REFERENCES

1. Reddy MV, Mauger A, Julien CM, Paolella A, Zaghib K. Brief history of early lithium-battery development. Materials 2020;13:1884.

2. Miao Y, Hynan P, von Jouanne A, Yokochi A. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 2019;12:1074.

3. Lai X, Chen Q, Tang X, et al. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: a lifespan perspective. eTransportation 2022;12:100169.

4. Kebede AA, Coosemans T, Messagie M, et al. Techno-economic analysis of lithium-ion and lead-acid batteries in stationary energy storage application. J Energy Stor 2021;40:102748.

5. Kebede AA, Kalogiannis T, Van Mierlo J, Berecibar M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew Sustain Energy Rev 2022;159:112213.

6. Sadd M, Xiong S, Bowen JR, Marone F, Matic A. Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy. Nat Commun 2023;14:854.

7. Liu X, Zarrabeitia M, Mariani A, et al. Enhanced Li+ transport in ionic liquid-based electrolytes aided by fluorinated ethers for highly efficient lithium metal batteries with improved rate capability. Small Methods 2021;5:e2100168.

8. Sun H, Zhu G, Zhu Y, et al. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv Mater 2020;32:e2001741.

9. Wang Z, Zhang H, Xu J, et al. Advanced ultralow-concentration electrolyte for wide-temperature and high-voltage Li-metal batteries. Adv Funct Mater 2022;32:2112598.

10. Ren W, Zheng Y, Cui Z, Tao Y, Li B, Wang W. Recent progress of functional separators in dendrite inhibition for lithium metal batteries. Energy Stor Mater 2021;35:157-68.

11. Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy 2019;4:180-6.

12. Hua W, Wang S, Knapp M, et al. Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat Commun 2019;10:5365.

13. Wu F, Kim GT, Diemant T, et al. Reducing capacity and voltage decay of Co-free Li1.2Ni0.2Mn0.6O2 as positive electrode material for lithium batteries employing an ionic liquid-based electrolyte. Adv Energy Mater 2020;10:2001830.

14. Liang G, Peterson VK, See KW, Guo Z, Pang WK. Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects. J Mater Chem A 2020;8:15373-98.

15. Yu X, Yu WA, Manthiram A. Advances and prospects of high-voltage spinel cathodes for lithium-based batteries. Small Methods 2021;5:e2001196.

16. Li T, Yuan XZ, Zhang L, Song D, Shi K, Bock C. Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries. Electrochem Energy Rev 2020;3:43-80.

17. Jung R, Linsenmann F, Thomas R, et al. Nickel, manganese, and cobalt dissolution from Ni-rich NMC and their effects on NMC622-graphite cells. J Electrochem Soc 2019;166:A378.

18. Zhang SS. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Stor Mater 2020;24:247-54.

19. Hu S, Pillai AS, Liang G, et al. Li-rich layered oxides and their practical challenges: recent progress and perspectives. Electrochem Energy Rev 2019;2:277-311.

20. Adenusi H, Chass GA, Passerini S, Tian KV, Chen G. Lithium batteries and the solid electrolyte interphase (SEI) - progress and outlook. Adv Energy Mater 2023;13:2203307.

21. Wu H, Jia H, Wang C, Zhang JG, Xu W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv Energy Mater 2021;11:2003092.

22. Deng K, Zeng Q, Wang D, et al. Nonflammable organic electrolytes for high-safety lithium-ion batteries. Energy Stor Mater 2020;32:425-47.

23. Chandra Rath P, Wu CJ, Patra J, et al. Hybrid electrolyte enables safe and practical 5V LiNi0.5Mn1.5O4 batteries. J Mater Chem A 2019;7:16516-25.

24. Zhai P, Liu L, Gu X, Wang T, Gong Y. Interface engineering for lithium metal anodes in liquid electrolyte. Adv Energy Mater 2020;10:2001257.

25. Yoon I, Jurng S, Abraham DP, Lucht BL, Guduru PR. Measurement of mechanical and fracture properties of solid electrolyte interphase on lithium metal anodes in lithium ion batteries. Energy Stor Mater 2020;25:296-304.

26. Płotka-wasylka J, de la Guardia M, Andruch V, Vilková M. Deep eutectic solvents vs ionic liquids: similarities and differences. Microchem J 2020;159:105539.

