REFERENCES
1. Goodenough JB. Electrochemical energy storage in a sustainable modern society. Energy Environ Sci 2014;7:14-8.
2. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414:359-67.
3. Asp LE, Johansson M, Lindbergh G, Xu J, Zenkert D. Structural battery composites: a review. Funct Compos Struct 2019;1:042001.
4. Asp LE, Bouton K, Carlstedt D, et al. A structural battery and its multifunctional performance. Adv Energy Sustain Res 2021;2:2000093.
5. Lim GJH, Chan KK, Sutrisnoh NAA, Srinivasan M. Design of structural batteries: carbon fibers and alternative form factors. Mater Today Sustain 2022;20:100252.
6. Greenhalgh ES, Nguyen S, Valkova M, Shirshova N, Shaffer MSP, Kucernak ARJ. A critical review of structural supercapacitors and outlook on future research challenges. Compos Sci Technol 2023;235:109968.
7. Jin T, Singer G, Liang K, Yang Y. Structural batteries: advances, challenges and perspectives. Mater Today 2023;62:151-67.
8. Danzi F, Salgado RM, Oliveira JE, Arteiro A, Camanho PP, Braga MH. Structural batteries: a review. Molecules 2021;26:2203.
9. Carlstedt D, Asp LE. Performance analysis framework for structural battery composites in electric vehicles. Compos B Eng 2020;186:107822.
10. Ishfaq A, Nguyen SN, Greenhalgh ES, et al. Multifunctional design, feasibility and requirements for structural power composites in future electric air taxis. J Compos Mater 2023;57:817-27.
11. Kühnelt H, Beutl A, Mastropierro F, et al. Structural batteries for aeronautic applications - state of the art, research gaps and technology development needs. Aerospace 2022;9:7.
12. Thomas JP, Qidwai SM, Pogue WR III, Pham GT. Multifunctional structure-battery composites for marine systems. J Compos Mater 2013;47:5-26.
13. Tan MY, Safanama D, Goh SS, et al. Concepts and emerging trends for structural battery electrolytes. Chem Asian J 2022;17:e202200784.
14. Snyder JF, Carter RH, Wetzel ED. Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries. Chem Mater 2007;19:3793-801.
15. Ihrner N, Johannisson W, Sieland F, Zenkert D, Johansson M. Structural lithium ion battery electrolytes via reaction induced phase-separation. J Mater Chem A 2017;5:25652-9.
16. Schneider LM, Ihrner N, Zenkert D, Johansson M. Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries. ACS Appl Energy Mater 2019;2:4362-9.
17. Cattaruzza M, Fang Y, Furó I, Lindbergh G, Liu F, Johansson M. Hybrid polymer-liquid lithium ion electrolytes: effect of porosity on the ionic and molecular mobility. J Mater Chem A 2023;11:7006-15.
18. Fu Y, Chen Y, Yu X, Zhou L. Fiber metal laminated structural batteries with multifunctional solid polymer electrolytes. Compos Sci Technol 2022;230:109731.
19. Choi J, Zabihi O, Varley R, Zhang J, Fox BL, Naebe M. Multiple hydrogen bond channel structural electrolyte for an enhanced carbon fiber composite battery. ACS Appl Energy Mater 2022;5:2054-66.
20. Choi J, Zabihi O, Varley RJ, Fox B, Naebe M. High performance carbon fiber structural batteries using cellulose nanocrystal reinforced polymer electrolyte. ACS Appl Mater Interfaces 2022;14:45320-32.
21. Matsumoto K, Endo T. Confinement of ionic liquid by networked polymers based on multifunctional epoxy resins. Macromolecules 2008;41:6981-6.
22. Shirshova N, Bismarck A, Carreyette S, et al. Structural supercapacitor electrolytes based on bicontinuous ionic liquid-epoxy resin systems. J Mater Chem A 2013;1:15300-9.
23. Shirshova N, Bismarck A, Greenhalgh ES, et al. Composition as a means to control morphology and properties of epoxy based dual-phase structural electrolytes. J Phys Chem C 2014;118:28377-87.
24. Yu Y, Zhang B, Feng M, et al. Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites. Compos Sci Technol 2017;147:62-70.
25. Kwon SJ, Kim T, Jung BM, Lee SB, Choi UH. Multifunctional epoxy-based solid polymer electrolytes for solid-state supercapacitors. ACS Appl Mater Interfaces 2018;10:35108-17.
26. Schulze MW, McIntosh LD, Hillmyer MA, Lodge TP. High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation. Nano Lett 2014;14:122-6.
27. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 2009;8:621-9.
28. Abdurrokhman I, Elamin K, Danyliv O, Hasani M, Swenson J, Martinelli A. Protic ionic liquids based on the alkyl-imidazolium cation: effect of the alkyl chain length on structure and dynamics. J Phys Chem B 2019;123:4044-54.
29. Martinelli A, Matic A, Jacobsson P, Börjesson L, Fernicola A, Scrosati B. Phase behavior and ionic conductivity in lithium bis(trifluoromethanesulfonyl)imide-doped ionic liquids of the pyrrolidinium cation and bis(trifluoromethanesulfonyl)imide anion. J Phys Chem B 2009;113:11247-51.
30. Pitawala J, Kim JK, Jacobsson P, Koch V, Croce F, Matic A. Phase behaviour, transport properties, and interactions in Li-salt doped ionic liquids. Faraday Discuss 2012;154:71-80; discussion 81-96, 465-71.
31. Martinelli A, Matic A, Johansson P, et al. Conformational evolution of TFSI- in protic and aprotic ionic liquids. J Raman Spectrosc 2011;42:522-8.
32. Nasrabadi AT, Ganesan V. Structure and transport properties of lithium-doped aprotic and protic ionic liquid electrolytes: insights from molecular dynamics simulations. J Phys Chem B 2019;123:5588-600.
33. Jafta CJ, Bridges C, Haupt L, et al. Ion dynamics in ionic-liquid-based li-ion electrolytes investigated by neutron scattering and dielectric spectroscopy. ChemSusChem 2018;11:3512-23.
34. Singh MP, Singh RK, Chandra S. Ionic liquids confined in porous matrices: physicochemical properties and applications. Prog Mater Sci 2014;64:73-120.
35. Abdou N, Alonso B, Brun N, et al. Ionic guest in ionic host: ionosilica ionogel composites via ionic liquid confinement in ionosilica supports. Mater Chem Front 2022;6:939-47.
36. Abdou N, Alonso B, Brun N, et al. Confinement effects on the ionic liquid dynamics in ionosilica ionogels: impact of the ionosilica nature and the host/guest ratio. J Phys Chem C 2022;126:20937-45.
37. Martinelli A, Nordstierna L. An investigation of the sol-gel process in ionic liquid-silica gels by time resolved Raman and 1H NMR spectroscopy. Phys Chem Chem Phys 2012;14:13216-23.
38. Martinelli A. Conformational changes and phase behaviour in the protic ionic liquid 1-ethylimidazolium bis(trifluoromethylsulfonyl)imide in the bulk and nano-confined state. Eur J Inorg Chem 2015;2015:1300-8.
39. Nayeri M, Aronson MT, Bernin D, Chmelka BF, Martinelli A. Surface effects on the structure and mobility of the ionic liquid C6C1ImTFSI in silica gels. Soft Matter 2014;10:5618-27.
40. Vavra S, Elamin K, Evenäs L, Martinelli A. Transport properties and local structure of an imidazole/protic ionic liquid mixture confined in the mesopores of hydrophobic silica. J Phys Chem C 2021;125:2607-18.
41. Morais EM, Abdurrokhman I, Martinelli A. Solvent-free synthesis of protic ionic liquids. Synthesis, characterization and computational studies of triazolium based ionic liquids. J Mol Liq 2022;360:119358.
42. Menne S, Pires J, Anouti M, Balducci A. Protic ionic liquids as electrolytes for lithium-ion batteries. Electrochem Commun 2013;31:39-41.
43. Cerveny S, Mallamace F, Swenson J, Vogel M, Xu L. Confined water as model of supercooled water. Chem Rev 2016;116:7608-25.
44. Swenson J, Cerveny S. Dynamics of deeply supercooled interfacial water. J Phys Condens Matter 2015;27:033102.
45. Swenson J, Elamin K, Jansson H, Kittaka S. Why is there no clear glass transition of confined water? Chem Phys 2013;424:20-5.
46. Cerveny S, Mattsson J, Swenson J, Bergman R. Relaxations of hydrogen-bonded liquids confined in two-dimensional vermiculite clay. J Phys Chem B 2004;108:11596-603.
47. Swenson J, Jansson H, Bergman R. Relaxation processes in supercooled confined water and implications for protein dynamics. Phys Rev Lett 2006;96:247802.
48. Ananiadou A, Papamokos G, Steinhart M, Floudas G. Effect of confinement on the dynamics of 1-propanol and other monohydroxy alcohols. J Chem Phys 2021;155:184504.
