REFERENCES

1. Gao W, Li X, Ma M, Fu Y, Jiang J, Mi C. Case study of an electric vehicle battery thermal runaway and online internal short-circuit detection. IEEE Trans Power Electron 2021;36:2452-5.

2. Liao C, Han L, Wang W, et al. Non-flammable electrolyte with lithium nitrate as the only lithium salt for boosting ultra-stable cycling and fire-safety lithium metal batteries. Adv Funct Mater 2023;33:2212605.

3. Cho SJ, Yu DE, Pollard TP, et al. Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes. iScience 2020;23:100844.

4. Kim HT, Kang J, Mun J, Oh SM, Yim T, Kim YG. Pyrrolinium-based ionic liquid as a flame retardant for binary electrolytes of lithium ion batteries. ACS Sustainable Chem Eng 2016;4:497-505.

5. Hagiwara R, Lee JS. Ionic Liquids for Electrochemical Devices. Electrochemistry 2007;75:23-34.

6. Nakagawa H, Fujino Y, Kozono S, et al. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells. J Power Sources 2007;174:1021-6.

7. Tang X, Lv S, Jiang K, Zhou G, Liu X. Recent development of ionic liquid-based electrolytes in lithium-ion batteries. J Power Sources 2022;542:231792.

8. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 2017;117:7190-239.

9. Seong MJ, Yim T. Ionic additives to increase electrochemical utilization of sulfur cathode for Li-S batteries. J Electrochem Sci Technol 2021;12:279-84.

10. Yim T, Kwon MS, Mun J, Lee KT. Room temperature ionic liquid-based electrolytes as an alternative to carbonate-based electrolytes. Isr J Chem 2015;55:586-98.

11. Mun J, Yim T, Choi CY, Ryu JH, Kim YG, Oh SM. Linear-sweep thermammetry study on corrosion behavior of Al current collector in ionic liquid solvent. Electrochem Solid-State Lett 2010;13:A109.

12. Cha EH, Mun JY, Cho ER, et al. The corrosion study of Al current collector in phosphonium ionic liquid as solvent for lithium ion battery. J Korean Electrochem Soc 2011;14:152-6.

13. Heo K, Im J, Lee JS, et al. High-rate blended cathode with mixed morphology for all-solid-state Li-ion batteries. J Electrochem Sci Technol 2020;11:282-90.

14. Murali A, Sakar M, Priya S, et al. Insights into the emerging alternative polymer-based electrolytes for all solid-state lithium-ion batteries: a review. Mater Lett 2022;313:131764.

15. Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater 2011;10:682-6.

16. Liu X, Zheng B, Zhao J, et al. Electrochemo-mechanical effects on structural integrity of ni-rich cathodes with different microstructures in all solid-state batteries. Adv Energy Mater 2021;11:2003583.

17. Paul PP, Chen BR, Langevin SA, Dufek EJ, Nelson Weker J, Ko JS. Interfaces in all solid state Li-metal batteries: a review on instabilities, stabilization strategies, and scalability. Energy Stor Mater 2022;45:969-1001.

18. Yoon K, Kim JJ, Seong WM, Lee MH, Kang K. Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery. Sci Rep 2018;8:8066.

19. Kato T, Yoshida R, Yamamoto K, et al. Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries. J Power Sources 2016;325:584-90.

20. Ohta S, Kobayashi T, Seki J, Asaoka T. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J Power Sources 2012;202:332-5.

21. Abe T, Sagane F, Ohtsuka M, Iriyama Y, Ogumi Z. Lithium-Ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte-a key to enhancing the rate capability of lithium-ion batteries. J Electrochem Soc 2005;152:A2151.

22. Wang Q, Chen B, Zhang Q, Lu X, Zhang S. Aluminum deposition from lewis acidic 1-butyl-3-methylimidazolium chloroaluminate ionic liquid ([Bmim Cl/AlCl3]) modified with methyl nicotinate. ChemElectroChem 2015;2:1794-8.

23. Seddon KR. Ionic liquids for clean technology. J Chem Technol Biotechnol 1997;68:351-6.

24. Mun J, Kim S, Yim T, Ryu JH, Kim YG, Oh SM. Comparative study on surface films from ionic liquids containing saturated and unsaturated substituent for LiCoO2. J Electrochem Soc 2010;157:A136.