27. Welton T. Ionic liquids: a brief history. Biophys Rev 2018;10:691-706.

28. Singh SK, Savoy AW. Ionic liquids synthesis and applications: an overview. J Mol Liq 2020;297:112038.

29. Jeong S, Li S, Appetecchi GB, Passerini S. Asymmetric ammonium-based ionic liquids as electrolyte components for safer, high-energy, electrochemical storage devices. Energy Stor Mater 2019;18:1-9.

30. Simonetti E, De Francesco M, Bellusci M, et al. A more sustainable and cheaper one-pot route for the synthesis of hydrophobic ionic liquids for electrolyte applications. ChemSusChem 2019;12:4946-52.

31. Brutti S, Simonetti E, De Francesco M, et al. Ionic liquid electrolytes for high-voltage, lithium-ion batteries. J Power Sources 2020;479:228791.

32. Philippi F, Welton T. Targeted modifications in ionic liquids - from understanding to design. Phys Chem Chem Phys 2021;23:6993-7021.

33. Palumbo O, Sarra A, Brubach JB, et al. So similar, yet so different: the case of the ionic liquids N-trimethyl-N (2-methoxyethyl)ammonium Bis (trifluoromethanesulfonyl)imide and N,N-Diethyl-N-methyl-N(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide. Front Phys 2022;10:851279.

34. Tong J, Wu S, von Solms N, et al. The effect of concentration of lithium salt on the structural and transport properties of ionic liquid-based electrolytes. Front Chem 2019;7:945.

35. Hansen BB, Spittle S, Chen B, et al. Deep eutectic solvents: a review of fundamentals and applications. Chem Rev 2021;121:1232-85.

36. Mourad E, Coustan L, Lannelongue P, et al. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat Mater 2017;16:446-53.

37. Qi S, Liu J, He J, et al. Structurally tunable characteristics of ionic liquids for optimizing lithium plating/stripping via electrolyte engineering. J Energy Chem 2021;63:270-7.

38. Tsurumaki A, Branchi M, Rigano A, Poiana R, Panero S, Navarra MA. Bis(oxalato)borate and difluoro(oxalato)borate-based ionic liquids as electrolyte additives to improve the capacity retention in high voltage lithium batteries. Electrochim Acta 2019;315:17-23.

39. Yoshizawa M, Hirao M, Ito-akita K, Ohno H. Ion conduction in zwitterionic-type molten salts and their polymers. J Mater Chem 2001;11:1057-62.

40. Ohno H, Yoshizawa M, Ogihara W. A new type of polymer gel electrolyte: zwitterionic liquid/polar polymer mixture. Electrochim Acta 2003;48:2079-83.

41. Yoshizawa-Fujita M, Ohno H. Applications of zwitterions and zwitterionic polymers for Li-ion batteries. Chem Rec 2023;23:e202200287.

42. Ohno H. Design of ion conductive polymers based on ionic liquids. Macromol Symp 2007;249-50:551-6.

43. Nishimura N, Ohno H. 15th anniversary of polymerised ionic liquids. Polymer 2014;55:3289-97.

44. Matsumi N, Sugai K, Miyake M, Ohno H. Polymerized ionic liquids via hydroboration polymerization as single ion conductive polymer electrolytes. Macromolecules 2006;39:6924-7.

45. Eshetu GG, Mecerreyes D, Forsyth M, Zhang H, Armand M. Polymeric ionic liquids for lithium-based rechargeable batteries. Mol Syst Des Eng 2019;4:294-309.

46. Fu C, Homann G, Grissa R, et al. A Polymerized-ionic-liquid-based polymer electrolyte with high oxidative stability for 4 and 5 V class solid-state lithium metal batteries. Adv Energy Mater 2022;12:2200412.

47. Watanabe M, Dokko K, Ueno K, Thomas ML. From ionic liquids to solvate ionic liquids: challenges and opportunities for next generation battery electrolytes. Bull Chem Soc Jpn 2018;91:1660-82.

48. Mandai T, Dokko K, Watanabe M. Solvate ionic liquids for Li, Na, K, and Mg batteries. Chem Rec 2019;19:708-22.

49. Cappelluti F, Mariani A, Bonomo M, et al. Stepping away from serendipity in deep eutectic solvent formation: prediction from precursors ratio. J Mol Liq 2022;367:120443.

50. Ogawa H, Mori H. Lithium salt/amide-based deep eutectic electrolytes for lithium-ion batteries: electrochemical, thermal and computational study. Phys Chem Chem Phys 2020;22:8853-63.

