REFERENCES
2. Eshetu GG, Zhang H, Judez X, et al. Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat Commun 2021;12:5459.
3. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 2017;117:10403-73.
4. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 2017;12:194-206.
5. Ni L, Zhang S, Di A, et al. Challenges and strategies towards single-crystalline Ni-rich layered cathodes. Adv Energy Mater 2022;12:2201510.
6. Li L, Wang D, Xu G, et al. Recent progress on electrolyte functional additives for protection of nickel-rich layered oxide cathode materials. J Energy Chem 2022;65:280-92.
7. Kim JM, Zhang X, Zhang JG, Manthiram A, Meng YS, Xu W. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater Today 2021;46:155-82.
8. Cui SL, Gao MY, Li GR, Gao XP. Insights into Li-rich Mn-based cathode materials with high capacity: from dimension to lattice to atom. Adv Energy Mater 2022;12:2003885.
9. Yang H, Kwon K, Devine TM, Evans JW. Aluminum corrosion in lithium batteries an investigation using the electrochemical quartz crystal microbalance. J Electrochem Soc 2000;147:4399.
10. Zhao S, Guo Z, Yan K, et al. Towards high-energy-density lithium-ion batteries: strategies for developing high-capacity lithium-rich cathode materials. Energy Stor Mater 2021;34:716-34.
11. Choi JU, Voronina N, Sun YK, Myung ST. Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries: yesterday, today, and tomorrow. Adv Energy Mater 2020;10:2002027.
12. Yang L, Yang K, Zheng J, Xu K, Amine K, Pan F. Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries. Chem Soc Rev 2020;49:4667-80.
13. Du P, Liu D, Chen X, et al. Research progress towards the corrosion and protection of electrodes in energy-storage batteries. Energy Stor Mater 2023;57:371-99.
14. Myung ST, Hitoshi Y, Sun YK. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J Mater Chem 2011;21:9891-911.
15. Luo C, Li Y, Sun W, et al. Revisiting the corrosion mechanism of LiFSI based electrolytes in lithium metal batteries. Electrochim Acta 2022;419:140353.
16. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 2004;104:4303-417.
17. Guo L, Thornton DB, Koronfel MA, Stephens IEL, Ryan MP. Degradation in lithium ion battery current collectors. J Phys Energy 2021;3:032015.
18. Wang YY, Zhang XQ, Zhou MY, Huang JQ. Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res Energy 2023;2:e9120046.
19. Qiao L, Oteo U, Martinez-Ibañez M, et al. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries. Nat Mater 2022;21:455-62.
20. Umoren SA, Solomon MM, Saji VS. Chapter 3 - basic concepts of corrosion. In: Umoren SA, Solomon MM, Saji VS, editors. Polymeric materials in corrosion inhibition. Amsterdam: Elsevier; 2022. pp. 83-102.
21. Krämer E, Schedlbauer T, Hoffmann B, et al. Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC:DEC 3:7 in rechargeable lithium batteries. J Electrochem Soc 2013;160:A356.
22. Kolesnikov A, Kolek M, Dohmann JF, et al. Galvanic corrosion of lithium-powder-based electrodes. Adv Energy Mater 2020;10:2000017.
23. Zhang H, Qiao L, Kühnle H, Figgemeier E, Armand M, Eshetu GG. From lithium to emerging mono- and multivalent-cation-based rechargeable batteries: non-aqueous organic electrolyte and interphase perspectives. Energy Environ Sci 2023;16:11-52.
24. Zhang G, Lin K, Qin X, et al. Electrosprayed robust graphene layer constructing ultrastable electrode interface for high-voltage lithium-ion batteries. ACS Appl Mater Interfaces 2020;12:37034-46.
25. Wang M, Tang M, Chen S, et al. Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery. Adv Mater 2017;29:1703882.
26. Gabryelczyk A, Ivanov S, Bund A, Lota G. Corrosion of aluminium current collector in lithium-ion batteries: a review. J Energy Stor 2021;43:103226.
27. Piao N, Wang L, Anwar T, et al. Corrosion resistance mechanism of chromate conversion coated aluminium current collector in lithium-ion batteries. Corros Sci 2019;158:108100.
28. Meister P, Qi X, Kloepsch R, et al. Anodic behavior of the aluminum current collector in imide-based electrolytes: influence of solvent, operating temperature, and native oxide-layer thickness. ChemSusChem 2017;10:804-14.
29. Yamada Y, Chiang CH, Sodeyama K, Wang J, Tateyama Y, Yamada A. Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes. ChemElectroChem 2015;2:1627.
30. Ma T, Xu GL, Li Y, et al. Revisiting the corrosion of the aluminum current collector in lithium-ion batteries. J Phys Chem Lett 2017;8:1072-7.
34. Cho E, Mun J, Chae OB, et al. Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries. Electrochem Commun 2012;22:1-3.
