REFERENCES
1. Ullah N, Guziejewski D, Yuan A, Shah SA. Recent advancement and structural engineering in transition metal dichalcogenides for alkali metal ions batteries. Materials 2023;16:2559.
2. Li H, Richter G, Maier J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater 2003;15:736-9.
3. Arai H, Okada S, Sakurai Y, Yamaki J. Cathode performance and voltage estimation of metal trihalides. J Power Sources 1997;68:716-9.
4. Barker J, Saidi MY, Swoyer JL. Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J Electrochem Soc 2003;150:A1394.
5. Tripathi R, Ramesh TN, Ellis BL, Nazar LF. Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew Chem Int Ed 2010;49:8738-42.
6. Xu ZL, Yoon G, Park KY, et al. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nat Commun 2019;10:2598.
7. von Aspern N, Röschenthaler GV, Winter M, Cekic-Laskovic I. Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes. Angew Chem Int Ed 2019;58:15978-6000.
8. Tan J, Matz J, Dong P, Shen J, Ye M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv Energy Mater 2021;11:2100046.
9. Sun L, Li Y, Feng W. Metal fluoride cathode materials for lithium rechargeable batteries: focus on iron fluorides. Small Methods 2023;7:e2201152.
10. Lemoine K, Hémon-Ribaud A, Leblanc M, Lhoste J, Tarascon JM, Maisonneuve V. Fluorinated materials as positive electrodes for Li- and Na-ion batteries. Chem Rev 2022;122:14405-39.
11. Li T, Chen ZX, Ai XP, Cao YL, Yang HX. LiF/Fe nanocomposite as a lithium-rich and high capacity conversion cathode material for Li-ion batteries. J Power Sources 2012;217:54-8.
12. Badway F, Cosandey F, Pereira N, Amatucci GG. Carbon metal fluoride nanocomposites: high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J Electrochem Soc 2003;150:A1318.
13. Liu S, Chen Z, Xie K, Li Y, Xu J, Zheng C. A facile one-step hydrothermal synthesis of α-Fe2O3 nanoplates imbedded in graphene networks with high-rate lithium storage and long cycle life. J Mater Chem A 2014;2:13942-8.
14. Wang F, Robert R, Chernova NA, et al. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J Am Chem Soc 2011;133:18828-36.
15. Yamakawa N, Jiang M, Grey CP. Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction. Chem Mater 2009;21:3162-76.
16. Hua X, Robert R, Du L, et al. Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery. J Phys Chem C 2014;118:15169-84.
17. Seo JK, Cho HM, Takahara K, et al. Revisiting the conversion reaction voltage and the reversibility of the CuF2 electrode in Li-ion batteries. Nano Res 2017;10:4232-44.
18. Wang F, Kim SW, Seo DH, et al. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis. Nat Commun 2015;6:6668.
19. Liu L, Guo H, Zhou M, et al. A comparison among FeF3·3H2O, FeF3·0.33H2O and FeF3 cathode materials for lithium ion batteries: structural, electrochemical, and mechanism studies. J Power Sources 2013;238:501-515.
20. Amatucci GG, Pereira N. Fluoride based electrode materials for advanced energy storage devices. J Fluor Chem 2007;128:243-62.
21. Li L, Jacobs R, Gao P, et al. Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. J Am Chem Soc 2016;138:2838-48.
22. Hua X, Eggeman AS, Castillo-Martínez E, et al. Revisiting metal fluorides as lithium-ion battery cathodes. Nat Mater 2021;20:841-50.
23. Yang Y, Gao L, Shen L, Bao N. Self-assembled FeF3 nanocrystals clusters confined in carbon nanocages for high-performance Li-ion battery cathode. J Alloy Compd 2021;873:159799.
24. Santos-Ortiz R, Volkov V, Schmid S, et al. Microstructure and electronic band structure of pulsed laser deposited iron fluoride thin film for battery electrodes. ACS Appl Mater Interfaces 2013;5:2387-91.
25. Huang Q, Pollard TP, Ren X, et al. Fading mechanisms and voltage hysteresis in FeF2-NiF2 solid solution cathodes for lithium and lithium-ion batteries. Small 2019;15:e1804670.
