REFERENCES

1. Liao JC, Mi L, Pontrelli S, Luo S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 2016;14:288-304.

2. Davis SJ, Caldeira K, Matthews HD. Future CO2 emissions and climate change from existing energy infrastructure. Science 2010;329:1330-3.

3. Turner JM. The matter of a clean energy future. Science 2022;376:1361.

4. Fu J, Li P, Lin Y, et al. Fight for carbon neutrality with state-of-the-art negative carbon emission technologies. Eco-Environ Health 2022;1:259-79.

5. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 2010;1:e00103-10.

6. Prévoteau A, Carvajal-Arroyo JM, Ganigué R, Rabaey K. Microbial electrosynthesis from CO2: forever a promise? Curr Opin Biotechnol 2020;62:48-57.

7. Rabaey K, Rozendal RA. Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat Rev Microbiol 2010;8:706-16.

8. Wang R, Li H, Sun J, et al. Nanomaterials facilitating microbial extracellular electron transfer at interfaces. Adv Mater 2021;33:e2004051.

9. Tan X, Nielsen J. The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chem Soc Rev 2022;51:4763-85.

10. Zeng AP. New bioproduction systems for chemicals and fuels: needs and new development. Biotechnol Adv 2019;37:508-18.

11. Jourdin L, Burdyny T. Microbial electrosynthesis: where do we go from here? Trends Biotechnol 2021;39:359-69.

12. LaBelle EV, Marshall CW, May HD. Microbiome for the electrosynthesis of chemicals from carbon dioxide. ACC Chem Res 2020;53:62-71.

13. Jiang Y, Tian S, Li H, Xia A, Song B, Zhu W. Harnessing microbial electrosynthesis for a sustainable future. Innov Mater 2023;1:100008.

14. Borole AP, Reguera G, Ringeisen B, Wang ZW, Feng Y, Kim BH. Electroactive biofilms: current status and future research needs. Energy Environ Sci 2011;4:4813-34.

15. Chatterjee P, Dessì P, Kokko M, Lakaniemi A, Lens P. Selective enrichment of biocatalysts for bioelectrochemical systems: a critical review. Renew Sustain Energy Rev 2019;109:10-23.

16. Bajracharya S, Krige A, Matsakas L, Rova U, Christakopoulos P. Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation. Bioresour Technol 2022;354:127178.

17. Aryal N, Ammam F, Patil SA, Pant D. An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide. Green Chem 2017;19:5748-60.

18. Bian B, Bajracharya S, Xu J, Pant D, Saikaly PE. Microbial electrosynthesis from CO2: challenges, opportunities and perspectives in the context of circular bioeconomy. Bioresour Technol 2020;302:122863.

19. Jourdin L, Freguia S, Donose BC, et al. A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A 2014;2:13093-102.

20. Wu B, Lin R, Kang X, Deng C, Dobson AD, Murphy JD. Improved robustness of ex-situ biological methanation for electro-fuel production through the addition of graphene. Renew Sustain Energy Rev 2021;152:111690.

21. He Y, Li J, Zhang L, et al. 3D-printed GA/PPy aerogel biocathode enables efficient methane production in microbial electrosynthesis. Chem Eng J 2023;459:141523.

22. Alqahtani MF, Katuri KP, Bajracharya S, Yu Y, Lai Z, Saikaly PE. Porous hollow fiber nickel electrodes for effective supply and reduction of carbon dioxide to methane through microbial electrosynthesis. Adv Funct Mater 2018;28:1804860.

23. Zhu X, Jack J, Bian Y, Chen X, Tsesmetzis N, Ren ZJ. Electrocatalytic membranes for tunable syngas production and high-efficiency delivery to biocompatible electrolytes. ACS Sustain Chem Eng 2021;9:6012-22.

24. Qiu Z, Zhang K, Li XL, Song T, Xie J. Sn promotes formate production to enhance microbial electrosynthesis of acetate via indirect electron transport. Bio-Chem Eng J 2023;192:108842.

