fig4

Strategies towards inhibition of aluminum current collector corrosion in lithium batteries

Figure 4. (A) Chronoamperometry (CA) profiles of the Al electrode in the liquid electrolytes at 4.2 V versus Li/Li+ at room temperature. The insets show SEM images of the Al electrodes recovered from the CA tests. Scale bars, 20 µm. (B) Schematic illustration of the electrochemical behavior of the Al electrode in the LiDFTFSI- and LiTFSI-based electrolytes. (C) Schematic illustration of the formation of Al-containing species on the surface of the Li anode upon cycling. (D) SEM images of the Li anode side (i-iii) and cathode side (iv-vi) of the Al current collector recovered from the cells after C-rate tests at RT. Scale bars, 20 µm. (E) Discharge capacity versus cycle number for the three electrolytes. (A-E) Reproduced from Ref.[19] with permission. Copyright 2022, Springer Nature. (F) Cyclic voltammogram curves of 1.0 M LiTFSI/PC, 1.0 M LiBF4/PC, and 1.0 M LiTFPFB/PC at a scan rate of 5 mV s-1 using Al as the working electrode and lithium foil as both the counter and reference electrodes. (G) Time-decaying current density of LiTFPFB-based cells obtained on an Al electrode at varied potentials vs. Li+/Li (the inset shows the collected current value at 103 s vs. voltage). (F and G) Reproduced from Ref.[96] with permission. Copyright 2018, The Royal Society of Chemistry. (H) Chronoamperometry profiles of Al electrodes in the LiDFTCB-PC and LiDFOB-PC electrolytes. Reproduced from Ref.[97] with permission. Copyright 2023, Wiley.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/