26. Li H, Balaya P, Maier J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc 2004;151:A1878.
27. Zhou J, Zhang D, Zhang X, Song H, Chen X. Carbon-nanotube-encapsulated FeF2 nanorods for high-performance lithium-ion cathode materials. ACS Appl Mater Interfaces 2014;6:21223-9.
28. Xiao AW, Lee HJ, Capone I, et al. Understanding the conversion mechanism and performance of monodisperse FeF2 nanocrystal cathodes. Nat Mater 2020;19:644-54.
29. Li C, Yin C, Gu L, et al. An FeF3·0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries. J Am Chem Soc 2013;135:11425-8.
30. Li Z, Wang B, Li C, Liu J, Zhang W. Hydrogen-bonding-mediated structural stability and electrochemical performance of iron fluoride cathode materials. J Mater Chem A 2015;3:16222-8.
31. Conte DE, Di Carlo L, Sougrati MT, Fraisse B, Stievano L, Pinna N. Operando mössbauer spectroscopy investigation of the electrochemical reaction with lithium in bronze-type FeF3·0.33H2O. J Phys Chem C 2016;120:23933-43.
32. Li C, Gu L, Tsukimoto S, van Aken PA, Maier J. Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries. Adv Mater 2010;22:3650-4.
33. Zhang R, Wang X, Wang X, et al. Iron fluoride packaged into 3D order mesoporous carbons as high-performance sodium-ion battery cathode material. J Electrochem Soc 2018;165:A89.
34. Rao R, Pralong V, Varadaraju U. Facile synthesis and lithium reversible insertion on iron hydrated trifluorides FeF3·0.5H2O. Mater Lett 2016;170:130-4.
35. Jiang M, Wang X, Shen Y, Hu H, Fu Y, Yang X. New iron-based fluoride cathode material synthesized by non-aqueous ionic liquid for rechargeable sodium ion batteries. Electrochim Acta 2015;186:7-15.
36. Liu Y, Li J, Shen Q, et al. Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials. eScience 2022;2:10-31.
37. Wang H, Pan Z, Zhang H, et al. A green and scalable synthesis of Na3Fe2(PO4)P2O7/rGO cathode for high-rate and long-life sodium-ion batteries. Small Methods 2021;5:e2100372.
38. Yuan T, Wang Y, Zhang J, et al. 3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy 2019;56:160-8.
39. Pu X, Wang H, Yuan T, et al. Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries. Energy Stor Mater 2019;22:330-6.
40. Sharma L, Adiga SP, Alshareef HN, Barpanda P. Fluorophosphates: next generation cathode materials for rechargeable batteries. Adv Energy Mater 2020;10:2001449.
41. Reddy M, Subba Rao G, Chowdari B. Long-term cycling studies on 4V-cathode, lithium vanadium fluorophosphate. J Power Sources 2010;195:5768-74.
42. Ellis BL, Ramesh TN, Davis LJ, Goward GR, Nazar LF. Structure and electrochemistry of two-electron redox couples in lithium metal fluorophosphates based on the tavorite structure. Chem Mater 2011;23:5138-48.
43. Recham N, Chotard J, Jumas J, Laffont L, Armand M, Tarascon J. Ionothermal synthesis of Li-based fluorophosphates electrodes. Chem Mater 2010;22:1142-8.
44. Prabu M, Reddy M, Selvasekarapandian S, Rao GS, Chowdari B. Synthesis, impedance and electrochemical studies of lithium iron fluorophosphate, LiFePO4F cathode. Electrochim Acta 2012;85:572-8.
45. Rangaswamy P, Suresh GS, Mahadevan MK. Comprehensive electrochemical studies of tavorite LiTiPO4F/C electrode for rechargeable lithium ion battery. Chem Select 2016;1:1472-83.
46. Nagahama M, Hasegawa N, Okada S. High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes. J Electrochem Soc 2010;157:A748.
47. Wang D, Xiao J, Xu W, et al. Preparation and electrochemical investigation of Li2CoPO4F cathode material for lithium-ion batteries. J Power Sources 2011;196:2241-5.