35. Kawamura T, Okada S, Yamaki J. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J Power Sources 2006;156:547-54.
36. Campion CL, Li W, Lucht BL. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J Electrochem Soc 2005;152:A2327.
37. Liu M, Vatamanu J, Chen X, Xing L, Xu K, Li W. Hydrolysis of LiPF6-containing electrolyte at high voltage. ACS Energy Lett 2021;6:2096-102.
38. Wagner R, Korth M, Streipert B, et al. Impact of selected LiPF6 hydrolysis products on the high voltage stability of lithium-ion battery cells. ACS Appl Mater Interfaces 2016;8:30871-8.
39. Xing L, Borodin O, Smith GD, Li W. Density functional theory study of the role of anions on the oxidative decomposition reaction of propylene carbonate. J Phys Chem A 2011;115:13896-905.
40. Gao H, Ma T, Duong T, et al. Protecting Al foils for high-voltage lithium-ion chemistries. Mater Today Energy 2018;7:18-26.
41. Markovsky B, Amalraj F, Gottlieb HE, Gofer Y, Martha SK, Aurbach D. On the electrochemical behavior of aluminum electrodes in nonaqueous electrolyte solutions of lithium salts. J Electrochem Soc 2010;157:A423.
42. Borodin O, Jow TR. Quantum chemistry studies of the oxidative stability of carbonate, sulfone and sulfonate-based electrolytes doped with BF4-, PF6- anions. ECS Trans 2011;33:77.
43. Zhang X, Devine TM. Factors That influence formation of AlF3 passive film on aluminum in Li-ion battery electrolytes with LiPF6. J Electrochem Soc 2006;153:B375.
44. Zhang X, Devine TM. Identity of passive film formed on aluminum in Li-ion battery electrolytes with LiPF6. J Electrochem Soc 2006;153:B344.
45. Yoon E, Lee J, Byun S, Kim D, Yoon T. Passivation failure of Al current collector in LiPF6-based electrolytes for lithium-ion batteries. Adv Funct Mater 2022;32:2200026.
46. Pieczonka NPW, Liu Z, Lu P, et al. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J Phys Chem C 2013;117:15947-57.
47. Wiemers-meyer S, Jeremias S, Winter M, Nowak S. Influence of battery cell components and water on the thermal and chemical stability of LiPF6 based lithium ion battery electrolytes. Electrochim Acta 2016;222:1267-71.
48. Evertz M, Horsthemke F, Kasnatscheew J, Börner M, Winter M, Nowak S. Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique. J Power Sources 2016;329:364-71.
49. Zhang H, Oteo U, Zhu H, et al. Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion. Angew Chem Int Ed 2019;58:7829-34.
50. Qiao L, Oteo U, Zhang Y, et al. Trifluoromethyl-free anion for highly stable lithium metal polymer batteries. Energy Stor Mater 2020;32:225-33.
51. Song Z, Wang X, Wu H, et al. Bis(fluorosulfonyl)imide-based electrolyte for rechargeable lithium batteries: a perspective. J Power Sources Adv 2022;14:100088.
52. Zhang SS. Unveiling the mystery of lithium bis(fluorosulfonyl)imide as a single salt in low-to-moderate concentration electrolytes of lithium metal and lithium-ion batteries. J Electrochem Soc 2022;169:110515.
53. Li C, Zeng S, Wang P, et al. Mechanism of aluminum corrosion in LiFSI-based electrolyte at elevated temperatures. T Nonferr Metal Soc 2021;31:1439-51.
54. Yan G, Li X, Wang Z, Guo H, Peng W, Hu Q. Lithium difluoro(oxalato)borate as an additive to suppress the aluminum corrosion in lithium bis(fluorosulfony)imide-based nonaqueous carbonate electrolyte. J Solid State Electrochem 2016;20:507-16.
55. Song SW, Richardson TJ, Zhuang GV, Devine TM, Evans JW. Effect on aluminum corrosion of LiBF4 addition into lithium imide electrolyte; a study using the EQCM. Electrochim Acta 2004;49:1483-90.
56. Abouimrane A, Ding J, Davidson IJ. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: aluminum corrosion studies and lithium ion battery investigations. J Power Sources 2009;189:693-6.
57. Han HB, Zhou SS, Zhang DJ, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties. J Power Sources 2011;196:3623-32.
58. Li L, Zhou S, Han H, et al. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. J Electrochem Soc 2011;158:A74.
59. Kerner M, Plylahan N, Scheers J, Johansson P. Thermal stability and decomposition of lithium bis(fluorosulfonyl)imide (LiFSI) salts. RSC Adv 2016;6:23327-34.
60. Aravindan V, Gnanaraj J, Madhavi S, Liu HK. Lithium-ion conducting electrolyte salts for lithium batteries. Chemistry 2011;17:14326-46.
61. Liu Z, Chai J, Xu G, Wang Q, Cui G. Functional lithium borate salts and their potential application in high performance lithium batteries. Coord Chem Rev 2015;292:56-73.
