REFERENCES

1. Thompson ST, Papageorgopoulos D. Platinum group metal-free catalysts boost cost competitiveness of fuel cell vehicles. Nat Catal 2019;2:558-61.

2. Fan Q, Yan S, Wang H. Nanoscale redox reaction unlocking the next-generation low temperature fuel cell. Energy Mater 2022;2:200002.

3. Zhao J, Liu H, Li X. Structure, property, and performance of catalyst layers in proton exchange membrane fuel cells. Electrochem Energy Rev 2023;6:13.

4. Zhang Y, Xiao F, Chen G, Shao M. Fuel cell performance of non-precious metal based electrocatalysts. J Electrochem 2020;26:563-72.

5. Cao S, Sun T, Li J, Li Q, Hou C, Sun Q. The cathode catalysts of hydrogen fuel cell: from laboratory toward practical application. Nano Res 2023;16:4365-80.

6. Hamo ER, Rosen BA. Transition metal carbides as cathode supports for PEM fuel cells. Nano Res 2022;15:10218-33.

7. Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 2015;44:2168-201.

8. Yang X, Priest C, Hou Y, Wu G. Atomically dispersed dual-metal-site PGM-free electrocatalysts for oxygen reduction reaction: opportunities and challenges. SusMat 2022;2:569-90.

9. Li Y, Chen M, Lu B, Zhang J. Recent advances in exploring highly active & durable pgm-free oxygen reduction catalysts. J Electrochem 2023;29:2215002.

10. Thompson ST, James BD, Huya-kouadio JM, et al. Direct hydrogen fuel cell electric vehicle cost analysis: system and high-volume manufacturing description, validation, and outlook. J Power Sources 2018;399:304-13.

11. Zeng R, Yang Y, Feng X, et al. Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Sci Adv 2022;8:eabj1584.

12. Xia W, Mahmood A, Liang Z, Zou R, Guo S. Earth-abundant nanomaterials for oxygen reduction. Angew Chem Int Ed 2016;55:2650-76.

13. He Y, Wu G. PGM-free oxygen-reduction catalyst development for proton-exchange membrane fuel cells: challenges, solutions, and promises. ACC Mater Res 2022;3:224-36.

14. Liu J, Ma R, Chu Y, et al. Construction and regulation of a surface protophilic environment to enhance oxygen reduction reaction electrocatalytic activity. ACS Appl Mater Interfaces 2020;12:41269-76.

15. Liu S, Zhang Y, Ge B, et al. Constructing graphitic-nitrogen-bonded pentagons in interlayer-expanded graphene matrix toward carbon-based electrocatalysts for acidic oxygen reduction reaction. Adv Mater 2021;33:e2103133.

16. Chang Y, Chen J, Jia J, et al. The fluorine-doped and defects engineered carbon nanosheets as advanced electrocatalysts for oxygen electroreduction. Appl Catal B Environ 2021;284:119721.

17. Liu K, Fu J, Lin Y, et al. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat Commun 2022;13:2075.

18. Zhao T, Li Y, Liu J, et al. Highly dispersed L12-Pt3Fe intermetallic particles supported on single atom Fe-Nx-Cy active sites for enhanced activity and durability towards oxygen reduction. Chin Chem Lett 2023;34:107824.

19. Xie S, Jin H, Wang C, et al. A comparison study on single metal atoms (Fe, Co, Ni) within nitrogen-doped graphene for oxygen electrocatalysis and rechargeable Zn-air batteries. Chin Chem Lett 2023;34:107681.

20. Ishihara A, Ohgi Y, Matsuzawa K, Mitsushima S, Ota K. Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells. Electrochim Acta 2010;55:8005-12.

21. Wang H, Qiu X, Peng Z, et al. Cobalt-gluconate-derived high-density cobalt sulfides nanocrystals encapsulated within nitrogen and sulfur dual-doped micro/mesoporous carbon spheres for efficient electrocatalysis of oxygen reduction. J Colloid Interface Sci 2020;561:829-37.

22. Yuan H, Kong L, Li T, Zhang Q. A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chin Chem Lett 2017;28:2180-94.

23. Lv XW, Xu WS, Tian WW, Wang HY, Yuan ZY. Activity promotion of core and shell in multifunctional core-shell Co2P@NC electrocatalyst by secondary metal doping for water electrolysis and Zn-air batteries. Small 2021;17:e2101856.