48. Amaresh S, Karthikeyan K, Kim K, et al. Facile synthesis of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteries with improved electrochemical properties. J Power Sources 2013;244:395-402.
49. Xu M, Cheng CJ, Sun QQ, et al. A 3D porous interconnected NaVPO4F/C network: preparation and performance for Na-ion batteries. RSC Adv 2015;5:40065-9.
50. Recham N, Chotard J, Dupont L, Djellab K, Armand M, Tarascon J. Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J Electrochem Soc 2009;156:A993.
51. Pu X, Wang H, Zhao D, et al. Recent progress in rechargeable sodium-ion batteries: toward high-power applications. Small 2019;15:e1805427.
52. Zou H, Li S, Wu X, Mcdonald MJ, Yang Y. Spray-drying synthesis of pure Na2CoPO4F as cathode material for sodium ion batteries. ECS Electrochem Lett 2015;4:A53.
53. Wu L, Hu Y, Zhang X, Liu J, Zhu X, Zhong S. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries. J Power Sources 2018;374:40-7.
54. Hu F, Jiang X. Superior performance of carbon modified Na3V2(PO4)2F3 cathode material for sodium-ion batteries. Inorg Chem Commun 2021;129:108653.
55. Gover R, Bryan A, Burns P, Barker J. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ion 2006;177:1495-500.
56. Law M, Balaya P. NaVPO4F with high cycling stability as a promising cathode for sodium-ion battery. Energy Stor Mater 2018;10:102-13.
57. Fang Y, Xiao L, Chen Z, Ai X, Cao Y, Yang H. Recent advances in sodium-ion battery materials. Electrochem Energy Rev 2018;1:294-323.
58. Wu J, Xu Y, Sun X, Wang C, Zhang B, Zhao J. The multiple effects of potassium doping on LiVPO4F/C composite cathode material for lithium ion batteries. J Power Sources 2018;396:155-63.
59. Ati M, Sathiya M, Boulineau S, et al. Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO4F for use as a large-potential Fe cathode. J Am Chem Soc 2012;134:18380-7.
60. Tripathi R, Gardiner GR, Islam MS, Nazar LF. Alkali-ion conduction paths in LiFeSO4F and NaFeSO4F tavorite-type cathode materials. Chem Mater 2011;23:2278-84.
61. Recham N, Chotard JN, Dupont L, et al. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat Mater 2010;9:68-74.
62. Kim M, Kim D, Lee W, Jang HM, Kang B. New class of 3.7 V Fe-based positive electrode materials for Na-ion battery based on cation-disordered polyanion framework. Chem Mater 2018;30:6346-52.
63. Barpanda P, Chotard JN, Recham N, et al. Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li;
64. Heo J, Jung S, Hwang I, et al. Amorphous iron fluorosulfate as a high-capacity cathode utilizing combined intercalation and conversion reactions with unexpectedly high reversibility. Nat Energy 2023;8:30-9.
65. Lu W, Xie K, Chen Z, Xiong S, Pan Y, Zheng C. A new co-solvent for wide temperature lithium ion battery electrolytes: 2,2,2-Trifluoroethyl n-caproate. J Power Sources 2015;274:676-84.
66. Yang Y, Li P, Wang N, et al. Fluorinated carboxylate ester-based electrolyte for lithium ion batteries operated at low temperature. Chem Commun 2020;56:9640-3.
67. Hess S, Wohlfahrt-mehrens M, Wachtler M. Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements. J Electrochem Soc 2015;162:A3084.
68. Shiga T, Kato Y, Kondo H, Okuda C. Self-extinguishing electrolytes using fluorinated alkyl phosphates for lithium batteries. J Mater Chem A 2017;5:5156-62.
69. Chen L, Shen X, Chen H, et al. High-stable nonflammable electrolyte regulated by coordination-number rule for all-climate and safer lithium-ion batteries. Energy Stor Mater 2023;55:836-46.
70. He M, Su C, Feng Z, et al. High voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled at 4.6 V with a FEC/HFDEC-based electrolyte. Adv Energy Mater 2017;7:1700109.