62. Younesi R, Veith GM, Johansson P, Edström K, Vegge T. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S. Energy Environ Sci 2015;8:1905-22.
63. Bushkova OV, Yaroslavtseva TV, Dobrovolsky YA. New lithium salts in electrolytes for lithium-ion batteries (review). Russ J Electrochem 2017;53:677-99.
64. Mauger A, Julien CM, Paolella A, Armand M, Zaghib K. A comprehensive review of lithium salts and beyond for rechargeable batteries: progress and perspectives. Mater Sci Eng R Rep 2018;134:1-21.
65. Xu G, Shangguan X, Dong S, Zhou X, Cui G. Formulation of blended-lithium-salt electrolytes for lithium batteries. Angew Chem Int Ed 2020;59:3400-15.
66. Kanamura K, Umegaki T, Shiraishi S, Ohashi M, Takehara Z. Electrochemical behavior of Al current collector of rechargeable lithium batteries in propylene carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N. J Electrochem Soc 2002;149:A185.
67. Han H, Guo J, Zhang D, et al. Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells. Electrochem Commun 2011;13:265-8.
68. Ladouceur S, Paillet S, Vijh A, Guerfi A, Dontigny M, Zaghib K. Synthesis and characterization of a new family of aryl-trifluoromethanesulfonylimide Li-Salts for Li-ion batteries and beyond. J Power Sources 2015;293:78-88.
69. Zhang H, Han H, Cheng X, et al. Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: physicochemical and electrochemical properties. J Power Sources 2015;296:142-9.
70. Ito M, Hori K, Maeda K, Yakigaya K, Uematsu N, Matsuoka N. Optimized synthesis of cyclic fluorinated sulfonylimide lithium salts to suppress aluminum corrosion in lithium-ion batteries. J Fluor Chem 2022;257-8:109975.
71. Kita F, Sakata H, Sinomoto S, et al. Characteristics of the electrolyte with fluoro organic lithium salts. J Power Sources 2000;90:27-32.
72. Lu Y, Rong X, Hu YS, Chen L, Li H. Research and development of advanced battery materials in China. Energy Stor Mater 2019;23:144-53.
73. Xue W, Huang M, Li Y, et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat Energy 2021;6:495-505.
74. Chen S, Niu C, Lee H, et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-Metal Batteries. Joule 2019;3:1094-105.
76. Zhang SS, Xu K, Jow TR. Study of LiBF4 as an electrolyte salt for a Li-ion battery. J Electrochem Soc 2002;149:A586.
77. Barthel J, Schmid A, Gores HJ. A new class of electrochemically and thermally stable lithium salts for lithium battery electrolytes V. Synthesis and properties of lithium bis 2,3-pyridinediolato(2-)-O,O’ borate. J Electrochem Soc 2000;147:21.
78. Nolan BG, Strauss SH. Nonaqueous lithium battery electrolytes based on bis(polyfluorodiolato)borates. J Electrochem Soc 2003;150:A1726.
79. Yamaguchi H, Takahashi H, Kato M, Arai J. Lithium tetrakis(haloacyloxy)borate: an easily soluble and electrochemically stable electrolyte for lithium batteries. J Electrochem Soc 2003;150:A312.
80. Zhang SS. LiBF3Cl as an alternative salt for the electrolyte of Li-ion batteries. J Power Sources 2008;180:586-90.
81. Zhang SS, Jow TR. Aluminum corrosion in electrolyte of Li-ion battery. J Power Sources 2002;109:458-64.
82. Zhang SS. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem Commun 2006;8:1423-8.
83. Mun J, Yim T, Choi CY, Ryu JH, Kim YG, Oh SM. Linear-sweep thermammetry study on corrosion behavior of Al current collector in ionic liquid solvent. Electrochem Solid State Lett 2010;13:A109.
84. Nakajima T, Mori M, Gupta V, Ohzawa Y, Iwata H. Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries. Solid State Sci 2002;4:1385-94.
85. Xu K, Zhang S, Jow TR, Xu W, Angell CA. LiBOB as salt for lithium-ion batteries: a possible solution for high temperature operation. Electrochem Solid State Lett 2002;5:A26.
86. Xu K, Zhang SS, Lee U, Allen JL, Jow TR. LiBOB: is it an alternative salt for lithium ion chemistry? J Power Sources 2005;146:79-85.
87. Zhang X, Devine TM. Passivation of aluminum in lithium-ion battery electrolytes with LiBOB. J Electrochem Soc 2006;153:B365.
88. Chen X, Xu W, Engelhard MH, et al. Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures. J Mater Chem A 2014;2:2346-52.
89. Lu H, Zeng S, Zhao D, et al. Optimizing the composition of LiFSI-based electrolytes by a method combining simplex with normalization. RSC Adv 2021;11:26102-9.
90. Täubert C, Fleischhammer M, Wohlfahrt-mehrens M, Wietelmann U, Buhrmester T. LiBOB as electrolyte salt or additive for lithium-ion batteries based on LiNi0.8Co0.15Al0.05O2/graphite. J Electrochem Soc 2010;157:A721.