24. Jasinski R. A new fuel cell cathode catalyst. Nature 1964;201:1212-3.

25. Hu C, Dai L. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew Chem Int Ed 2016;55:11736-58.

26. Jiang H, Gu J, Zheng X, et al. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ Sci 2019;12:322-33.

27. Wang F, Zhou Y, Lin S, Yang L, Hu Z, Xie D. Axial ligand effect on the stability of Fe-N-C electrocatalysts for acidic oxygen reduction reaction. Nano Energy 2020;78:105128.

28. Wang Q, Lu R, Yang Y, et al. Tailoring the microenvironment in Fe-N-C electrocatalysts for optimal oxygen reduction reaction performance. Sci Bull 2022;67:1264-73.

29. Lu F, Fan K, Cui L, et al. Engineering FeN4 active sites onto nitrogen-rich carbon with tubular channels for enhanced oxygen reduction reaction performance. Appl Catal B Environ 2022;313:121464.

30. Xu M, Liu J, Ge J, Liu C, Xing W. Research progress of metal-nitrogen-carbon catalysts toward oxygen reduction reaction inm changchun institute of applied chemistry. J Electrochem 2020;26:464-73.

31. Zhang L, Meng Q, Zheng R, et al. Microenvironment regulation of M-N-C single-atom catalysts towards oxygen reduction reaction. Nano Res 2023;16:4468-87.

32. Yang Y, Xiong Y, Zeng R, et al. Operando methods in electrocatalysis. ACS Catal 2021;11:1136-78.

33. Zhao J, Lian J, Zhao Z, Wang X, Zhang J. A review of in-situ techniques for probing active sites and mechanisms of electrocatalytic oxygen reduction reactions. Nanomicro Lett 2022;15:19.

34. Jia Y, Xiong X, Wang D, et al. Atomically dispersed Fe-N4 modified with precisely located S for highly efficient oxygen reduction. Nanomicro Lett 2020;12:116.

35. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 2015;44:2060-86.

36. Chen G, Sun Y, Chen RR, et al. A discussion on the possible involvement of singlet oxygen in oxygen electrocatalysis. J Phys Energy 2021;3:031004.

37. Borden WT, Hoffmann R, Stuyver T, Chen B. Dioxygen: what makes this triplet diradical kinetically persistent? J Am Chem Soc 2017;139:9010-8.

38. Fridovich I. Oxygen: how do we stand it? Med Princ Pract 2013;22:131-7.

39. Biz C, Gracia J, Fianchini M. Review on magnetism in catalysis: from theory to PEMFC applications of 3D metal Pt-based alloys. Int J Mol Sci 2022;23:14768.

40. Biz C, Fianchini M, Gracia J. Strongly correlated electrons in catalysis: focus on quantum exchange. ACS Catal 2021;11:14249-61.

41. Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 2004;108:17886-92.

42. Jiang WJ, Gu L, Li L, et al. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J Am Chem Soc 2016;138:3570-8.

43. Zhao Z, Chen C, Liu Z, et al. Pt-based nanocrystal for electrocatalytic oxygen reduction. Adv Mater 2019;31:e1808115.

44. Prabhakaran V, Wang G, Parrondo J, Ramani V. Contribution of electrocatalyst support to PEM oxidative degradation in an operating PEFC. J Electrochem Soc 2016;163:F1611.

45. Banham D, Kishimoto T, Zhou Y, et al. Critical advancements in achieving high power and stable nonprecious metal catalyst-based MEAs for real-world proton exchange membrane fuel cell applications. Sci Adv 2018;4:eaar7180.

46. Radwan A, Jin H, He D, Mu S. Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nanomicro Lett 2021;13:132.

47. Yao Y, You Y, Zhang G, et al. Highly functional bioinspired Fe/N/C oxygen reduction reaction catalysts: structure-regulating oxygen sorption. ACS Appl Mater Interfaces 2016;8:6464-71.

48. Abild-Pedersen F, Greeley J, Studt F, et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 2007;99:016105.

49. Biz C, Fianchini M, Gracia J. Catalysis meets spintronics; spin potentials associated with open-shell orbital configurations enhance the activity of Pt3Co nanostructures for oxygen reduction: a density functional theory study. ACS Appl Nano Mater 2020;3:506-15.

50. Gracia J. Spin dependent interactions catalyse the oxygen electrochemistry. Phys Chem Chem Phys 2017;19:20451-6.

51. Zhang L, Cheruvathur A, Biz C, Fianchini M, Gracia J. Ferromagnetic ligand holes in cobalt perovskite electrocatalysts as an essential factor for high activity towards oxygen evolution. Phys Chem Chem Phys 2019;21:2977-83.