51. Ueno K, Park JW, Yamazaki A, et al. Anionic effects on solvate ionic liquid electrolytes in rechargeable lithium-sulfur batteries. J Phys Chem C 2013;117:20509-16.

52. Dokko K, Tachikawa N, Yamauchi K, et al. Solvate ionic liquid electrolyte for Li-S batteries. J Electrochem Soc 2013;160:A1304.

53. Inman G, Nlebedim IC, Prodius D. Application of ionic liquids for the recycling and recovery of technologically critical and valuable metals. Energies 2022;15:628.

54. Zante G, Braun A, Masmoudi A, Barillon R, Trébouet D, Boltoeva M. Solvent extraction fractionation of manganese, cobalt, nickel and lithium using ionic liquids and deep eutectic solvents. Miner Eng 2020;156:106512.

55. Zheng H, Huang J, Dong T, et al. A novel strategy of lithium recycling from spent lithium-ion batteries using imidazolium ionic liquid. Chin J Chem Eng 2022;41:246-51.

56. Botelho Junior AB, Stopic S, Friedrich B, Tenório JAS, Espinosa DCR. Cobalt recovery from Li-ion battery recycling: a critical review. Metals 2021;11:1999.

57. Pringle JM, Golding J, Baranyai K, et al. The effect of anion fluorination in ionic liquids - physical properties of a range of bis(methanesulfonyl)amide salts. New J Chem 2003;27:1504-10.

58. Park J, Jung Y, Kusumah P, Lee J, Kwon K, Lee CK. Application of ionic liquids in hydrometallurgy. Int J Mol Sci 2014;15:15320-43.

59. Bonhôte P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 1996;35:1168-78.

60. Liu K, Wang Z, Shi L, Jungsuttiwong S, Yuan S. Ionic liquids for high performance lithium metal batteries. J Energy Chem 2021;59:320-33.

61. Wu F, Schür AR, Kim GT, et al. A novel phosphonium ionic liquid electrolyte enabling high-voltage and high-energy positive electrode materials in lithium-metal batteries. Energy Stor Mater 2021;42:826-35.

62. Rangasamy VS, Thayumanasundaram S, Locquet JP. Ionic liquid electrolytes based on sulfonium cation for lithium rechargeable batteries. Electrochim Acta 2019;328:135133.

63. Pandian S, Raju SG, Hariharan KS, Kolake SM, Park DH, Lee MJ. Functionalized ionic liquids as electrolytes for lithium-ion batteries. J Power Sources 2015;286:204-9.

64. Blundell RK, Licence P. Quaternary ammonium and phosphonium based ionic liquids: a comparison of common anions. Phys Chem Chem Phys 2014;16:15278-88.

65. Tsurumaki A, Tajima M, Abe M, Sato D, Ohno H. Effect of the cation structure on cellulose dissolution in aqueous solutions of organic onium hydroxides. Phys Chem Chem Phys 2020;22:22602-8.

66. Montanino M, Carewska M, Alessandrini F, Passerini S, Appetecchi GB. The role of the cation aliphatic side chain length in piperidinium bis(trifluoromethansulfonyl)imide ionic liquids. Electrochim Acta 2011;57:153-9.

67. Zhang S, Li J, Jiang N, et al. Rational design of an ionic liquid-based electrolyte with high ionic conductivity towards safe lithium/lithium-ion batteries. Chem Asian J 2019;14:2810-4.

68. Jin Y, Fang S, Chai M, Yang L, Hirano S. Ether-functionalized trialkylimidazolium ionic liquids: synthesis, characterization, and properties. Ind Eng Chem Res 2012;51:11011-20.

69. Tsurumaki A, Agostini M, Poiana R, et al. Enhanced safety and galvanostatic performance of high voltage lithium batteries by using ionic liquids. Electrochim Acta 2019;316:1-7.

70. Wilkes JS, Zaworotko MJ. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 1992;13:965-67.

71. Fuller J, Carlin RT, De Long HC, Haworth D. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. J Chem Soc Chem Commun 1994;3:299-300.

72. Sayah S, Ghamouss F, Tran-van F, Santos-peña J, Lemordant D. A bis(fluorosulfonyl)imide based ionic liquid as safe and efficient electrolyte for Si/Sn-Ni/C/Al composite anode. Electrochim Acta 2017;243:197-206.

73. Gao X, Wu F, Mariani A, Passerini S. Concentrated ionic-liquid-based electrolytes for high-voltage lithium batteries with improved performance at room temperature. ChemSusChem 2019;12:4185-93.