91. Xiong S, Kai X, Hong X, Diao Y. Effect of LiBOB as additive on electrochemical properties of lithium-sulfur batteries. Ionics 2012;18:249-54.
92. Xiao Z, Liu J, Fan G, et al. Lithium bis(oxalate)borate additive in the electrolyte to improve Li-rich layered oxide cathode materials. Mater Chem Front 2020;4:1689-96.
93. Li Y, Li W, Shimizu R, et al. Elucidating the effect of borate additive in high-voltage electrolyte for Li-rich layered oxide materials. Adv Energy Mater 2022;12:2103033.
94. Subaşı Y, Afyon S. High Voltage LiCoO2 cathodes with high purity lithium bis(oxalate) borate (LiBOB) for lithium-ion batteries. ACS Appl Energy Mater 2022;5:10098-107.
95. Park K, Yu S, Lee C, Lee H. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis(fluorosulfonyl)imide electrolytes. J Power Sources 2015;296:197-203.
96. Qiao L, Cui Z, Chen B, et al. A promising bulky anion based lithium borate salt for lithium metal batteries. Chem Sci 2018;9:3451-8.
97. Min X, Han C, Zhang S, et al. Highly oxidative-resistant cyano-functionalized lithium borate salt for enhanced cycling performance of practical lithium-ion batteries. Angew Chem Int Ed 2023;62:e202302664.
98. Roy B, Cherepanov P, Nguyen C, et al. Lithium borate ester salts for electrolyte application in next-generation high voltage lithium batteries. Adv Energy Mater 2021;11:2101422.
99. Tsujioka S, Nolan BG, Takase H, Fauber BP, Strauss SH. Conductivities and electrochemical stabilities of lithium salts of polyfluoroalkoxyaluminate superweak anions. J Electrochem Soc 2004;151:A1418.
100. Niedzicki L, Żukowska GZ, Bukowska M, et al. New type of imidazole based salts designed specifically for lithium ion batteries. Electrochim Acta 2010;55:1450-4.
101. Niedzicki L, Grugeon S, Laruelle S, et al. New covalent salts of the 4+V class for Li batteries. J Power Sources 2011;196:8696-700.
102. Shkrob IA, Pupek KZ, Gilbert JA, Trask SE, Abraham DP. Chemical stability of lithium 2-trifluoromethyl-4,5-dicyanoimidazolide, an electrolyte salt for Li-ion cells. J Phys Chem C 2016;120:28463-71.
103. Shkrob IA, Pupek KZ, Abraham DP. Allotropic control: how certain fluorinated carbonate electrolytes protect aluminum current collectors by promoting the formation of insoluble coordination polymers. J Phys Chem C 2016;120:18435-44.
104. Kalhoff J, Bresser D, Bolloli M, Alloin F, Sanchez JY, Passerini S. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent. ChemSusChem 2014;7:2939-46.
105. Bolloli M, Alloin F, Kalhoff J, et al. Effect of carbonates fluorination on the properties of LiTFSI-based electrolytes for Li-ion batteries. Electrochim Acta 2015;161:159-70.
106. Bolloli M, Kalhoff J, Alloin F, et al. Fluorinated carbamates as suitable solvents for LiTFSI-based lithium-ion electrolytes: physicochemical properties and electrochemical characterization. J Phys Chem C 2015;119:22404-14.
107. Chen S, Zhu W, Tan L, et al. Strongly solvating ether electrolytes for high-voltage lithium metal batteries. ACS Appl Mater Interfaces 2023;15:13155-64.
108. Park E, Park J, Lee K, et al. Exploiting the steric effect and low dielectric constant of 1,2-dimethoxypropane for 4.3 V lithium metal batteries. ACS Energy Lett 2023;8:179-88.
109. Li Z, Rao H, Atwi R, et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nat Commun 2023;14:868.
110. Zheng Q, Yamada Y, Shang R, et al. A cyclic phosphate-based battery electrolyte for high voltage and safe operation. Nat Energy 2020;5:291-8.
111. Nguyen H, Duong Pham T, Bin Faheem A, Min Oh H, Lee K. Marrying a non-flammable phosphate solvent with lithium nitrate: novel electrolyte for intrinsically safe and high performance lithium metal batteries. Batteries Supercaps 2023;6:e202200453.
112. Wu H, Song Z, Wang X, Feng W, Zhou Z, Zhang H. N,N-dimethyl fluorosulfonamide for suppressed aluminum corrosion in lithium bis(trifluoromethanesulfonyl)imide-based electrolytes. Nano Res 2023;16:8269-80.
113. Hirata K, Morita Y, Kawase T, Sumida Y. Electrochemical performance of an ethylene carbonate-free electrolyte based on lithium bis(fluorosulfonyl)imide and sulfolane. J Power Sources 2018;395:163-70.