52. Hong J, Jin C, Yuan J, Zhang Z. Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv Mater 2017;29:1606434.

53. Wang X, Li Z, Qu Y, et al. Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 2019;5:1486-511.

54. Martinez U, Komini Babu S, Holby EF, Chung HT, Yin X, Zelenay P. Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction. Adv Mater 2019;31:e1806545.

55. Alt H, Binder H, Sandstede G. Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J Catal 1973;28:8-19.

56. Zheng Y, Yang DS, Kweun JM, et al. Rational design of common transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in fuel cells. Nano Energy 2016;30:443-9.

57. Peng H, Liu F, Liu X, et al. Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. ACS Catal 2014;4:3797-805.

58. Venegas R, Muñoz-becerra K, Candia-onfray C, Marco JF, Zagal JH, Recio FJ. Experimental reactivity descriptors of M-N-C catalysts for the oxygen reduction reaction. Electrochim Acta 2020;332:135340.

59. Ramaswamy N, Tylus U, Jia Q, Mukerjee S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J Am Chem Soc 2013;135:15443-9.

60. Masa J, Zhao A, Xia W, Muhler M, Schuhmann W. Metal-free catalysts for oxygen reduction in alkaline electrolytes: influence of the presence of Co, Fe, Mn and Ni inclusions. Electrochim Acta 2014;128:271-8.

61. Shen H, Gracia-Espino E, Ma J, et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media. Angew Chem Int Ed 2017;56:13800-4.

62. Li J, Zhang H, Samarakoon W, et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew Chem Int Ed 2019;58:18971-80.

63. Li Y, Liu X, Zheng L, et al. Preparation of Fe-N-C catalysts with FeNx (x = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. J Mater Chem A 2019;7:26147-53.

64. Zhu C, Shi Q, Xu BZ, et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv Energy Mater 2018;8:1801956.

65. Kabir S, Artyushkova K, Kiefer B, Atanassov P. Computational and experimental evidence for a new TM-N3/C moiety family in non-PGM electrocatalysts. Phys Chem Chem Phys 2015;17:17785-9.

66. Zhang J, Wang Z, Zhu Z. A density functional theory study on mechanism of electrochemical oxygen reduction on FeN3-graphene. J Electrochem Soc 2015;162:F1262.

67. Huang J, Lu Q, Ma X, Yang X. Bio-inspired FeN5 moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. J Mater Chem A 2018;6:18488-97.

68. Zhu Y, Zhang B, Liu X, Wang DW, Su DS. Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew Chem Int Ed 2014;53:10673-7.

69. Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater 2015;14:937-42.

70. Chung HT, Cullen DA, Higgins D, et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017;357:479-84.

71. Shen H, Gracia-espino E, Ma J, et al. Atomically FeN2 moieties dispersed on mesoporous carbon: a new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy 2017;35:9-16.

72. Song P, Wang Y, Pan J, Xu W, Zhuang L. Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction. J Power Sources 2015;300:279-84.

73. Lefèvre M, Dodelet JP, Bertrand P. Molecular oxygen reduction in PEM fuel cells:  evidence for the simultaneous presence of two active sites in Fe-based catalysts. J Phys Chem B 2002;106:8705-13.

74. Li J, Sougrati MT, Zitolo A, et al. Identification of durable and non-durable FeNx sites in Fe-N-C materials for proton exchange membrane fuel cells. Nat Catal 2021;4:10-9.

75. Liu S, Shi Q, Wu G. Solving the activity-stability trade-off riddle. Nat Catal 2021;4:6-7.

76. Xu X, Zhang X, Kuang Z, et al. Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: the influence of structure and structural evolution of active site. Appl Catal B Environ 2022;309:121290.

77. Liu S, Li C, Zachman MJ, et al. Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat Energy 2022;7:652-63.

78. Yang L, Cheng D, Xu H, et al. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc Natl Acad Sci USA 2018;115:6626-31.

79. Wang X, Jia Y, Mao X, et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv Mater 2020;32:e2000966.

80. Liu K, Wu G, Wang G. Role of local carbon structure surrounding FeN4 sites in boosting the catalytic activity for oxygen reduction. J Phys Chem C 2017;121:11319-24.

81. Fu X, Li N, Ren B, et al. Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell. Adv Energy Mater 2019;9:1803737.

82. Mineva T, Matanovic I, Atanassov P, et al. Understanding active sites in pyrolyzed Fe-N-C catalysts for fuel cell cathodes by bridging density functional theory calculations and 57Fe mössbauer spectroscopy. ACS Catal 2019;9:9359-71.