74. Kerner M, Plylahan N, Scheers J, Johansson P. Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions? Phys Chem Chem Phys 2015;17:19569-81.

75. Jang J, Shin JS, Ko S, et al. Self-assembled protective layer by symmetric ionic liquid for long-cycling lithium-metal batteries. Adv Energy Mater 2022;12:2103955.

76. Wu F, Fang S, Kuenzel M, et al. Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. Joule 2021;5:2177-94.

77. Lee S, Park K, Koo B, et al. Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes. Adv Funct Mater 2020;30:2003132.

78. Elia GA, Ulissi U, Jeong S, Passerini S, Hassoun J. Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes. Energy Environ Sci 2016;9:3210-20.

79. Heist A, Lee SH. Improved stability and rate capability of ionic liquid electrolyte with high concentration of LiFSI. J Electrochem Soc 2019;166:A1860-6.

80. Liu X, Mariani A, Adenusi H, Passerini S. Locally concentrated ionic liquid electrolytes for lithium-metal batteries. Angew Chem Int Ed 2023;62:e202219318.

81. Liu X, Mariani A, Zarrabeitia M, et al. Effect of organic cations in locally concentrated ionic liquid electrolytes on the electrochemical performance of lithium metal batteries. Energy Stor Mater 2022;44:370-8.

82. Liu X, Mariani A, Diemant T, et al. Difluorobenzene-based locally concentrated ionic liquid electrolyte enabling stable cycling of lithium metal batteries with nickel-rich cathode. Adv Energy Mater 2022;12:2200862.

83. Zhang S, Cheng B, Fang Y, et al. Inhibition of lithium dendrites and dead lithium by an ionic liquid additive toward safe and stable lithium metal anodes. Chin Chem Lett 2022;33:3951-4.

84. Wang Z, Zhang F, Sun Y, et al. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Adv Energy Mater 2021;11:2003752.

85. Wang TH, Chen C, Li NW, et al. Cations and anions regulation through hybrid ionic liquid electrolytes towards stable lithium metal anode. Chem Eng J 2022;439:135780.

86. Heist A, Hafner S, Lee SH. High-energy nickel-rich layered cathode stabilized by ionic liquid electrolyte. J Electrochem Soc 2019;166:A873-9.

87. Nagarajan S, Weiland C, Hwang S, Balasubramanian M, Arava LMR. Depth-dependent understanding of cathode electrolyte interphase (CEI) on the layered Li-ion cathodes operated at extreme high temperature. Chem Mater 2022;34:4587-601.

88. Nair JR, Colò F, Kazzazi A, et al. Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. J Power Sources 2019;412:398-407.

89. Lingua G, Falco M, Stettner T, Gerbaldi C, Balducci A. Enabling safe and stable Li metal batteries with protic ionic liquid electrolytes and high voltage cathodes. J Power Sources 2021;481:228979.

90. Menne S, Pires J, Anouti M, Balducci A. Protic ionic liquids as electrolytes for lithium-ion batteries. Electrochem Commun 2013;31:39-41.

91. Vogl T, Menne S, Kühnel RS, Balducci A. The beneficial effect of protic ionic liquids on the lithium environment in electrolytes for battery applications. J Mater Chem A 2014;2:8258-65.

92. Wu W, Wei Z, Wang J, et al. Enabling high-energy flexible solid-state lithium ion batteries at room temperature. Chem Eng J 2021;424:130335.

93. Zhang D, Xu X, Huang X, et al. A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries. J Mater Chem A 2020;8:18043-54.

94. Ye T, Li L, Zhang Y. Recent Progress in solid electrolytes for energy storage devices. Adv Funct Mater 2020;30:2000077.

95. Hou M, Liang F, Chen K, Dai Y, Xue D. Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology 2020;31:132003.

96. Li S, Zhang SQ, Shen L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci 2020;7:1903088.

97. Xi G, Xiao M, Wang S, Han D, Li Y, Meng Y. Polymer-based solid electrolytes: material selection, design, and application. Adv Funct Mater 2021;31:2007598.

98. Dirican M, Yan C, Zhu P, Zhang X. Composite solid electrolytes for all-solid-state lithium batteries. Mater Sci Eng R Rep 2019;136:27-46.

99. Ohno H, Ito K. Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem Lett 1998;27:751-2.

100. Pont AL, Marcilla R, De Meatza I, Grande H, Mecerreyes D. Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes. J Power Sources 2009;188:558-63.