25. Liu X, Dai L. Carbon-based metal-free catalysts. Nat Rev Mater 2016;1:16064.

26. Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun 2013;4:2390.

27. Liu J, Liu Y, Liu N, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015;347:970-4.

28. Lekshmi GS, Bazaka K, Ramakrishna S, Kumaravel V. Microbial electrosynthesis: carbonaceous electrode materials for CO2 conversion. Mater Horiz 2023;10:292-312.

29. Wickramaarachchi K, Minakshi M, Aravindh SA, et al. Repurposing N-doped grape marc for the fabrication of supercapacitors with theoretical and machine learning models. Nanomaterials 2022;12:1847.

30. Yuan Y, Liu T, Fu P, Tang J, Zhou S. Conversion of sewage sludge into high-performance bifunctional electrode materials for microbial energy harvesting. J Mater Chem A 2015;3:8475-82.

31. You PY, Kamarudin SK. Recent progress of carbonaceous materials in fuel cell applications: an overview. Chem Eng J 2017;309:489-502.

32. Li S, Cheng C, Thomas A. Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts. Adv Mater 2017;29:1602547.

33. Kadier A, Kalil MS, Abdeshahian P, et al. Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew Sustain Energy Rev 2016;61:501-25.

34. Zhen G, Lu X, Kumar G, Bakonyi P, Xu K, Zhao Y. Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: Current situation, challenges and future perspectives. Prog Energy Combust Sci 2017;63:119-45.

35. Cheng S, Xing D, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 2009;43:3953-8.

36. Ni J, Li Y. Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater 2016;6:1600278.

37. Jin H, Guo C, Liu X, et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev 2018;118:6337-408.

38. Marshall CW, Ross DE, Fichot EB, Norman RS, May HD. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol 2013;47:6023-9.

39. Villano M, Scardala S, Aulenta F, Majone M. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresour Technol 2013;130:366-71.

40. Dong Z, Wang H, Tian S, et al. Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide. Bioresour Technol 2018;269:203-9.

41. Fan Q, Su J, Sun T, et al. Advances of the functionalized carbon nitrides for electrocatalysis. Carbon Energy 2022;4:211-36.

42. Shakeel S, Anwer AH, Khan MZ. Nitric acid treated graphite granular cathode for microbial electro reduction of carbon dioxide to acetate. J Cleaner Prod 2020;269:122391.

43. Chen LF, Yu H, Zhang J, Qin HY. A short review of graphene in the microbial electrosynthesis of biochemicals from carbon dioxide. RSC Adv 2022;12:22770-82.

44. Qiu HJ, Guan Y, Luo P, Wang Y. Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells. Biosens Bioelectron 2017;89:85-95.

45. Strübing D, Moeller AB, Mößnang B, Lebuhn M, Drewes JE, Koch K. Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation. Appl Energy 2018;232:543-54.

46. Deutzmann JS, Kracke F, Gu W, Spormann AM. Microbial electrosynthesis of acetate powered by intermittent electricity. Environ Sci Technol 2022;56:16073-81.

47. Guo S, Garaj S, Bianco A, Ménard-moyon C. Controlling covalent chemistry on graphene oxide. Nat Rev Phys 2022;4:247-62.

48. Wu J, Lin H, Moss DJ, Loh KP, Jia B. Graphene oxide for photonics, electronics and optoelectronics. Nat Rev Chem 2023;7:162-83.

49. Lin T, Ding W, Sun L, Wang L, Liu CG, Song H. Engineered shewanella oneidensis-reduced graphene oxide biohybrid with enhanced biosynthesis and transport of flavins enabled a highest bioelectricity output in microbial fuel cells. Nano Energy 2018;50:639-48.

50. Yong YC, Yu YY, Zhang X, Song H. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm. Angew Chem Int Ed 2014;53:4480-3.