114. Hirata K, Kawase T, Sumida Y. Passivation behavior of aluminum in a carbonate-free electrolyte based on lithium bis(fluorosulfonyl)imide and sulfolane. J Electrochem Soc 2020;167:140534.
115. Hirata K, Morita Y, Kawase T, Sumida Y. Effects of lithium bis(fluorosulfonyl)imide concentration on performances of lithium-ion batteries containing sulfolane-based electrolytes. J Electrochem Soc 2020;167:110553.
116. Su CC, He M, Shi J, et al. Superior long-term cycling of high-voltage lithium-ion batteries enabled by single-solvent electrolyte. Nano Energy 2021;89:106299.
117. Di Censo D, Exnar I, Graetzel M. Non-corrosive electrolyte compositions containing perfluoroalkylsulfonyl imides for high power Li-ion batteries. Electrochem Commun 2005;7:1000-6.
118. Abu-lebdeh Y, Davidson I. New electrolytes based on glutaronitrile for high energy/power Li-ion batteries. J Power Sources 2009;189:576-9.
119. Abu-lebdeh Y, Davidson I. High-voltage electrolytes based on adiponitrile for Li-ion batteries. J Electrochem Soc 2009;156:A60.
120. Kramer E, Passerini S, Winter M. Dependency of aluminum collector corrosion in lithium ion batteries on the electrolyte solvent. ECS Electrochem Lett 2012;1:C9.
121. Pohl B, Hiller MM, Seidel SM, Grünebaum M, Wiemhöfer HD. Nitrile functionalized disiloxanes with dissolved LiTFSI as lithium ion electrolytes with high thermal and electrochemical stability. J Power Sources 2015;274:629-35.
122. Brox S, Röser S, Streipert B, et al. Innovative, non-corrosive LiTFSI cyanoester-based electrolyte for safer 4 V lithium-ion batteries. ChemElectroChem 2017;4:304-9.
123. Narayanan Kirshnamoorthy A, Oldiges K, Winter M, et al. Electrolyte solvents for high voltage lithium ion batteries: ion correlation and specific anion effects in adiponitrile. Phys Chem Chem Phys 2018;20:25701-15.
124. Oldiges K, von Aspern N, Cekic-laskovic I, Winter M, Brunklaus G. Impact of trifluoromethylation of adiponitrile on aluminum dissolution behavior in dinitrile-based electrolytes. J Electrochem Soc 2018;165:A377.
125. Wang A, Wang L, Liang H, et al. Lithium difluorophosphate as a widely applicable additive to boost lithium-ion batteries: a perspective. Adv Funct Mater 2023;33:2211958.
126. Wang X, Yasukawa E, Mori S. Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes. Electrochim Acta 2000;45:2677-84.
127. Li Q, Imanishi N, Hirano A, Takeda Y, Yamamoto O. Four volts class solid lithium polymer batteries with a composite polymer electrolyte. J Power Sources 2002;110:38-45.
128. Morita M, Shibata T, Yoshimoto N, Ishikawa M. Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochim Acta 2002;47:2787-93.
129. Zheng J, Engelhard MH, Mei D, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat Energy 2017;2:17012.
130. Li Y, Zhang XW, Khan SA, Fedkiw PS. Attenuation of aluminum current collector corrosion in LiTFSI electrolytes using fumed silica nanoparticles. Electrochem Solid State Lett 2004;7:A228.
131. Louis H, Lee YG, Kim KM, Cho W II, Ko JM. Suppression of aluminum corrosion in Lithium bis(trifluoromethanesulfonyl)imide-based electrolytes by the addition of fumed silica. Bull Korean Chem Soc 2013;34:1795-9.
132. Borodin O, Self J, Persson KA, Wang C, Xu K. Uncharted waters: super-concentrated electrolytes. Joule 2020;4:69-100.
133. Tamate R, Peng Y, Kamiyama Y, Nishikawa K. Extremely tough, stretchable gel electrolytes with strong interpolymer hydrogen bonding prepared using concentrated electrolytes to stabilize lithium-metal anodes. Adv Mater 2023;35:e2211679.
134. Giffin GA. The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat Commun 2022;13:5250.
135. Yamada Y, Yamada A. Review - superconcentrated electrolytes for lithium batteries. J Electrochem Soc 2015;162:A2406.
136. Sayah S, Ghosh A, Baazizi M, et al. How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits? Nano Energy 2022;98:107336.
137. Zheng J, Lochala JA, Kwok A, Deng ZD, Xiao J. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Adv Sci 2017;4:1700032.
138. Wang J, Zheng Q, Fang M, Ko S, Yamada Y, Yamada A. Concentrated electrolytes widen the operating temperature range of lithium-ion batteries. Adv Sci 2021;8:e2101646.
139. Yamada Y. Developing new functionalities of superconcentrated electrolytes for lithium-ion batteries. Electrochemistry 2017;85:559-65.