101. Döbbelin M, Azcune I, Bedu M, et al. Synthesis of pyrrolidinium-based poly(ionic liquid) electrolytes with poly(ethylene glycol) side chains. Chem Mater 2012;24:1583-90.

102. Yu L, Yu L, Peng Y, Lan X, Hu X. Electrospun poly(ionic liquid) nanofiber separators with high lithium-ion transference number for safe ionic-liquid-based lithium batteries in wide temperature range. Mater Today Phys 2022;25:100716.

103. Martinez-ibañez M, Boaretto N, Meabe L, et al. Revealing the anion chemistry effect on transport properties of ternary Gel polymer electrolytes. Chem Mater 2022;34:7493-502.

104. Tian X, Yang P, Yi Y, et al. Self-healing and high stretchable polymer electrolytes based on ionic bonds with high conductivity for lithium batteries. J Power Sources 2020;450:227629.

105. Yin K, Zhang Z, Li X, Yang L, Tachibana K, Hirano S. Polymer electrolytes based on dicationic polymeric ionic liquids: application in lithium metal batteries. J Mater Chem A 2015;3:170-8.

106. Zhu J, Zhang Z, Zhao S, Westover AS, Belharouak I, Cao PF. Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: design, performance, and challenges. Adv Energy Mater 2021;11:2003836.

107. Hu Z, Chen J, Guo Y, et al. Fire-resistant, high-performance gel polymer electrolytes derived from poly(ionic liquid)/P(VDF-HFP) composite membranes for lithium ion batteries. J Memb Sci 2020;599:117827.

108. Xing C, Zhao M, Zhao L, You J, Cao X, Li Y. Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym Chem 2013;4:5726-34.

109. Tsurumaki A, Kagimoto J, Ohno H. Properties of polymer electrolytes composed of poly(ethylene oxide) and ionic liquids according to hard and soft acids and bases theory. Polym Adv Technol 2011;22:1223-8.

110. Zhu X, Fang Z, Deng Q, et al. Poly(ionic liquid)@PEGMA block polymer initiated microphase separation architecture in poly(ethylene oxide)-based solid-state polymer electrolyte for flexible and self-healing lithium batteries. ACS Sustaina Chem Eng 2022;10:4173-85.

111. Fu D, Sun Y, Zhang F, et al. Enabling polymeric ionic liquid electrolytes with high ambient ionic conductivity by polymer chain regulation. Chem Eng J 2022;431:133278.

112. Liang L, Yuan W, Chen X, Liao H. Flexible, nonflammable, highly conductive and high-safety double cross-linked poly(ionic liquid) as quasi-solid electrolyte for high performance lithium-ion batteries. Chem Eng J 2021;421:130000.

113. Wang D, Jin B, Ren Y, et al. Bifunctional solid-state copolymer electrolyte with stabilized interphase for high-performance lithium metal battery in a wide temperature range. ChemSusChem 2022;15:e202200993.

114. Chen X, Liang L, Hu W, Liao H, Zhang Y. POSS hybrid poly(ionic liquid) ionogel solid electrolyte for flexible lithium batteries. J Power Sources 2022;542:231766.

115. Zhang F, Sun Y, Wang Z, et al. Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries. ACS Appl Mater Interfaces 2020;12:23774-80.

116. Sha Y, Yu T, Dong T, Wu X, Tao H, Zhang H. In Situ network electrolyte based on a functional polymerized ionic liquid with high conductivity toward lithium metal batteries. ACS Appl Energy Mater 2021;4:14755-65.

117. Dong L, Zeng X, Fu J, et al. Cross-linked ionic copolymer solid electrolytes with loose Coordination-assisted lithium transport for lithium batteries. Chem Eng J 2021;423:130209.

118. Shi Y, Yang N, Niu J, Yang S, Wang F. A highly durable rubber-derived lithium-conducting elastomer for lithium metal batteries. Adv Sci 2022;9:e2200553.

119. Tseng YC, Hsiang SH, Lee TY, Teng H, Jan JS, Kyu T. In situ polymerized electrolytes with fully cross-linked networks boosting high ionic conductivity and capacity retention for lithium ion batteries. ACS Appl Energy Mater 2021;4:14309-22.