83. Matter PH, Wang E, Millet JM, Ozkan US. Characterization of the iron phase in CNx -based oxygen reduction reaction catalysts. J Phys Chem C 2007;111:1444-50.

84. Li D, Jia Y, Chang G, et al. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 2018;4:2345-56.

85. Fellinger TP, Hasché F, Strasser P, Antonietti M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J Am Chem Soc 2012;134:4072-5.

86. Artyushkova K, Serov A, Rojas-carbonell S, Atanassov P. Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal-nitrogen-carbon electrocatalysts. J Phys Chem C 2015;119:25917-28.

87. Parvez K, Yang S, Hernandez Y, et al. Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction. ACS Nano 2012;6:9541-50.

88. Liu G, Li X, Ganesan P, Popov BN. Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochim Acta 2010;55:2853-8.

89. Lai L, Potts JR, Zhan D, et al. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 2012;5:7936-42.

90. Cui X, Yang S, Yan X, et al. Pyridinic-nitrogen-dominated graphene aerogels with Fe-N-C coordination for highly efficient oxygen reduction reaction. Adv Funct Mater 2016;26:5708-17.

91. Huang X, Wu X, Niu Y, Dai C, Xu M, Hu W. Effect of nanoparticle composition on oxygen reduction reaction activity of Fe/N-C catalysts: a comparative study. Catal Sci Technol 2019;9:711-7.

92. Li G, Zhang J, Li W, Fan K, Xu C. 3D interconnected hierarchical porous N-doped carbon constructed by flake-like nanostructure with Fe/Fe3C for efficient oxygen reduction reaction and supercapacitor. Nanoscale 2018;10:9252-60.

93. Zhang SL, Guan BY, Wu HB, Lou XWD. Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nanomicro Lett 2018;10:44.

94. Faubert G, Lalande G, Côté R, et al. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochim Acta 1996;41:1689-701.

95. Varnell JA, Tse EC, Schulz CE, et al. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat Commun 2016;7:12582.

96. Choi CH, Choi WS, Kasian O, et al. Unraveling the nature of sites active toward hydrogen peroxide reduction in Fe-N-C catalysts. Angew Chem Int Ed 2017;56:8809-12.

97. Qiao Y, Yuan P, Hu Y, et al. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv Mater 2018;30:e1804504.

98. Hu E, Yu XY, Chen F, Wu Y, Hu Y, Lou XW. Graphene layers-wrapped Fe/Fe5C2 nanoparticles supported on N-doped graphene nanosheets for highly efficient oxygen reduction. Adv Energy Mater 2018;8:1702476.

99. Wang Y, Gan R, Liu H, et al. Fe3O4/Fe2O3/Fe nanoparticles anchored on N-doped hierarchically porous carbon nanospheres as a high-efficiency ORR electrocatalyst for rechargeable Zn-air batteries. J Mater Chem A 2021;9:2764-74.

100. Kramm UI, Herrmann-Geppert I, Behrends J, Lips K, Fiechter S, Bogdanoff P. On an easy way to prepare metal-nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J Am Chem Soc 2016;138:635-40.

101. Wang Y, Wu M, Wang K, Chen J, Yu T, Song S. Fe3O4@N-doped interconnected hierarchical porous carbon and its 3D integrated electrode for oxygen reduction in acidic media. Adv Sci 2020;7:2000407.

102. Gong K, Du F, Xia Z, Durstock M, Dai L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009;323:760-4.

103. Zhao Y, Wan J, Yao H, et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat Chem 2018;10:924-31.

104. Yang L, Shui J, Du L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv Mater 2019;31:e1804799.

105. Liu J, Song P, Xu W. Structure-activity relationship of doped-nitrogen (N)-based metal-free active sites on carbon for oxygen reduction reaction. Carbon 2017;115:763-72.

106. Rao CV, Cabrera CR, Ishikawa Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction. J Phys Chem Lett 2010;1:2622-7.

107. Li H, Kang W, Wang L, et al. Synthesis of three-dimensional flowerlike nitrogen-doped carbons by a copyrolysis route and the effect of nitrogen species on the electrocatalytic activity in oxygen reduction reaction. Carbon 2013;54:249-57.

108. Meng J, Liu Z, Liu X, et al. Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction. J Mater Sci Technol 2021;66:186-92.