140. Matsumoto K, Inoue K, Nakahara K, Yuge R, Noguchi T, Utsugi K. Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte. J Power Sources 2013;231:234-8.
141. Mcowen DW, Seo DM, Borodin O, Vatamanu J, Boyle PD, Henderson WA. Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy Environ Sci 2014;7:416-26.
142. Peng C, Yang L, Zhang Z, Tachibana K, Yang Y. Anodic behavior of Al current collector in 1-alkyl-3-methylimidazolium bis (trifluoromethyl)sulfonyl amide ionic liquid electrolytes. J Power Sources 2007;173:510-7.
143. Peng C, Yang L, Zhang Z, Tachibana K, Yang Y, Zhao S. Investigation of the anodic behavior of Al current collector in room temperature ionic liquid electrolytes. Electrochim Acta 2008;53:4764-72.
144. Allen JL, Mcowen DW, Delp SA, et al. N-Alkyl-N-methylpyrrolidinium difluoro(oxalato)borate ionic liquids: physical/electrochemical properties and Al corrosion. J Power Sources 2013;237:104-11.
145. Liang F, Yu J, Chen J, et al. A novel boron-based ionic liquid electrolyte for high voltage lithium-ion batteries with outstanding cycling stability. Electrochim Acta 2018;283:111-20.
146. Kühnel RS, Lübke M, Winter M, Passerini S, Balducci A. Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. J Power Sources 2012;214:178-84.
147. Kühnel RS, Böckenfeld N, Passerini S, Winter M, Balducci A. Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. Electrochim Acta 2011;56:4092-9.
148. Zhang H, Chen Y, Li C, Armand M. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. SusMat 2021;1:24-37.
149. Zhang H, Li C, Piszcz M, et al. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev 2017;46:797-815.
150. Castillo J, Qiao L, Santiago A, et al. Perspective of polymer-based solid-state Li-S batteries. Energy Mater 2022;2:200003.
151. Zhang H, Armand M. History of solid polymer electrolyte-based solid-state lithium metal batteries: a personal account. Isr J Chem 2021;61:94-100.
152. Qiao L, Judez X, Rojo T, Armand M, Zhang H. Review - polymer electrolytes for sodium batteries. J Electrochem Soc 2020;167:070534.
153. Qiao L, Rodriguez Peña S, Martínez-Ibañez M, et al. Anion π-π stacking for improved lithium transport in polymer electrolytes. J Am Chem Soc 2022;144:9806-16.
154. Aldalur I, Armand M, Zhang H. Jeffamine-based polymers for rechargeable batteries. Batteries Supercaps 2020;3:30-46.
155. Zhang H, Judez X, Santiago A, et al. Fluorine-free noble salt anion for high-performance all-solid-state lithium-sulfur batteries. Adv Energy Mater 2019;9:1900763.
156. Zhang H, Chen F, Lakuntza O, et al. Suppressed mobility of negative charges in polymer electrolytes with an ether-functionalized anion. Angew Chem Int Ed 2019;58:12070-5.
157. Martinez-ibañez M, Sanchez-diez E, Oteo U, et al. Anions with a dipole: toward high transport numbers in solid polymer electrolytes. Chem Mater 2022;34:3451-60.
158. Eshetu GG, Judez X, Li C, et al. Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries. Angew Chem Int Ed 2017;56:15368-72.
159. Chai J, Liu Z, Zhang J, et al. A Superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Appl Mater Interfaces 2017;9:17897-905.
160. Cui Y, Chai J, Du H, et al. Facile and reliable in situ polymerization of poly(ethyl cyanoacrylate)-based polymer electrolytes toward flexible lithium batteries. ACS Appl Mater Interfaces 2017;9:8737-41.
161. Cui Y, Liang X, Chai J, et al. High performance solid polymer electrolytes for rechargeable batteries: a self-catalyzed strategy toward facile synthesis. Adv Sci 2017;4:1700174.
162. He W, Cui Z, Liu X, et al. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochim Acta 2017;225:151-9.
163. Dong T, Zhang J, Xu G, et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ Sci 2018;11:1197-203.
164. Wang C, Zhang H, Li J, Chai J, Dong S, Cui G. The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. J Power Sources 2018;397:157-61.
165. Wang P, Chai J, Zhang Z, et al. An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries. J Mater Chem A 2019;7:5295-304.
166. Wang Q, Zhang H, Cui Z, et al. Siloxane-based polymer electrolytes for solid-state lithium batteries. Energy Stor Mater 2019;23:466-90.
167. Xu H, Zhang H, Ma J, et al. Overcoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes. ACS Energy Lett 2019;4:2871-86.
168. Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater 2019;31:e1902029.
169. Han X, Zhang H, Liu T, et al. An interfacially self-reinforced polymer electrolyte enables long-cycle 5.35 V dual-ion batteries. J Mater Chem A 2020;8:1451-6.
