KJJ. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium. Angew Chem Int Ed 2018;57:2488-91.

86. Rao C, Cabrera CR, Ishikawa Y. Graphene-supported Pt-Au alloy nanoparticles: a highly efficient anode for direct formic acid fuel cells. J Phys Chem C 2011;115:21963-70.

87. Kong F, Du C, Ye J, Chen G, Du L, Yin G. Selective surface engineering of heterogeneous nanostructures: in situ unraveling of the catalytic mechanism on Pt-Au catalyst. ACS Catal 2017;7:7923-9.

88. Duchesne PN, Li ZY, Deming CP, et al. Golden single-atomic-site platinum electrocatalysts. Nat Mater 2018;17:1033-9.

89. Zhong W, Qi Y, Deng M. The ensemble effect of formic acid oxidation on platinum-gold electrode studied by first-principles calculations. J Power Sources 2015;278:203-12.

90. Avasarala B, Haldar P. Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions. Electrochim Acta 2010;55:9024-34.

91. Zhang RQ, Lee TH, Yu BD, Stampfl C, Soon A. The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology. Phys Chem Chem Phys 2012;14:16552-7.

92. Grozovski V, Climent V, Herrero E, Feliu JM. Intrinsic activity and poisoning rate for HCOOH oxidation at Pt(100) and vicinal surfaces containing monoatomic (111) steps. Chemphyschem 2009;10:1922-6.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/