49. Tu CH, Veith L, Butt HJ, Floudas G. Ionic conductivity of a solid polymer electrolyte confined in nanopores. Macromolecules 2022;55:1332-41.
50. Iacob C, Sangoro JR, Kipnusu WK, Valiullin R, Kärger J, Kremer F. Enhanced charge transport in nano-confined ionic liquids. Soft Matter 2012;8:289-93.
51. Tu W, Chat K, Szklarz G, et al. Dynamics of pyrrolidinium-based ionic liquids under confinement. II. the effects of pore size, inner surface, and cationic alkyl chain length. J Phys Chem C 2020;124:5395-408.
52. Berrod Q, Ferdeghini F, Judeinstein P, et al. Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes. Nanoscale 2016;8:7845-8.
53. Alexandris S, Papadopoulos P, Sakellariou G, Steinhart M, Butt HJ, Floudas G. Interfacial energy and glass temperature of polymers confined to nanoporous alumina. Macromolecules 2016;49:7400-14.
54. Alcoutlabi M, McKenna GB. Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 2005;17:461.
55. Busselez R, Lefort R, Ji Q, Affouard F, Morineau D. Molecular dynamics simulation of nanoconfined glycerol. Phys Chem Chem Phys 2009;11:11127-33.
56. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc 1938;60:309-19.
57. Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J Am Chem Soc 1951;73:373-80.
58. Wunderlich B, Jin Y, Boller A. Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta 1994;238:277-93.
59. Simon SL. Temperature-modulated differential scanning calorimetry: theory and application. Thermochim Acta 2001;374:55-71.
60. Shin WS, Li XF, Schwartz B, Wunder SL, Baran GR. Determination of the degree of cure of dental resins using Raman and FT-Raman spectroscopy. Dent Mater 1993;9:317-24.
61. Gejji SP, Suresh CH, Babu K, Gadre SR. Ab initio structure and vibrational frequencies of (CF3SO2)2N- Li+ ion pairs. J Phys Chem A 1999;103:7474-80.
62. Guyomard-Lack A, Delannoy PE, Dupré N, Cerclier CV, Humbert B, Le Bideau J. Destructuring ionic liquids in ionogels: enhanced fragility for solid devices. Phys Chem Chem Phys 2014;16:23639-45.
63. Aidoud D, Guy-bouyssou D, Guyomard D, Bideau JL, Lestriez B. Photo-polymerized organic host network of ionogels for lithium batteries: effects of mesh size and of ethylene oxide content. J Electrochem Soc 2018;165:A3179.
64. Dreier P, Pipertzis A, Spyridakou M, Mathes R, Floudas G, Frey H. Introduction of trifluoromethanesulfonamide groups in poly(ethylene oxide): ionic conductivity of single-ion-conducting block copolymer electrolytes. Macromolecules 2022;55:1342-53.
65. Pipertzis A, Kafetzi M, Giaouzi D, Pispas S, Floudas GA. Grafted copolymer electrolytes based on the poly(acrylic acid-co-oligo ethylene glycol acrylate) (P(AA-co-OEGA)) ion-conducting and mechanically robust block. ACS Appl Polym Mater 2022;4:7070-80.
66. Pipertzis A, Papamokos G, Mühlinghaus M, Mezger M, Scherf U, Floudas G. What determines the glass temperature and dc-conductivity in imidazolium-polymerized ionic liquids with a polythiophene backbone? Macromolecules 2020;53:3535-50.
68. Wojnarowska Z, Paluch M. Recent progress on dielectric properties of protic ionic liquids. J Phys Condens Matter 2015;27:073202.
69. Griffin P, Agapov AL, Kisliuk A, et al. Decoupling charge transport from the structural dynamics in room temperature ionic liquids. J Chem Phys 2011;135:114509.
70. Musiał M, Cheng S, Wojnarowska Z, Paluch M. Magnitude of dynamically correlated molecules as an indicator for a dynamical crossover in ionic liquids. J Phys Chem B 2021;125:4141-7.
71. Bergman R. General susceptibility functions for relaxations in disordered systems. J Appl Phys 2000;88:1356-65.
73. Floudas G. 2.32 - Dielectric spectroscopy. In: Matyjaszewski K, Möller M, editors. Polymer science: a comprehensive reference. Amsterdam: Elsevier; 2012. pp. 825-45.
74. Ngai KL, Floudas G, Plazek DJ, Rizos AK. Amorphous polymers. In: Mark HF, editor. Encyclopedia of Polymer science and technology. New York: John Wiley & Sons; 2002.
75. Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 1965;43:139-46.