170. Hu R, Qiu H, Zhang H, et al. A polymer-reinforced SEI layer induced by a cyclic carbonate-based polymer electrolyte boosting 4.45 V LiCoO2/Li metal batteries. Small 2020;16:e1907163.
171. Jiang M, Zhang Z, Tang B, et al. Polymer electrolytes for Li-S batteries: polymeric fundamentals and performance optimization. J Energy Chem 2021;58:300-17.
172. Li X, Han X, Zhang H, et al. Frontier orbital energy-customized ionomer-based polymer electrolyte for high-voltage lithium metal batteries. ACS Appl Mater Interfaces 2020;12:51374-86.
173. Liu T, Zhang J, Han W, et al. Review - in situ polymerization for integration and interfacial protection towards solid state lithium batteries. J Electrochem Soc 2020;167:070527.
174. Tang B, Zhou Q, Du X, et al. Poly(maleic anhydride) copolymers-based polymer electrolytes enlighten highly safe and high-energy-density lithium metal batteries: advances and prospects. Nano Select 2020;1:59-78.
175. Wang C, Zhang H, Dong S, et al. High polymerization conversion and stable high-voltage chemistry underpinning an in situ formed solid electrolyte. Chem Mater 2020;32:9167-75.
176. Yu X, Wang L, Ma J, Sun X, Zhou X, Cui G. Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries. Adv Energy Mater 2020;10:1903939.
177. Wetjen M, Kim GT, Joost M, Appetecchi GB, Winter M, Passerini S. Thermal and electrochemical properties of PEO-LiTFSI-Pyr14 TFSI-based composite cathodes, incorporating 4V-class cathode active materials. J Power Sources 2014;246:846-57.
178. Zhao CZ, Zhao Q, Liu X, et al. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode. Adv Mater 2020;32:e1905629.
179. Xie H, Tang Z, Li Z, He Y, Wang H, Liu Y. Aluminum corrosion behavior of LiBOB in composite polymer electrolyte for Li-polymer batteries. Electrochem Solid State Lett 2008;11:C19.
180. Geng Z, Huang Y, Sun G, et al. In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries. Nano Energy 2022;91:106679.
181. Cong L, Liu J, Armand M, et al. Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces. J Power Sources 2018;380:115-25.
182. Zhang J, Zhao J, Yue L, et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv Energy Mater 2015;5:1501082.
183. Kimura K, Motomatsu J, Tominaga Y. Correlation between solvation structure and ion-conductive behavior of concentrated poly(ethylene carbonate)-based electrolytes. J Phys Chem C 2016;120:12385-91.
184. Sun B, Mindemark J, Edström K, Brandell D. Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ion 2014;262:738-42.
185. Kimura K, Tominaga Y. Understanding electrochemical stability and lithium ion-dominant transport in concentrated poly(ethylene carbonate) electrolyte. ChemElectroChem 2018;5:4008-14.
186. Zhang J, Yang J, Dong T, et al. Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries: advances and perspective. Small 2018;14:e1800821.
187. Mindemark J, Sun B, Törmä E, Brandell D. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J Power Sources 2015;298:166-70.
188. Santiago A, Sanchez-Diez E, Oteo U, et al. Single lithium ion conducting “binderlyte” for high-performing lithium metal batteries. Small 2022;18:e2202027.
189. Zhou Y, Hu J, He P, Zhang Y, Xu J, Wu X. Corrosion suppression of aluminum metal by optimizing lithium salt concentration in solid-state imide salt-based polymer plastic crystal electrolyte membrane. ACS Appl Energy Mater 2018;1:7022-7.
190. Ciurduc DE, Boaretto N, Fernández-blázquez JP, Marcilla R. Development of high performing polymer electrolytes based on superconcentrated solutions. J Power Sources 2021;506:230220.
191. Stolz L, Röser S, Homann G, Winter M, Kasnatscheew J. Pragmatic approaches to correlate between the physicochemical properties of a linear poly(ethylene oxide)-based solid polymer electrolyte and the performance in a high-voltage Li-metal battery. J Phys Chem C 2021;125:18089-97.
192. Striebel K, Shim J, Sierra A, et al. The development of low cost LiFePO4-based high power lithium-ion batteries. J Power Sources 2005;146:33-8.
193. Wu HC, Wu HC, Lee E, Wu NL. High-temperature carbon-coated aluminum current collector for enhanced power performance of LiFePO4 electrode of Li-ion batteries. Electrochem Commun 2010;12:488-91.
194. Wang R, Li W, Liu L, et al. Carbon black/graphene-modified aluminum foil cathode current collectors for lithium ion batteries with enhanced electrochemical performances. J Electroanal Chem 2019;833:63-9.
195. Jeong H, Jang J, Jo C. A review on current collector coating methods for next-generation batteries. Chem Eng J 2022;446:136860.
196. Doberdò I, Löffler N, Laszczynski N, et al. Enabling aqueous binders for lithium battery cathodes - carbon coating of aluminum current collector. J Power Sources 2014;248:1000-6.