25. Mun J, Yim T, Park K, Ryu JH, Kim YG, Oh SM. Surface film formation on LiNi0.5Mn1.5O4 electrode in an ionic liquid solvent at elevated temperature. J Electrochem Soc 2011;158:A453.

26. Cho E, Mun J, Chae OB, et al. Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries. Electrochem Commun 2012;22:1-3.

27. Chakrapani V, Rusli F, Filler MA, Kohl PA. Quaternary ammonium ionic liquid electrolyte for a silicon nanowire-based lithium ion battery. J Phys Chem C 2011;115:22048-53.

28. Tobishima S, Morimoto H, Aoki M, et al. Glyme-based nonaqueous electrolytes for rechargeable lithium cells. Electrochim Acta 2004;49:979-87.

29. Carbone L, Di Lecce D, Gobet M, et al. Relevant features of a triethylene glycol dimethyl ether-based electrolyte for application in lithium battery. ACS Appl Mater Interfaces 2017;9:17085-95.

30. Carbone L, Gobet M, Peng J, et al. Comparative study of ether-based electrolytes for application in lithium-sulfur battery. ACS Appl Mater Interfaces 2015;7:13859-65.

31. Kazemiabnavi S, Zhang Z, Thornton K, Banerjee S. Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. J Phys Chem B 2016;120:5691-702.

32. De vos N, Maton C, Stevens CV. Electrochemical stability of ionic liquids: general influences and degradation mechanisms. Chemelectroche 2014;1:1258-70.

33. Zhao C, Burrell G, Torriero AA, et al. Electrochemistry of room temperature protic ionic liquids. J Phys Chem B 2008;112:6923-36.

34. Zhao L, Yamaki J, Egashira M. Analysis of SEI formed with cyano-containing imidazolium-based ionic liquid electrolyte in lithium secondary batteries. J Power Sources 2007;174:352-8.

35. Sugimoto T, Atsumi Y, Kikuta M, Ishiko E, Kono M, Ishikawa M. Ionic liquid electrolyte systems based on bis(fluorosulfonyl)imide for lithium-ion batteries. J Power Sources 2009;189:802-5.

36. An Y, Zuo P, Du C, et al. Effects of VC-LiBOB binary additives on SEI formation in ionic liquid-organic composite electrolyte. RSC Adv 2012;2:4097-102.

37. El Ouatani L, Dedryvère R, Siret C, et al. The effect of vinylene carbonate additive on surface film formation on both electrodes in li-ion batteries. J Electrochem Soc 2009;156:A103.

38. Choi NS, Yew KH, Lee KY, Sung M, Kim H, Kim SS. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J Power Sources 2006;161:1254-9.

39. Lewandowski A, Świderska-mocek A. Properties of the lithium and graphite-lithium anodes in N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide. J Power Sources 2009;194:502-7.

40. Fu Y, Chen C, Qiu C, Ma X. Vinyl ethylene carbonate as an additive to ionic liquid electrolyte for lithium ion batteries. J Appl Electrochem 2009;39:2597-603.

41. Sano H, Sakaebe H, Matsumoto H. Effect of organic additives on electrochemical properties of Li anode in room temperature ionic liquid. J Electrochem Soc 2011;158:A316.

42. Seki S, Mita Y, Tokuda H, et al. Effects of alkyl chain in imidazolium-type room-temperature ionic liquids as lithium secondary battery electrolytes. Electrochem Solid-State Lett 2007;10:A237.

43. Mun J, Yim T, Park JH, et al. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries. Sci Rep 2014;4:5802.

44. Hofmann A, Migeot M, Arens L, Hanemann T. Investigation of ternary mixtures containing 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)azanide, ethylene carbonate and lithium bis(trifluoromethanesulfonyl)azanide. Int J Mol Sci 2016;17:670.

45. Kruusma J, Tõnisoo A, Pärna R, et al. The electrochemical behavior of 1-ethyl-3-methyl imidazolium tetracyanoborate visualized by in situ X-ray photoelectron spectroscopy at the negatively and positively polarized micro-mesoporous carbon electrode. J Electrochem Soc 2017;164:A3393-402.

46. Min GH, Yim T, Lee HY, et al. Synthesis and properties of ionic liquids:imidazolium tetrafluoroborates with unsaturated side chains. Bull Korean Chem Soc 2006;27:847-52.