120. Tseng YC, Ramdhani FI, Hsiang SH, Lee TY, Teng H, Jan JS. Lithium battery enhanced by the combination of in-situ generated poly(ionic liquid) systems and TiO2 nanoparticles. J Membr Sci 2022;641:119891.

121. Liang L, Chen X, Yuan W, Chen H, Liao H, Zhang Y. Highly conductive, flexible, and nonflammable double-network poly(ionic liquid)-based ionogel electrolyte for flexible lithium-ion batteries. ACS Appl Mater Interfaces 2021;13:25410-20.

122. Yin K, Zhang Z, Yang L, Hirano SI. An imidazolium-based polymerized ionic liquid via novel synthetic strategy as polymer electrolytes for lithium ion batteries. J Power Sources 2014;258:150-4.

123. Kuroda K, Ohno H. Ionic liquids enable accurate chromatographic analysis of polyelectrolytes. Chem Commun 2015;51:10551-3.

124. Tan J, Ao X, Dai A, et al. Polycation ionic liquid tailored PEO-based solid polymer electrolytes for high temperature lithium metal batteries. Energy Stor Mater 2020;33:173-80.

125. Ding L, Liu Z, Song S, et al. Structural characteristics and rheological properties of hydroxypropyl trimethyl ammonium chloride chitosan. Int J Biol Macromol 2022;216:312-21.

126. Atik J, Diddens D, Thienenkamp JH, Brunklaus G, Winter M, Paillard E. Cation-assisted lithium-ion transport for high-performance PEO-based ternary solid polymer electrolytes. Angew Chem Int Ed 2021;60:11919-27.

127. Shin JH, Henderson WA, Passerini S. Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun 2003;5:1016-20.

128. Shin JH, Henderson WA, Passerini S. PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J Electrochem Soc 2005;152:A978.

129. Poiana R, Lufrano E, Tsurumaki A, Simari C, Nicotera I, Navarra MA. Safe gel polymer electrolytes for high voltage Li-batteries. Electrochim Acta 2022;401:139470.

130. Barai P, Higa K, Srinivasan V. Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Phys Chem Chem Phys 2017;19:20493-505.

131. Zhang W, Wang X, Zhang Q, et al. Li7La3Zr2O12 ceramic nanofiber-incorporated solid polymer electrolytes for flexible lithium batteries. ACS Appl Energy Mater 2020;3:5238-46.

132. Tseng YC, Wu Y, Tsao CH, Teng H, Hou SS, Jan JS. Polymer electrolytes based on Poly(VdF-co-HFP)/ionic liquid/carbonate membranes for high-performance lithium-ion batteries. Polymer 2019;173:110-8.

133. Rao M, Geng X, Liao Y, Hu S, Li W. Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery. J Membr Sci 2012;399-400:37-42.

134. Zhai W, Zhu H, Wang L, Liu X, Yang H. Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM]BF4 for Lithium ion batteries. Electrochim Acta 2014;133:623-30.

135. Yang Y, Wu Q, Wang D, et al. Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries. J Membr Sci 2020;612:118424.

136. Wang B, Wang G, He P, Fan LZ. Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries. J Membr Sci 2022;642:119952.

137. Li Z, Guo X. Integrated interface between composite electrolyte and cathode with low resistance enables ultra-long cycle-lifetime in solid-state lithium-metal batteries. Sci China Chem 2021;64:673-80.

138. Lin X, Chu C, Li Z, et al. A high-performance, solution-processable polymer/ceramic/ionic liquid electrolyte for room temperature solid-state Li metal batteries. Nano Energy 2021;89:106351.

139. Liu M, Zhang S, van Eck ERH, Wang C, Ganapathy S, Wagemaker M. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat Nanotechnol 2022;17:959-67.

140. Arai N, Watanabe H, Yamaguchi T, et al. Dynamic chelate effect on the Li+-ion conduction in solvate ionic liquids. J Phys Chem C 2019;123:30228-33.

141. Arai N, Watanabe H, Nozaki E, et al. Speciation analysis and thermodynamic criteria of solvated ionic liquids: ionic liquids or superconcentrated solutions? J Phys Chem Lett 2020;11:4517-23.

142. Shigenobu K, Shibata M, Dokko K, Watanabe M, Fujii K, Ueno K. Anion effects on Li ion transference number and dynamic ion correlations in glyme-Li salt equimolar mixtures. Phys Chem Chem Phys 2021;23:2622-9.

143. Takahashi K, Ishino Y, Murata W, et al. Physicochemical compatibility of highly-concentrated solvate ionic liquids and a low-viscosity solvent. RSC Adv 2019;9:24922-7.