51. Choi S, Kim C, Suh JM, Jang HW. Reduced graphene oxide-based materials for electrochemical energy conversion reactions. Carbon Energy 2019;1:85-108.

52. Song TS, Zhang H, Liu H, et al. High efficiency microbial electrosynthesis of acetate from carbon dioxide by a self-assembled electroactive biofilm. Bioresour Technol 2017;243:573-82.

53. Chen L, Tremblay PL, Mohanty S, Xu K, Zhang T. Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide-tetraethylene pentamine. J Mater Chem A 2016;4:8395-401.

54. Katuri KP, Kamireddy S, Kavanagh P, et al. Electroactive biofilms on surface functionalized anodes: the anode respiring behavior of a novel electroactive bacterium, Desulfuromonas acetexigens. Water Res 2020;185:116284.

55. Zhang T, Nie H, Bain TS, et al. Improved cathode materials for microbial electrosynthesis. Energy Environ Sci 2013;6:217-24.

56. Flexer V, Chen J, Donose BC, Sherrell P, Wallace GG, Keller J. The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. Energy Environ Sci 2013;6:1291-8.

57. Flexer V, Jourdin L. Purposely designed hierarchical porous electrodes for high rate microbial electrosynthesis of acetate from carbon dioxide. ACC Chem Res 2020;53:311-21.

58. Logan B, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 2007;41:3341-6.

59. Liu C, Yuan X, Gu Y, et al. Enhancement of bioelectrochemical CO2 reduction with a carbon brush electrode via direct electron transfer. ACS Sustain Chem Eng 2020;8:11368-75.

60. Baek G, Saikaly PE, Logan BE. Addition of a carbon fiber brush improves anaerobic digestion compared to external voltage application. Water Res 2021;188:116575.

61. Fan X, Zhou Y, Jin X, Song RB, Li Z, Zhang Q. Carbon material-based anodes in the microbial fuel cells. Carbon Energy 2021;3:449-72.

62. Vidales AG, Omanovic S, Li H, Hrapovic S, Tartakovsky B. Evaluation of biocathode materials for microbial electrosynthesis of methane and acetate. Bioelectrochemistry 2022;148:108246.

63. Ameen F, Alshehri WA, Nadhari SA. Effect of electroactive biofilm formation on acetic acid production in anaerobic sludge driven microbial electrosynthesis. ACS Sustain Chem Eng 2020;8:311-8.

64. Zhen G, Lu X, Kobayashi T, Kumar G, Xu K. Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF). Chem Eng J 2016;284:1146-55.

65. Qi X, Jia X, Wang Y, et al. Development of a rapid startup method of direct electron transfer-dominant methanogenic microbial electrosynthesis. Bioresour Technol 2022;358:127385.

66. Tian S, Yao X, Song TS, Chu Z, Xie J, Jin W. Artificial electron mediator with nanocubic architecture highly promotes microbial electrosynthesis from carbon dioxide. ACS Sustain Chem Eng 2020;8:6777-85.

67. Aryal N, Halder A, Tremblay PL, Chi Q, Zhang T. Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis. Electrochim Acta 2016;217:117-22.

68. Hu N, Wang L, Liao M, Liu K. Research on electrocatalytic reduction of CO2 by microorganisms with a graphene modified carbon felt. Int J Hydrogen Energy 2021;46:6180-7.

69. Carrillo-peña D, Mateos R, Morán A, Escapa A. Reduced graphene oxide improves the performance of a methanogenic biocathode. Fuel 2022;321:123957.

70. Kou T, Yang Y, Yao B, Li Y. Interpenetrated bacteria-carbon nanotubes film for microbial fuel cells. Small Methods 2018;2:1800152.

71. Yu L, Yuan Y, Tang J, Zhou S. Thermophilic moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO2. Bioelectrochemistry 2017;117:23-8.

72. Peng L, Nie WB, Ding J, et al. Denitrifying anaerobic methane oxidation and anammox process in a membrane aerated membrane bioreactor: kinetic evaluation and optimization. Environ Sci Technol 2020;54:6968-77.

