REFERENCES

1. RMIS - raw materials information system. Available from: https://rmis.jrc.ec.europa.eu/?page=crm-list-2020-e294f6/ [Last accessed on 14 Aug 2023].

2. Goikolea E, Palomares V, Wang S, et al. Na-ion batteries - approaching old and new challenges. Adv Energy Mater 2020;10:2002055.

3. Hasa I, Mariyappan S, Saurel D, et al. Challenges of today for Na-based batteries of the future: from materials to cell metrics. J Power Sources 2021;482:228872.

4. Murray JL. The Al-Na (aluminum-sodium) system. Bull Alloy Phase Diag 1983;4:407-10.

5. Li Q, Yang Y, Yu X, Li H. A 700 Wh kg-1 rechargeable pouch type lithium battery. Chin Phys Lett 2023;40:048201. Available from: https://iopscience.iop.org/article/10.1088/0256-307X/40/4/048201/meta [Last accessed on 14 Aug 2023].

6. CATL news. The first-generation sodium-ion battery launch event. Available from: https://www.catl.com/en/news/685.html [Last accessed on 14 Aug 2023].

7. Xu Y, Titirici M, Chen J, et al. 2023 roadmap for potassium-ion batteries. J Phys Energy 2023;5:021502.

8. Energy storage news. Available from: www.energy-storage.news/potassium-ion-batterystartup-group1-lfp-is-our-benchmark/ [Last accessed on 14 Aug 2023].

9. Xu Z, Wang J. Toward emerging sodium-based energy storage technologies: from performance to sustainability. Adv Energy Mater 2022;12:2201692.

10. Liu M, Wang Y, Wu F, et al. Advances in carbon materials for sodium and potassium storage. Adv Funct Mater 2022;32:2203117.

11. Sun L, Li G, Zhang S, et al. Practical assessment of the energy density of potassium-ion batteries. Sci China Chem 2022.

12. Songster J, Pelton AD. The Al-K (aluminum-potassium) system. JPE 1993;14:366.

13. Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 2018;3:18013.

14. Komaba S, Hasegawa T, Dahbi M, Kubota K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem Communn 2015;60:172-5.

15. Greenwood NN, Earnshaw A. Chemistry of the elements. Oxford: Pergamon Pub; First edition 1984, reprinted 1989, p. 253.

16. Madram AR, Daneshtalab R, Sovizi MR. Effect of Na+ and K+ co-doping on the structure and electrochemical behaviors of LiFePO4/C cathode material for lithium-ion batteries. RSC Adv 2016;6:101477-84.

17. Nathan MGT, Yu H, Kim GT, et al. Recent advances in layered metal-oxide cathodes for application in potassium-ion batteries. Adv Sci 2022;9:e2105882.

18. Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries. J Am Chem Soc 2015;137:11566-9.

19. Zhang X, Wei Z, Dinh KN, et al. Layered oxide cathode for potassium-ion battery: recent progress and prospective. Small 2020;16:2002700. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202002700 [Last accessed on 23 Aug 2023].

20. Yang J, Muhammad S, Jo MR, et al. In situ analyses for ion storage materials. Chem Soc Rev 2016;45:5717-70.

21. Zhang Q, Mao J, Pang WK, et al. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv Energy Mater 2018;8:1703288.

22. Wang H, Wang H, Chen S, et al. A depth-profiling study on the solid electrolyte interface: bis(fluorosulfuryl)imide anion toward improved K+ storage. ACS Appl Energy Mater 2019;2:7942-51.

23. Zhao J, Zou X, Zhu Y, Xu Y, Wang C. Electrochemical intercalation of potassium into graphite. Adv Funct Mater 2016;26:8103-10.

24. Chihara K, Katogi A, Kubota K, Komaba S. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem Commun 2017;53:5208-11.

25. Zhang W, Liu Y, Guo Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv 2019;5:eaav7412.

26. Zeng G, Xiong S, Qian Y, Ci L, Feng J. Non-flammable phosphate electrolyte with high salt-to-solvent ratios for safe potassium-ion battery. J Electrochem Soc 2019;166:A1217.

27. Silvester DS, Jamil R, Doblinger S, Zhang Y, Atkin R, Li H. Electrical double layer structure in ionic liquids and its importance for supercapacitor, battery, sensing, and lubrication applications. J Phys Chem C 2021;125:13707-20.

28. Zhu X, Ali RN, Song M, Tang Y, Fan Z. Recent advances in polymers for potassium ion batteries. Polymers 2022;14:5538.

29. Hammami A, Raymond N, Armand M. Lithium-ion batteries: runaway risk of forming toxic compounds. Nature 2003;424:635-6.

30. Sloop SE, Pugh JK, Wang S, Kerr JB, Kinoshita K. Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem Solid-State Lett 2001;4:A42.

31. Hekmatfar M, Hasa I, Eghbal R, Carvalho DV, Moretti A, Passerini S. Effect of electrolyte additives on the LiNi0.5Mn0.3Co0.2O2 surface film formation with lithium and graphite negative electrodes. Adv Mater Interfaces 2020;7:1901500.

32. Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl Mater Interfaces 2011;3:4165-8.

33. Ells AW, May R, Marbella LE. Potassium fluoride and carbonate lead to cell failure in potassium-ion batteries. ACS Appl Mater Interfaces 2021;13:53841-9.

34. Liu G, Cao Z, Zhou L, et al. Additives engineered nonflammable electrolyte for safer potassium ion batteries. Adv Funct Mater 2020;30:2001934.