144. Eyckens DJ, Henderson LC. A review of solvate ionic liquids: physical parameters and synthetic applications. Front Chem 2019;7:263.

145. Ueno K, Tatara R, Tsuzuki S, et al. Li+ solvation in glyme-Li salt solvate ionic liquids. Phys Chem Chem Phys 2015;17:8248-57.

146. Yoshida K, Nakamura M, Kazue Y, et al. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J Am Chem Soc 2011;133:13121-9.

147. Ueno K, Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M. Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? J Phys Chem B 2012;116:11323-31.

148. Phiri I, Bon CY, Kim S, et al. Effects of novel benzotriazole based zwitterionic salt as electrolyte additive for lithium ion batteries. Curr Appl Phys 2020;20:122-31.

149. Guan Z, Zhang Z, Du B, Peng Z. A non-flammable zwitterionic ionic liquid/ethylene carbonate mixed electrolyte for lithium-ion battery with enhanced safety. Materials 2021;14:4225.

150. Nguyen DQ, Loi Nguyen T, Loan Phung Le M, Phong Mai T, Sik Kim H. A zwitterionic salt with one sulfonate and two ether functional groups as an additive for lithium-ion battery electrolyte. Electrochem Commun 2022;137:107269.

151. Byrne N, Howlett PC, Macfarlane DR, Forsyth M. The zwitterion effect in ionic liquids: towards practical rechargeable lithium-metal batteries. Adv Mater 2005;17:2497-501.

152. Yoshizawa M, Narita A, Ohno H. Design of ionic liquids for electrochemical applications. Aust J Chem 2004;57:139-44.

153. Phiri I, Ko S, Kim S, et al. Zwitterionic osmolyte-inspired additives as scavengers and low temperature performance enhancers for lithium ion batteries. Mater Lett 2021;288:129366.

154. Byrne N, Howlett PC, Macfarlane DR, et al. Effect of zwitterion on the lithium solid electrolyte interphase in ionic liquid electrolytes. J Power Sources 2008;184:288-96.

155. Gómez E, Cojocaru P, Magagnin L, Valles E. Electrodeposition of Co, Sm and SmCo from a deep eutectic solvent. J Electroanal Chem 2011;658:18-24.

156. Malaquias JC, Steichen M, Thomassey M, Dale PJ. Electrodeposition of Cu-In alloys from a choline chloride based deep eutectic solvent for photovoltaic applications. Electrochim Acta 2013;103:15-22.

157. Abbott AP, Capper G, Mckenzie KJ, Ryder KS. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride. J Electroanal Chem 2007;599:288-94.

158. Xie Y, Dong H, Zhang S, Lu X, Ji X. Solubilities of CO2, CH4, H2, CO and N2 in choline chloride/urea. Green Energy Environ 2016;1:195-200.

159. Xu Q, Qin LY, Ji YN, et al. A deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery enabling higher specific capacity and improved thermal stability. Electrochim Acta 2019;293:426-31.

160. Lindberg D, de la Fuente Revenga M, Widersten M. Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J Biotechnol 2010;147:169-71.

161. Loow YL, Wu TY, Yang GH, et al. Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery. Bioresour Technol 2018;249:818-25.

162. Liao HG, Jiang YX, Zhou ZY, Chen SP, Sun SG. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew Chem Int Ed 2008;47:9100-3.

163. Chirea M, Freitas A, Vasile BS, Ghitulica C, Pereira CM, Silva F. Gold nanowire networks: synthesis, characterization, and catalytic activity. Langmuir 2011;27:3906-13.

164. Dong JY, Lin CH, Hsu YJ, Lu SY, Wong DS. Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies. CrystEngComm 2012;14:4732-7.

165. Huang Y, Shen F, La J, et al. Synthesis and characterization of CuCl nanoparticles in deep eutectic solvents. Part Sci Technol 2013;31:81-4.

166. Raghuwanshi VS, Ochmann M, Hoell A, Polzer F, Rademann K. Deep eutectic solvents for the self-assembly of gold nanoparticles: a SAXS, UV-Vis, and TEM investigation. Langmuir 2014;30:6038-46.

167. Mjalli FS, Abdel Jabbar NM. Acoustic investigation of choline chloride based ionic liquids analogs. Fluid Phase Equilibria 2014;381:71-6.