47. Yim TE, Lee HY, Kim HJ, et al. Synthesis and properties of pyrrolidinium and piperidinium bis(trifluoromethanesulfonyl)imide ionic liquids with allyl substituents. Bull Korean Chem Soc 2007;28:1567-72.

48. Yim T, Choi CY, Mun J, Oh SM, Kim YG. Synthesis and properties of acyclic ammonium-based ionic liquids with allyl substituents as electrolytes. Molecules 2009;14:1840-51.

49. Nanjundiah C, Mcdevitt SF, Koch VR. Differential capacitance measurements in solvent-free ionic liquids at Hg and C interfaces. J Electrochem Soc 1997;144:3392-7.

50. Furuya R, Tachikawa N, Yoshii K, Katayama Y, Miura T. Deposition and dissolution of lithium through lithium phosphorus oxynitride thin film in some ionic liquids. J Electrochem Soc 2015;162:H634-7.

51. Furuya R, Katayama Y, Miura T. Deposition and dissolution of lithium through lithium phosphorus oxynitride thin film in some ionic liquids. ECS Trans 2014;64:453-9.

52. Zuo TT, Walther F, Ahmed S, et al. Formation of an artificial cathode-electrolyte interphase to suppress interfacial degradation of Ni-rich cathode active material with sulfide electrolytes for solid-state batteries. ACS Energy Lett 2023;8:1322-9.

53. Liu X, Cheng Y, Su Y, et al. Revealing the surface-to-bulk degradation mechanism of nickel-rich cathode in sulfide all-solid-state batteries. Energy Stor Mater 2023;54:713-23.

54. Kim KT, Kwon TY, Song YB, et al. Wet-slurry fabrication using PVdF-HFP binder with sulfide electrolytes via synergetic cosolvent approach for all-solid-state batteries. Chem Eng J 2022;450:138047.

55. Oh DY, Nam YJ, Park KH, et al. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries. Adv Energy Mater 2015;5:1500865.

56. Oh DY, Nam YJ, Park KH, et al. Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids. Adv Energy Mater 2019;9:1802927.

57. Cao Y, Lou S, Sun Z, et al. Solvate ionic liquid boosting favorable interfaces kinetics to achieve the excellent performance of Li4Ti5O12 anodes in Li10GeP2S12 based solid-state batteries. Chem Eng J 2020;382:123046.

58. Yi J, Yan C, Zhou D, Fan L. A robust solid electrolyte interphase enabled by solvate ionic liquid for high-performance sulfide-based all-solid-state lithium metal batteries. Nano Res 2023;16:8411-6.

59. Zheng B, Zhu J, Wang H, et al. Stabilizing Li10SnP2S12/Li interface via an in Situ formed solid electrolyte interphase layer. ACS Appl Mater Interfaces 2018;10:25473-82.

60. Kim K, Park J, Jeong G, et al. Rational design of a composite electrode to realize a high-performance all-solid-state battery. ChemSusChem 2019;12:2637-43.

61. Cho W, Park J, Kim K, Yu JS, Jeong G. Sulfide-compatible conductive and adhesive glue-like interphase engineering for sheet-type all-solid-state battery. Small 2021;17:e1902138.

62. Wang Z, Zhang L, Shang X, et al. Enhanced electrochemical performance enabled by ionic-liquid-coated Na3SbS4 electrolyte encapsulated in flexible filtration membrane. Chem Eng J 2022;428:132094.

63. Li Y, Halacoglu S, Shreyas V, et al. Highly efficient interface stabilization for ambient-temperature quasi-solid-state sodium metal batteries. Chem Eng J 2022;434:134679.

64. An T, Jia H, Peng L, Xie J. Material and interfacial modification toward a stable room-temperature solid-state Na-S battery. ACS Appl Mater Interfaces 2020;12:20563-9.

65. Tao B, Ren C, Li H, et al. Thio-/LISICON and LGPS-type solid electrolytes for all-solid-state lithium-ion batteries. Adv Funct Materials 2022;32:2203551.

66. Zhang X, Wang S, Xue C, et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv Mater 2019;31:e1806082.

67. Fuller J, Breda AC, Carlin RT. Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids. J Electroanal Chem 1998;459:29-34.

68. Fuller J, Breda AC, Carlin RT. Ionic liquid-polymer gel electrolytes. J Electrochem Soc 1997;144:L67.

69. Hashmi SA, Bhat MY, Singh MK, Sundaram NTK, Raghupathy BPC, Tanaka H. Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: effect of active and passive fillers. J Solid State Electrochem 2016;20:2817-26.