73. Wu Y, Li W, Wang L, et al. Enhancing the selective synthesis of butyrate in microbial electrosynthesis system by gas diffusion membrane composite biocathode. Chemosphere 2022;308:136088.

74. Antolini E. Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 2015;69:54-70.

75. Li Q, Fu Q, Kobayashi H, et al. GO/PEDOT modified biocathodes promoting CO2 reduction to CH4 in microbial electrosynthesis. Sustain Energy Fuels 2020;4:2987-97.

76. Sui ZY, Han BH. Effect of surface chemistry and textural properties on carbon dioxide uptake in hydrothermally reduced graphene oxide. Carbon 2015;82:590-8.

77. Zeng W, Tao XM, Lin S, et al. Defect-engineered reduced graphene oxide sheets with high electric conductivity and controlled thermal conductivity for soft and flexible wearable thermoelectric generators. Nano Energy 2018;54:163-74.

78. Chen Z, Jin L, Hao W, Ren W, Cheng HM. Synthesis and applications of three-dimensional graphene network structures. Mater Today Nano 2019;5:100027.

79. Mubarak S, Dhamodharan D, Byun HS. Recent advances in 3D printed electrode materials for electrochemical energy storage devices. J Energy Chem 2023;81:272-312.

80. Bose A, Gardel EJ, Vidoudez C, Parra EA, Girguis PR. Electron uptake by iron-oxidizing phototrophic bacteria. Nat Commun 2014;5:3391.

81. Li S, Kim M, Jae J, Jang M, Jeon BH, Kim JR. Solid neutral red/Nafion conductive layer on carbon felt electrode enhances acetate production from CO2 and energy efficiency in microbial electrosynthesis system. Bioresour Technol 2022;363:127983.

82. Jiang YJ, Hui S, Jiang LP, Zhu JJ. Functional nanomaterial-modified anodes in microbial fuel cells: advances and perspectives. Chemistry 2023;29:e202202002.

83. Luo H, Qi J, Zhou M, et al. Enhanced electron transfer on microbial electrosynthesis biocathode by polypyrrole-coated acetogens. Bioresour Technol 2020;309:123322.

84. Lees EW, Mowbray BAW, Parlane FGL, Berlinguette CP. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat Rev Mater 2022;7:55-64.

85. Bajracharya S, Vanbroekhoven K, Buisman CJ, Pant D, Strik DP. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide. Environ Sci Pollut Res Int 2016;23:22292-308.

86. Dessì P, Buenaño-Vargas C, Martínez-Sosa S, et al. Microbial electrosynthesis of acetate from CO2 in three-chamber cells with gas diffusion biocathode under moderate saline conditions. Environ Sci Ecotechnol 2023;16:100261.

87. Zhao CE, Gai P, Song R, Chen Y, Zhang J, Zhu JJ. Nanostructured material-based biofuel cells: recent advances and future prospects. Chem Soc Rev 2017;46:1545-64.

88. Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 2015;44:2168-201.

89. Zhu Y, Zhang B. Nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. J Energy Chem 2021;58:610-28.

90. Jiang Y, Chu N, Zhang W, et al. Zinc: a promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide. Water Res 2019;159:87-94.

91. Vidales A, Bruant G, Omanovic S, Tartakovsky B. Carbon dioxide conversion to C1 - C2 compounds in a microbial electrosynthesis cell with in situ electrodeposition of nickel and iron. Electrochim Acta 2021;383:138349.

92. Zhang Y, Li P, Zhao C, et al. Multicarbons generation factory: CuO/Ni single atoms tandem catalyst for boosting the productivity of CO2 electrocatalysis. Sci Bull 2022;67:1679-87.

93. Huang J, Mensi M, Oveisi E, Mantella V, Buonsanti R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J Am Chem Soc 2019;141:2490-9.