197. Kuenzel M, Bresser D, Kim GT, Axmann P, Wohlfahrt-mehrens M, Passerini S. Unveiling and amplifying the benefits of carbon-coated aluminum current collectors for sustainable LiNi0.5Mn1.5O4 cathodes. ACS Appl Energy Mater 2020;3:218-30.
198. Bizot C, Blin MA, Guichard P, Soudan P, Gaubicher J, Poizot P. Aluminum current collector for high voltage Li-ion battery. Part II: benefit of the En’ safe® primed current collector technology. Electrochem Commun 2021;126:107008.
199. Yang S, Li S, Du Z, Du J, Han C, Li B. MXene-Ti3C2 armored layer for aluminum current collector enable stable high-voltage lithium-ion battery. Adv Mater Interfaces 2022;9:2200856.
201. Shin DY, Ahn HJ. Interfacial engineering of a heteroatom-doped graphene layer on patterned aluminum foil for ultrafast lithium storage kinetics. ACS Appl Mater Interfaces 2020;12:19210-7.
202. Li X, Deng S, Banis MN, et al. Suppressing corrosion of aluminum foils via highly conductive graphene-like carbon coating in high-performance lithium-based batteries. ACS Appl Mater Interfaces 2019;11:32826-32.
203. Kim SY, Song YI, Wee JH, et al. Few-layer graphene coated current collectors for safe and powerful lithium ion batteries. Carbon 2019;153:495-503.
204. Prabakar SJ, Hwang YH, Bae EG, Lee DK, Pyo M. Graphene oxide as a corrosion inhibitor for the aluminum current collector in lithium ion batteries. Carbon 2013;52:128-36.
205. Chen J, Bai Z, Li X, et al. Reduced graphene oxide-modified aluminum foils as highly conductive and corrosion-resistant cathode current collectors for Li-ion batteries. Appl Surf Sci 2022;606:155002.
206. Lunder O, Walmsley JC, Mack P, Nisancioglu K. Formation and characterisation of a chromate conversion coating on AA6060 aluminium. Corros Sci 2005;47:1604-24.
207. Gheytani S, Liang Y, Jing Y, Xu JQ, Yao Y. Chromate conversion coated aluminium as a light-weight and corrosion-resistant current collector for aqueous lithium-ion batteries. J Mater Chem A 2016;4:395-9.
208. Chen X, Xu S. Growth process of molybdate conversion coating on the surface of aluminum foil and its adhesive mechanism. Sur Interface Anal 2021;53:1048-58.
209. Guo Y, Frankel GS. Characterization of trivalent chromium process coating on AA2024-T3. Surf Coat Technol 2012;206:3895-902.
210. Yang S, Li S, Meng Y, Yu M, Liu J, Li B. Corrosion inhibition of aluminum current collector with molybdate conversion coating in commercial LiPF6-esters electrolytes. Corros Sci 2021;190:109632.
211. Xu J, Peng T, Qin X, et al. Recent advances in 2D MXenes: preparation, intercalation and applications in flexible devices. J Mater Chem A 2021;9:14147-71.
212. Xu X, Zhang Y, Sun H, et al. Progress and perspective: MXene and MXene-based nanomaterials for high-performance energy storage devices. Adv Electron Mater 2021;7:2000967.
213. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2017;2:16098.
214. Prabakar SJR, Pyo M. Corrosion protection of aluminum in LiPF6 by poly(3,4-ethylenedioxythiophene) nanosphere-coated multiwalled carbon nanotube. Corros Sci 2012;57:42-8.
215. González MB, Saidman SB. Electrodeposition of polypyrrole on 316L stainless steel for corrosion prevention. Corros Sci 2011;53:276-82.
216. Li Y, Zhang H, Wang X, Li J, Wang F. Growth kinetics of oxide films at the polyaniline/mild steel interface. Corros Sci 2011;53:4044-9.
217. Park JH, Seo YG, Yoon DH, et al. A concise synthesis and electrochemical behavior of functionalized poly(thieno[3,4-b]thiophenes): new conjugated polymers with low bandgap. Eur Polym J 2010;46:1790-5.
218. Long YZ, Li MM, Gu C, et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 2011;36:1415-42.
219. Samadi A, Xie M, Li J, Shon H, Zheng C, Zhao S. Polyaniline-based adsorbents for aqueous pollutants removal: a review. Chem Eng J 2021;418:129425.
220. Shi S, Zhao Y, Zhang Z, Yu L. Corrosion protection of a novel SiO2@PANI coating for Q235 carbon steel. Prog Org Coat 2019;132:227-34.
221. Maruthi N, Faisal M, Raghavendra N, et al. Polyaniline/V2O5 composites for anticorrosion and electromagnetic interference shielding. Mater Chem Phys 2021;259:124059.
222. Gao F, Mu J, Bi Z, Wang S, Li Z. Recent advances of polyaniline composites in anticorrosive coatings: a review. Prog Org Coat 2021;151:106071.