168. Mezzomo L, Pianta N, Ostroman I, et al. Deep eutectic solvent electrolytes based on trifluoroacetamide and LiPF6 for Li-metal batteries. J Power Sources 2023;561:232746.

169. Li W, Liu W, Huang B, et al. Suppressing growth of lithium dendrites by introducing deep eutectic solvents for stable lithium metal batteries. J Mater Chem A 2022;10:15449-59.

170. Hu Y, Li H, Huang X, Chen L. Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries. Electrochem Commun 2004;6:28-32.

171. Liang Y, Wu W, Li D, et al. Highly stable lithium metal batteries by regulating the lithium nitrate chemistry with a modified eutectic electrolyte. Adv Energy Mater 2022;12:2202493.

172. Joos B, Volders J, da Cruz RR, et al. Polymeric backbone eutectogels as a new generation of hybrid solid-state electrolytes. Chem Mater 2020;32:3783-93.

173. Jaumaux P, Liu Q, Zhou D, et al. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew Chem Int Ed 2020;59:9134-42.

174. Li Z, Zhang S, Jiang Z, Cai D, Gu C, Tu J. Deep eutectic solvent-immobilized PVDF-HFP eutectogel as solid electrolyte for safe lithium metal battery. Mater Chem Phys 2021;267:124701.

175. Wang S, Chen Y, Fang Q, et al. Facilitating uniform lithium deposition via nanoconfinement of free amide molecules in solid electrolyte complexion for lithium metal batteries. Energy Stor Mater 2023;54:596-604.

176. Li Q, Zhang Z, Li Y, et al. Rapid self-healing gel electrolyte based on deep eutectic solvents for solid-state lithium batteries. ACS Appl Mater Inter 2022;14:49700-8.

177. Wu W, Li Q, Cao M, et al. Non-flammable dual-salt deep eutectic electrolyte for high-voltage lithium metal battery. Crystals 2022;12:1290.

178. Du Z, Wood DL, Belharouak I. Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes. Electrochem Commun 2019;103:109-13.

179. Hu Z, Xian F, Guo Z, et al. Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries. Chem Mater 2020;32:3405-13.

180. Hammond OS, Bowron DT, Edler KJ. The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution. Angew Chem Int Ed 2017;56:9782-5.

181. Wang H, Song J, Zhang K, et al. A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery. Energy Environ Sci 2022;15:5149-58.

182. Zhang H, Zhou L, Du X, et al. Cyanoethyl cellulose-based eutectogel electrolyte enabling high-voltage-tolerant and ion-conductive solid-state lithium metal batteries. Carbon Energy 2022;4:1093-106.

183. Mazzapioda L, Tsurumaki A, Di Donato G, Adenusi H, Navarra MA, Passerini S. Quasi-solid-state electrolytes - strategy towards stabilising Li|inorganic solid electrolyte interfaces in solid-state Li metal batteries. Energy Mater 2023;3:300019.

184. Pervez SA, Kim G, Vinayan BP, et al. Overcoming the interfacial limitations imposed by the solid-solid interface in solid-state batteries using ionic liquid-based interlayers. Small 2020;16:e2000279.

185. Xiong S, Liu Y, Jankowski P, et al. Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries. Adv Funct Mater 2020;30:2001444.

186. Cao Y, Lou S, Sun Z, et al. Solvate ionic liquid boosting favorable interfaces kinetics to achieve the excellent performance of Li4Ti5O12 anodes in Li10GeP2S12 based solid-state batteries. Chem Eng J 2020;382:123046.

187. Kim HW, Manikandan P, Lim YJ, Kim JH, Nam S, Kim Y. Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J Mater Chem A 2016;4:17025-32.

188. Tsurumaki A, Rettaroli R, Mazzapioda L, Navarra MA. Inorganic-organic hybrid electrolytes based on Al-doped Li7La3Zr2O12 and ionic liquids. Appl Sci 2022;12:7318.

189. Abdelmaoula AE, Shu J, Cheng Y, et al. Core-shell MOF-in-MOF nanopore bifunctional host of electrolyte for high-performance solid-state lithium batteries. Small Methods 2021;5:e2100508.

190. Wu JF, Guo X. Nanostructured metal-organic framework (MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries. Small 2019;15:e1804413.

191. Yang H, Liu B, Bright J, et al. A single-ion conducting UiO-66 metal-organic framework electrolyte for all-solid-state lithium batteries. ACS Appl Energy Mater 2020;3:4007-13.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/