94. Chen C, Li Y, Yu S, et al. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020;4:1688-99.

95. Baek G, Shi L, Rossi R, Logan BE. Using copper-based biocathodes to improve carbon dioxide conversion efficiency into methane in microbial methanogenesis cells. Chem Eng J 2022;435:135076.

96. Zhu X, Blanco E, Bhatti M, Borrion A. Impact of metallic nanoparticles on anaerobic digestion: a systematic review. Sci Total Environ 2021;757:143747.

97. Gao Y, Li Z, Cai J, et al. Metal nanoparticles increased the lag period and shaped the microbial community in slurry-electrode microbial electrosynthesis. Sci Total Environ 2022;838:156008.

98. Srikanth S, Singh D, Vanbroekhoven K, et al. Electro-biocatalytic conversion of carbon dioxide to alcohols using gas diffusion electrode. Bioresour Technol 2018;265:45-51.

99. Kim HW, Marcus AK, Shin JH, Rittmann BE. Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor (MCPBR). Environ Sci Technol 2011;45:5032-8.

100. Katuri KP, Werner CM, Jimenez-Sandoval RJ, et al. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. Environ Sci Technol 2014;48:12833-41.

101. Bian B, Alqahtani MF, Katuri KP, et al. Porous nickel hollow fiber cathodes coated with CNTs for efficient microbial electrosynthesis of acetate from CO2 using Sporomusa ovata. J Mater Chem A 2018;6:17201-11.

102. Bian B, Singh Y, Rabaey K, Saikaly PE. Nickel-coated ceramic hollow fiber cathode for fast enrichment of chemolithoautotrophs and efficient reduction of CO2 in microbial electrosynthesis. Chem Eng J 2022;450:138230.

103. Bian B, Xu J, Katuri KP, Saikaly PE. Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO2 flow rates. Bioresour Technol 2021;319:124177.

104. Asimakopoulos K, Gavala HN, Skiadas IV. Reactor systems for syngas fermentation processes: a review. Chem Eng J 2018;348:732-44.

105. Haas T, Krause R, Weber R, Demler M, Schmid G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat Catal 2018;1:32-9.

106. Claassens NJ, Cotton CAR, Kopljar D, Bar-even A. Making quantitative sense of electromicrobial production. Nat Catal 2019;2:437-47.

107. Huang Y, Hu Z. An integrated electrochemical and biochemical system for sequential reduction of CO2 to methane. Fuel 2018;220:8-13.

108. Yang Y, Niu S, Han D, Liu T, Wang G, Li Y. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv Energy Mater 2017;7:1700555.

109. Cui M, Nie H, Zhang T, Lovley D, Russell TP. Three-dimensional hierarchical metal oxide-carbon electrode materials for highly efficient microbial electrosynthesis. Sustain Energy Fuels 2017;1:1171-6.

110. Tahir K, Miran W, Jang J, Woo SH, Lee DS. Enhanced product selectivity in the microbial electrosynthesis of butyrate using a nickel ferrite-coated biocathode. Environ Res 2021;196:110907.

111. Wang L, Bock DC, Li J, et al. Synthesis and characterization of CuFe2O4 nano/submicron wire-carbon nanotube composites as binder-free anodes for Li-ion batteries. ACS Appl Mater Interfaces 2018;10:8770-85.

112. Thatikayala D, Min B. Copper ferrite supported reduced graphene oxide as cathode materials to enhance microbial electrosynthesis of volatile fatty acids from CO2. Sci Total Environ 2021;768:144477.

113. Guo Y, Du Z, Cao Z, Li B, Yang S. MXene derivatives for energy storage and conversions. Small Methods 2023;7:e2201559.

114. Shahzad F, Alhabeb M, Hatter CB, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016;353:1137-40.

115. Zhang YZ, El-Demellawi JK, Jiang Q, et al. MXene hydrogels: fundamentals and applications. Chem Soc Rev 2020;49:7229-51.

116. Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Advances in the synthesis of 2D MXenes. Adv Mater 2021;33:e2103148.

117. Tahir K, Miran W, Jang J, et al. A novel MXene-coated biocathode for enhanced microbial electrosynthesis performance. Chem Eng J 2020;381:122687.

118. Tahir K, Maile N, Ghani AA, Kim B, Jang J, Lee DS. Development of a three-dimensional macroporous sponge biocathode coated with carbon nanotube-MXene composite for high-performance microbial electrosynthesis systems. Bioelectrochemistry 2022;146:108140.

119. Madjarov J, Soares R, Paquete CM, Louro RO. Sporomusa ovata as catalyst for bioelectrochemical carbon dioxide reduction: a review across disciplines from microbiology to process engineering. Front Microbiol 2022;13:913311.

120. Blanchet E, Duquenne F, Rafrafi Y, Etcheverry L, Erable B, Bergel A. Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction. Energy Environ Sci 2015;8:3731-44.

121. Chen WF, Muckerman JT, Fujita E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem Commun 2013;49:8896-909.

122. Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 2015;44:5148-80.

123. Tian S, Wang H, Dong Z, et al. Mo2C-induced hydrogen production enhances microbial electrosynthesis of acetate from CO2 reduction. Biotechnol Biofuels 2019;12:71.

124. Kracke F, Wong AB, Maegaard K, et al. Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis. Commun Chem 2019;2:45.

125. Song T, Fu L, Wan N, Wu J, Xie J. Hydrothermal synthesis of MoS2 nanoflowers for an efficient microbial electrosynthesis of acetate from CO2. J CO2 Util 2020;41:101231.

126. Zhu X, Jack J, Leininger A, et al. Syngas mediated microbial electrosynthesis for CO2 to acetate conversion using clostridium ljungdahlii. Resour Conserv Recycl 2022;184:106395.

127. Ramkumar R, Minakshi M. Fabrication of ultrathin CoMoO4 nanosheets modified with chitosan and their improved performance in energy storage device. Dalton Trans 2015;44:6158-68.

128. Hindatu Y, Annuar M, Gumel A. Mini-review: anode modification for improved performance of microbial fuel cell. Renew Sustain Energy Rev 2017;73:236-48.

129. Aryal N, Wan L, Overgaard MH, et al. Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode. Bioelectrochemistry 2019;128:83-93.

130. Bajracharya S, ter Heijne A, Dominguez Benetton X, et al. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour Technol 2015;195:14-24.

131. Tharak A, Venkata Mohan S. Electrotrophy of biocathodes regulates microbial-electro-catalyzation of CO2 to fatty acids in single chambered system. Bioresour Technol 2021;320:124272.

132. Shakeel S, Khan MZ. Enhanced production and utilization of biosynthesized acetate using a packed-fluidized bed cathode based MES system. J Environ Chem Eng 2022;10:108067.

133. Fu Q, He Y, Li Z, et al. Direct CO2 delivery with hollow stainless steel/graphene foam electrode for enhanced methane production in microbial electrosynthesis. Energy Convers Manag 2022;268:116018.

134. Hu N, Wang L, Liao M, Yin M. Research on the electrocatalytic reduction of CO2 by microorganisms with a nano-titanium carburizing electrode. Bioelectrochemistry 2021;137:107672.

135. Byrne JM, Klueglein N, Pearce C, Rosso KM, Appel E, Kappler A. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 2015;347:1473-6.

136. Zhu H, Dong Z, Huang Q, Song TS, Xie J. Fe3O4/granular activated carbon as an efficient three-dimensional electrode to enhance the microbial electrosynthesis of acetate from CO2. RSC Adv 2019;9:34095-101.

137. He Y, Li Q, Li J, et al. Magnetic assembling GO/Fe3O4/microbes as hybridized biofilms for enhanced methane production in microbial electrosynthesis. Renew Energy 2022;185:862-70.