70. Kim H, Ding Y, Kohl PA. LiSICON - ionic liquid electrolyte for lithium ion battery. J Power Sources 2012;198:281-6.

71. Matsumoto H, Sakaebe H, Tatsumi K, Kikuta M, Ishiko E, Kono M. Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]-. J Power Sources 2006;160:1308-13.

72. Guerfi A, Duchesne S, Kobayashi Y, Vijh A, Zaghib K. LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI)- for Li-ion batteries. J Power Sources 2008;175:866-73.

73. Sugimoto T, Kikuta M, Ishiko E, Kono M, Ishikawa M. Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties. J Power Sources 2008;183:436-40.

74. Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed Eng 2007;46:7778-81.

75. Zhu Y, He X, Mo Y. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Appl Mater Interfaces 2015;7:23685-93.

76. Teranishi T, Ishii Y, Hayashi H, Kishimoto A. Lithium ion conductivity of oriented Li0.33La0.56TiO3 solid electrolyte films prepared by a sol-gel process. Solid State Ionics 2016;284:1-6.

77. Sugata S, Saito N, Watanabe A, et al. Quasi-solid-state lithium batteries using bulk-size transparent Li7La3Zr2O12 electrolytes. Solid State Ion 2018;319:285-90.

78. Xiong S, Liu Y, Jankowski P, et al. Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries. Adv Funct Mater 2020;30:2001444.

79. Pervez SA, Kim G, Vinayan BP, et al. Overcoming the interfacial limitations imposed by the solid-solid interface in solid-state batteries using ionic liquid-based interlayers. Small 2020;16:e2000279.

80. Chen Z, Gao X, Kim JK, Kim GT, Passerini S. Quasi-solid-state lithium metal batteries using the LiNi0.8Co0.1Mn0.1O2-Li1+ xAlxTi2-x(PO4)3 composite positive electrode. ACS Appl Mater Interfaces 2021;13:53810-7.

81. Song X, Wang C, Chen J, et al. Unraveling the synergistic coupling mechanism of Li+ transport in an “ionogel-in-ceramic” hybrid solid electrolyte for rechargeable lithium metal battery. Adv Funct Mater 2022;32:2108706.

82. Song X, Zhang H, Jiang D, et al. Enhanced transport and favorable distribution of Li-ion in a poly(ionic liquid) based electrolyte facilitated by Li1.3Al0.3Ti1.7(PO4)3 nanoparticles for highly-safe lithium metal batteries. Electrochim Acta 2021;368:137581.

83. Liu Z, Borodin A, Endres F. Ionic liquid and polymer coated garnet solid electrolytes for high-energy solid-state lithium metal batteries. Energy Tech 2022;10:2270023.

84. Yu D, Ma Z, Liu Z, et al. Optimizing interfacial wetting by ionic liquid for high performance solid-state lithium metal batteries operated at ambient temperature. Chem Eng J 2023;457:141043.

85. Fuchs T, Mogwitz B, Otto SK, Passerini S, Richter FH, Janek J. Working principle of an ionic liquid interlayer during pressureless lithium stripping on Li6.25Al0.25La3Zr2O12(LLZO) garnet-type solid electrolyte. Batter Supercaps 2021;4:1145-55.

86. Cheng EJ, Kimura T, Shoji M, Ueda H, Munakata H, Kanamura K. Ceramic-based flexible sheet electrolyte for Li batteries. ACS Appl Mater Interfaces 2020;12:10382-8.

87. Yoon H, Howlett PC, Best AS, Forsyth M, Macfarlane DR. Fast charge/discharge of Li metal batteries using an ionic liquid electrolyte. J Electrochem Soc 2013;160:A1629-37.

88. Ochel A, Di Lecce D, Wolff C, Kim G, Carvalho DV, Passerini S. Physicochemical and electrochemical investigations of the ionic liquid N-butyl -N-methyl-pyrrolidinium 4,5-dicyano-2-(trifluoromethyl)imidazole. Electrochim Acta 2017;232:586-95.

89. Egashira M, Tanaka-nakagawa M, Watanabe I, Okada S, Yamaki J. Charge-discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation. J Power Sources 2006;160:1387-90.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/