71. Lu W, Xie K, Chen ZX, Pan Y, Zheng CM. Preparation and characterization of trifluoroethyl aliphatic carboxylates as co-solvents for the carbonate-based electrolyte of lithium-ion batteries. J Fluorine Chem 2014;161:110-9.
72. Fan X, Chen L, Ji X, et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018;4:174-85.
73. Luo Y, Lu T, Zhang Y, Yan L, Xie J, Mao SS. Enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode using an electrolyte with 3-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoropropane. J Power Sources 2016;323:134-41.
74. Gu W, Xue G, Dong Q, et al. Trimethoxyboroxine as an electrolyte additive to enhance the 4.5 V cycling performance of a Ni-rich layered oxide cathode. eScience 2022;2:486-93.
75. He Z, Chen Y, Huang F, et al. Fluorinated Solvents for lithium metal batteries. Acta Phys Chim Sin 2022;38:2205005.
76. Chen J, Fan X, Li Q, et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat Energy 2020;5:386-97.
77. Chen L, Wu H, Ai X, Cao Y, Chen Z. Toward wide-temperature electrolyte for lithium-ion batteries. Battery Energy 2022;1:20210006.
78. Lu W, Xie K, Pan Y, Chen Z, Zheng C. Effects of carbon-chain length of trifluoroacetate co-solvents for lithium-ion battery electrolytes using at low temperature. J Fluor Chem 2013;156:136-43.
79. Liu Y, Zheng L, Gu W, Shen Y, Chen L. Surface passivation of lithium metal via in situ polymerization. Acta Physico Chimica Sinica 2021;37:2004058.
80. Ma X, Yu J, Hu Y, Texter J, Yan F. Ionic liquid/poly(ionic liquid)-based electrolytes for lithium batteries. Ind Chem Mater 2023;1:39-59.
82. Choudhury S, Archer LA. Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv Elect Mater 2016;2:1500246.
83. Zhang XQ, Chen X, Xu R, et al. Columnar lithium metal anodes. Angew Chem Int Ed 2017;56:14207-11.
84. Zhao J, Liao L, Shi F, et al. Surface fluorination of reactive battery anode materials for enhanced stability. J Am Chem Soc 2017;139:11550-8.
85. Lee J, Kim YJ, Jin HS, et al. Tuning two interfaces with fluoroethylene carbonate electrolytes for high-performance Li/LCO batteries. ACS Omega 2019;4:3220-7.
86. Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater 2017;27:1605989.
87. Chen Y, Dong C, Chen L, et al. “One stone two birds” design for hollow spherical Na4Fe3(PO4)2P2O7/C cathode enabled high-performance sodium-ion batteries from iron rust. EcoMat 2023;5:e12393.
88. Wen Y, Wang B, Luo B, Wang L. Long-term cycling performance of nitrogen-doped hollow carbon nanospheres as anode materials for sodium-ion batteries. Eur J Inorg Chem 2016;2016:2051-5.
89. Veith GM, Doucet M, Sacci RL, Vacaliuc B, Baldwin JK, Browning JF. Determination of the solid electrolyte interphase structure grown on a silicon electrode using a fluoroethylene carbonate additive. Sci Rep 2017;7:6326.
90. Choi N, Yew KH, Lee KY, Sung M, Kim H, Kim S. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J Power Sources 2006;161:1254-9.
91. He M, Guo R, Hobold GM, Gao H, Gallant BM. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proc Natl Acad Sci USA 2020;117:73-9.
92. Miao R, Yang J, Feng X, Jia H, Wang J, Nuli Y. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J Power Sources 2014;271:291-7.
93. Yang G, Li Y, Liu S, Zhang S, Wang Z, Chen L. LiFSI to improve lithium deposition in carbonate electrolyte. Energy Stor Mater 2019;23:350-7.
94. Yamada Y, Wang J, Ko S, Watanabe E, Yamada A. Advances and issues in developing salt-concentrated battery electrolytes. Nat Energy 2019;4:269-80.
95. Wang J, Yamada Y, Sodeyama K, et al. Fire-extinguishing organic electrolytes for safe batteries. Nat Energy 2018;3:22-9.