138. Cheng J, Xia R, Li H, et al. Enhancing extracellular electron transfer of Geobacter sulfurreducens in bioelectrochemical systems using N-doped Fe3O4 @carbon dots. ACS Sustain Chem Eng 2022;10:3935-50.

139. Thatikayala D, Pant D, Min B. MnO2/reduced graphene oxide nanohybrids as a cathode catalyst for the microbial reduction of CO2 to acetate and isobutyric acid. Sustain Energy Technol Assess 2021;45:101114.

140. Anwer AH, Khan N, Khan MD, Shahadat M, Khan MZ. High capacitive rGO/WO3 supported nanofibers as cathode catalyst to boost-up the CO2 sequestration via microbial electrosynthesis. J Environ Chem Eng 2021;9:106650.

141. Barham JP, König B. Synthetic photoelectrochemistry. Angew Chem Int Ed 2020;59:11732-47.

142. Wang Q, Pan Z. Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels. Nano Res 2022;15:10090-109.

143. Fang X, Kalathil S, Reisner E. Semi-biological approaches to solar-to-chemical conversion. Chem Soc Rev 2020;49:4926-52.

144. Nelson N, Ben-Shem A. The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 2004;5:971-82.

145. Zhu XG, Long SP, Ort DR. Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 2010;61:235-61.

146. Liu C, Gallagher JJ, Sakimoto KK, et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett 2015;15:3634-9.

147. Su Y, Cestellos-blanco S, Kim JM, et al. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation. Joule 2020;4:800-11.

148. Nichols EM, Gallagher JJ, Liu C, et al. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc Natl Acad Sci USA 2015;112:11461-6.

149. Zanardo D, Forghieri G, Tieuli S, et al. Effects of SiO2-based scaffolds in TiO2 photocatalyzed CO2 reduction. Catal Today 2022;387:54-60.

150. Li J, Wu N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol 2015;5:1360-84.

151. Anwer AH, Shoeb M, Mashkoor F, et al. Simultaneous reduction of carbon dioxide and energy harvesting using RGO-based SiO2-TiO2 nanocomposite for supercapacitor and microbial electrosynthesis. Appl Catal B Environ 2023;339:123091.

152. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv Mater 2017;29:1601694.

153. Xie M, Fu X, Jing L, Luan P, Feng Y, Fu H. Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv Energy Mater 2014;4:1300995.

154. Wang M, Sun L, Lin Z, Cai J, Xie K, Lin C. p-n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ Sci 2013;6:1211-20.

155. Yu J, Low J, Xiao W, Zhou P, Jaroniec M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 2014;136:8839-42.

156. Song TS, Li T, Tao R, Huang HF, Xie J. CuO/g-C3N4 heterojunction photocathode enhances the microbial electrosynthesis of acetate through CO2 reduction. Sci Total Environ 2022;818:151820.

157. Li T, Zhang K, Luo D, Song T, Xie J. CuO/g-C3N4/rGO multifunctional photocathode with simultaneous enhancement of electron transfer and substrate mass transfer facilitates microbial electrosynthesis of acetate. Int J Hydrogen Energy 2022;47:34875-86.

158. Barber J. Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 2009;38:185-96.

159. Nozik AJ. p-n photoelectrolysis cells. Appl Phys Lett 1976;29:150-3.

160. Liu C, Dasgupta NP, Yang P. Semiconductor nanowires for artificial photosynthesis. Chem Mater 2014;26:415-22.

161. Huang D, Chen S, Zeng G, et al. Artificial Z-scheme photocatalytic system: what have been done and where to go? Coord Chem Rev 2019;385:44-80.

162. Cai Z, Huang L, Quan X, Zhao Z, Shi Y, Li Puma G. Acetate production from inorganic carbon (HCO3-) in photo-assisted biocathode microbial electrosynthesis systems using WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens species. Appl Catal B 2020;267:118611.