109. Wang N, Lu B, Li L, et al. Graphitic nitrogen is responsible for oxygen electroreduction on nitrogen-doped carbons in alkaline electrolytes: insights from activity attenuation studies and theoretical calculations. ACS Catal 2018;8:6827-36.

110. Liu R, Wu D, Feng X, Müllen K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew Chem Int Ed 2010;49:2565-9.

111. Kim H, Lee K, Woo SI, Jung Y. On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys Chem Chem Phys 2011;13:17505-10.

112. Wang J, Li L, Wei Z. Density functional theory study of oxygen reduction reaction on different types of N-doped graphene. Acta Phys Chim Sin 2016;32:321-8.

113. Li M, Liu Z, Wang F, Xuan J. The influence of the type of N dopping on the performance of bifunctional N-doped ordered mesoporous carbon electrocatalysts in oxygen reduction and evolution reaction. J Energy Chem 2017;26:422-7.

114. Quílez-bermejo J, Melle-franco M, San-fabián E, Morallón E, Cazorla-amorós D. Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach. J Mater Chem A 2019;7:24239-50.

115. Liu Z, Zhao Z, Wang Y, et al. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv Mater 2017;29:1606207.

116. Shen A, Zou Y, Wang Q, et al. Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. Angew Chem Int Ed 2014;53:10804-8.

117. Tao L, Wang Q, Dou S, et al. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem Commun 2016;52:2764-7.

118. Xue L, Li Y, Liu X, et al. Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat Commun 2018;9:3819.

119. Ye G, Liu S, Huang K, et al. Domain-confined etching strategy to regulate defective sites in carbon for high-efficiency electrocatalytic oxygen reduction. Adv Funct Mater 2022;32:2111396.

120. Zhang L, Gu T, Lu K, Zhou L, Li DS, Wang R. Engineering synergistic edge-N dipole in metal-free carbon nanoflakes toward intensified oxygen reduction electrocatalysis. Adv Funct Mater 2021;31:2103187.

121. Kou Z, Guo B, He D, Zhang J, Mu S. Transforming two-dimensional boron carbide into boron and chlorine dual-doped carbon nanotubes by chlorination for efficient oxygen reduction. ACS Energy Lett 2018;3:184-90.

122. Zhao Y, Yang L, Chen S, et al. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J Am Chem Soc 2013;135:1201-4.

123. Jiang H, Wang Y, Hao J, Liu Y, Li W, Li J. N and P co-functionalized three-dimensional porous carbon networks as efficient metal-free electrocatalysts for oxygen reduction reaction. Carbon 2017;122:64-73.

124. Gao Y, Kong D, Liang J, et al. Inside-out dual-doping effects on tubular catalysts: structural and chemical variation for advanced oxygen reduction performance. Nano Res 2022;15:361-7.

125. Zan Y, Zhang Z, Dou M, Wang F. Enhancement mechanism of sulfur dopants on the catalytic activity of N and P co-doped three-dimensional hierarchically porous carbon as a metal-free oxygen reduction electrocatalyst. Catal Sci Technol 2019;9:5906-14.

126. Zhang H, Guang H, Li R, et al. Doping engineering: modulating the intrinsic activity of bifunctional carbon-based oxygen electrocatalysts for high-performance zinc-air batteries. J Mater Chem A 2022;10:21797-815.

127. Yang N, Li L, Li J, Ding W, Wei Z. Modulating the oxygen reduction activity of heteroatom-doped carbon catalysts via the triple effect: charge, spin density and ligand effect. Chem Sci 2018;9:5795-804.

128. Pei Z, Li H, Huang Y, et al. Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. Energy Environ Sci 2017;10:742-9.

129. Guo L, Hwang S, Li B, et al. Promoting atomically dispersed MnN4 sites via sulfur doping for oxygen reduction: unveiling intrinsic activity and degradation in fuel cells. ACS Nano 2021;15:6886-99.

130. Liu H, Jiang L, Wang Y, et al. Boosting oxygen reduction with coexistence of single-atomic Fe and Cu sites decorated nitrogen-doped porous carbon. Chem Eng J 2023;452:138938.

131. Wang Z, Jin X, Zhu C, et al. Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv Mater 2021;33:e2104718.

132. Yin H, Yuan P, Lu BA, et al. Phosphorus-driven electron delocalization on edge-type FeN4 active sites for oxygen reduction in acid medium. ACS Catal 2021;11:12754-62.

133. Sun Y, Sun S, Yang H, Xi S, Gracia J, Xu ZJ. Spin-related electron transfer and orbital interactions in oxygen electrocatalysis. Adv Mater 2020;32:e2003297.