163. Huang L, Song S, Cai Z, Zhou P, Li Puma G. Efficient conversion of bicarbonate (HCO3-) to acetate and simultaneous heavy metal Cr(VI) removal in photo-assisted microbial electrosynthesis systems combining WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens electrotroph. Chem Eng J 2021;406:126786.

164. Kong W, Huang L, Quan X, Zhao Z, Li Puma G. Efficient production of acetate from inorganic carbon (HCO3-) in microbial electrosynthesis systems incorporating Ag3PO4/g-C3N4 anaerobic photo-assisted biocathodes. Appl Catal B 2021;284:119696.

165. Huang L, Xu Z, Shi Y, Zhang Y, Li Puma G. Cellular electron transfer in anaerobic photo-assisted biocathode microbial electrosynthesis systems for acetate production from inorganic carbon (HCO3-). Chem Eng J 2022;431:134022.

166. Li T, Zhang K, Song T, Xie J. α-Fe2O3/g-C3N4 Z-scheme heterojunction photocathode to enhance microbial electrosynthesis of acetate from CO2. ACS Sustain Chem Eng 2022;10:17308-17.

167. Kong W, Huang L, Quan X, Puma GL. Synergistic induced charge transfer switch by oxygen vacancy and pyrrolic nitrogen in MnFe2O4/g-C3N4 heterojunctions for efficient transformation of bicarbonate to acetate in photo-assisted MES. Appl Catal B 2022;307:121214.

168. You S, Ma M, Wang W, et al. 3D macroporous nitrogen-enriched graphitic carbon scaffold for efficient bioelectricity generation in microbial fuel cells. Adv Energy Mater 2017;7:1601364.

169. Lau VW, Yu VW, Ehrat F, et al. Urea-modified carbon nitrides: enhancing photocatalytic hydrogen evolution by rational defect engineering. Adv Energy Mater 2017;7:1602251.

170. Yu W, Bai H, Zeng Y, et al. Solar-driven producing of value-added chemicals with organic semiconductor-bacteria biohybrid system. Research 2022;2022:9834093.

171. Vassilev I, Dessì P, Puig S, Kokko M. Cathodic biofilms - a prerequisite for microbial electrosynthesis. Bioresour Technol 2022;348:126788.

172. Yu SS, Chen JJ, Liu XY, Yu HQ. Interfacial electron transfer from the outer membrane cytochrome OmcA to graphene oxide in a microbial fuel cell: spectral and electrochemical insights. ACS Energy Lett 2018;3:2449-56.

173. Thapa BS, Kim T, Pandit S, et al. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry. Bioresour Technol 2022;347:126579.

174. Xia Q, Liu R, Chen X, Chen Z, Zhu JJ. In vivo voltammetric imaging of metal nanoparticle-catalyzed single-cell electron transfer by fermi level-responsive graphene. Research 2023;6:0145.

175. Li F, Li YX, Cao YX, et al. Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nat Commun 2018;9:3637.

176. Li F, Tang R, Zhang B, et al. Systematic full-cycle engineering microbial biofilms to boost electricity production in shewanella oneidensis. Research 2023;6:0081.

177. Yang HY, Hou NN, Wang YX, et al. Mixed-culture biocathodes for acetate production from CO2 reduction in the microbial electrosynthesis: impact of temperature. Sci Total Environ 2021;790:148128.

178. Guo F, Babauta JT, Beyenal H. The effect of additional salinity on performance of a phosphate buffer saline buffered three-electrode bioelectrochemical system inoculated with wastewater. Bioresour Technol 2021;320:124291.

179. Li X, Zeng C, Lu Y, Liu G, Luo H, Zhang R. Development of methanogens within cathodic biofilm in the single-chamber microbial electrolysis cell. Bioresour Technol 2019;274:403-9.

180. Wang H, Du H, Zeng S, et al. Explore the difference between the single-chamber and dual-chamber microbial electrosynthesis for biogas production performance. Bioelectrochemistry 2021;138:107726.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/