134. Yang G, Zhu J, Yuan P, et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat Commun 2021;12:1734.

135. Li X, Chen T, Yang B, Xiang Z. Fundamental understanding of electronic structure in FeN4 Site on electrocatalytic activity via dz2-orbital-driven charge tuning for acidic oxygen reduction. Angew Chem Int Ed 2023;62:e202215441.

136. Jiang R, Li L, Sheng T, Hu G, Chen Y, Wang L. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J Am Chem Soc 2018;140:11594-8.

137. Gong L, Zhang H, Wang Y, et al. Bridge bonded oxygen ligands between approximated FeN4 sites confer catalysts with high ORR performance. Angew Chem Int Ed 2020;59:13923-8.

138. Shah SSA, Najam T, Yang J, Javed MS, Peng L, Wei Z. Modulating the microenvironment structure of single Zn atom: ZnN4P/C active site for boosted oxygen reduction reaction. Chin J Catal 2022;43:2193-201.

139. Wang S, Borisevich AY, Rashkeev SN, et al. Dopants adsorbed as single atoms prevent degradation of catalysts. Nat Mater 2004;3:143-6.

140. Yin P, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chem Int Ed 2016;55:10800-5.

141. Li J, Chen M, Cullen DA, et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat Catal 2018;1:935-45.

142. Xin C, Shang W, Hu J, et al. Integration of morphology and electronic structure modulation on atomic iron-nitrogen-carbon catalysts for highly efficient oxygen reduction. Adv Funct Mater 2022;32:2108345.

143. Li Z, Leng L, Ji S, et al. Engineering the morphology and electronic structure of atomic cobalt-nitrogen-carbon catalyst with highly accessible active sites for enhanced oxygen reduction. J Energy Chem 2022;73:469-77.

144. Ding W, Li L, Xiong K, et al. Shape fixing via salt recrystallization: a morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J Am Chem Soc 2015;137:5414-20.

145. Wan X, Liu X, Li Y, et al. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat Catal 2019;2:259-68.

146. Qiao M, Wang Y, Wang Q, et al. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew Chem Int Ed 2020;59:2688-94.

147. Chen Y, Kone I, Gong Y, et al. Ultra-thin carbon nanosheets-assembled 3D hierarchically porous carbon for high performance zinc-air batteries. Carbon 2019;152:325-34.

148. Zhang X, Zhang S, Yang Y, et al. A general method for transition metal single atoms anchored on honeycomb-like nitrogen-doped carbon nanosheets. Adv Mater 2020;32:e1906905.

149. Chakraborty R, K V, Pradhan M, Nayak AK. Recent advancement of biomass-derived porous carbon based materials for energy and environmental remediation applications. J Mater Chem A 2022;10:6965-7005.

150. Ma Z, Han Y, Wang X, Sun G, Li Y. Lignin-derived hierarchical porous flower-like carbon nanosheets decorated with biomass carbon quantum dots for efficient oxygen reduction. Colloids Surf A Physicochem Eng Asp 2022;652:129818.

151. Liu L, Zeng G, Chen J, Bi L, Dai L, Wen Z. N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy 2018;49:393-402.

152. Jalalah M, Han H, Nayak AK, Harraz FA. Biomass-derived metal-free porous carbon electrocatalyst for efficient oxygen reduction reactions. J Taiwan Inst Chem Eng 2023;147:104905.

153. Wang S, Jiang H, Song L. Recent progress in defective carbon-based oxygen electrode materials for rechargeable zink-air batteries. Batteries Supercaps 2019;2:509-23.

154. Jia Y, Chen J, Yao X. Defect electrocatalytic mechanism: concept, topological structure and perspective. Mater Chem Front 2018;2:1250-68.

155. Qiao Y, Kong F, Zhang C, Li R, Kong A, Shan Y. Highly efficient oxygen electrode catalyst derived from chitosan biomass by molten salt pyrolysis for zinc-air battery. Electrochim Acta 2020;339:135923.

156. Cheng W, Yuan P, Lv Z, et al. Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Appl Catal B Environ 2020;260:118198.

157. Jia Y, Zhang L, Zhuang L, et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat Catal 2019;2:688-95.

158. Huang X, Shen T, Sun S, Hou Y. Synergistic modulation of carbon-based, precious-metal-free electrocatalysts for oxygen reduction reaction. ACS Appl Mater Interfaces 2021;13:6989-7003.

159. He Y, Liu S, Priest C, Shi Q, Wu G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem Soc Rev 2020;49:3484-524.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/