35. Hosaka T, Fukabori T, Matsuyama T, Tatara R, Kubota K, Komaba S. 1,3,2-dioxathiolane 2,2-dioxide as an electrolyte additive for K-metal cells. ACS Energy Lett 2021;6:3643-9.

36. Liu S, Mao J, Zhang Q, et al. An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew Chem Int Ed 2020;59:3638-44.

37. Yoshii K, Masese T, Kato M, Kubota K, Senoh H, Shikano M. Sulfonylamide-based ionic liquids for high-voltage potassium-ion batteries with honeycomb layered cathode oxides. ChemElectroChem 2019;6:3901-10.

38. Elmanzalawy M, Sanchez-ahijón E, Kisacik O, Carretero-gonzález J, Castillo-martínez E. High conductivity in a fluorine-free K-ion polymer electrolyte. ACS Appl Energy Mater 2022;5:9009-19.

39. Fei H, Liu Y, An Y. Safe all-solid-state potassium batteries with three dimentional, flexible and binder-free metal sulfide array electrode. J Power Sources 2019;433:226697.

40. Schaefer JL, Morganty SS, Archer LA. Nanoscale organic hybrid electrolytes. Adv Mater 2010;22:3677-80.

41. Zheng J, Li W, Liu X, Zhang J, Feng X, Chen W. Progress in gel polymer electrolytes for sodium-ion batteries. Energy Environ Mater 2022;6:e12422.

42. Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S. Towards K-ion and Na-ion batteries as “beyond Li-ion”. Chem Rec 2018;18:459-79.

43. Rajagopalan R, Tang Y, Ji X, Jia C, Wang H. Advancements and challenges in potassium ion batteries: a comprehensive review. Adv Funct Mater 2020;30:1909486.

44. Deng L, Qu J, Niu X, et al. Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries. Nat Commun 2021;12:2167.

45. Zhou M, Tian X, Sun Y, et al. Pillar effect boosting the electrochemical stability of Prussian blue-polypyrrole for potassium ion batteries. Nano Res 2023;16:6326-33.

46. Vaalma C, Giffin GA, Buchholz D, Passerini S. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J Electrochem Soc 2016;163:A1295.

47. Pan J, Sun YY, Yan Y, et al. Revisit electrolyte chemistry of hard carbon in ether for Na storage. JACS Au 2021;1:1208-16.

48. Arnaiz M, Huang P, Ajuria J, Rojo T, Goikolea E, Balducci A. Protic and aprotic ionic liquids in combination with hard carbon for lithium-ion and sodium-ion batteries. Batteries Supercaps 2018;1:204-8.

49. Wu J, He J, Wang M, et al. Electrospun carbon-based nanomaterials for next-generation potassium batteries. Chem Commun 2023;59:2381-98.

50. Qiann Y, Jiang S, Li Y, et al. In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries. Adv Energy Mater 2019;9:1901676.

51. Wu X, Li Z, Liu J, Luo W, Gaumet J, Mai L. Defect engineering of hierarchical porous carbon microspheres for potassium-ion storage. Rare Met 2022;41:3446-55.

52. Li W, Li Z, Zhang C, et al. Hard carbon derived from rice husk as anode material for high performance potassium-ion batteries. Solid State Ion 2020;351:115319.

53. Jo JH, Kim HJ, Yaqoob N, et al. Hollandite-type potassium titanium oxide with exceptionally stable cycling performance as a new cathode material for potassium-ion batteries. Energy Stor Mater 2023;54:680-8.

54. Imtiaz S, Amiinu IS, Xu Y, Kennedy T, Blackman C, Ryan KM. Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Mater Today 2021;48:241-69.

55. Zhang W, Huang W, Zhang Q. Organic materials as electrodes in potassium-ion batteries. Chemistry 2021;27:6131-44.

56. Lei K, Li F, Mu C, et al. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ Sci 2017;10:552-7.

57. Kang Z, Sun K, Sun CF, Liu Q. A plastics-derived organic anode material for practical and sustainable potassium-ion batteries. Int J Electrochem Sci 2023;18:100222.

58. Bresser D, Buchholz D, Moretti A, Varzi A, Passerini S. Alternative binders for sustainable electrochemical energy storage - the transition to aqueous electrode processing and bio-derived polymers. Energy Environ Sci 2018;11:3096-127.

59. Wu X, Xing Z, Hu Y, et al. Effects of functional binders on electrochemical performance of graphite anode in potassium-ion batteries. Ionics 2019;25:2563-74.

60. Harper G, Sommerville R, Kendrick E, et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019;575:75-86.

61. Haber S, Leskes M. What can we learn from solid state NMR on the electrode-electrolyte interface? Adv Mater 2018;30:e1706496.

62. Leskes M, Kim G, Liu T, et al. Surface-sensitive NMR detection of the solid electrolyte interphase layer on reduced graphene oxide. J Phys Chem Lett 2017;8:1078-85.

63. Haber S, Rosy, Saha A, et al. Structure and functionality of an alkylated LixSiyOz interphase for high-energy cathodes from DNP-ssNMR spectroscopy. J Am Chem Soc 2021;143:4694-704.

64. Ji S, Li J, Li J, et al. Dynamic reversible evolution of solid electrolyte interface in nonflammable triethyl phosphate electrolyte enabling safe and stable potassium-ion batteries. Adv Funct Mater 2022;32:2200771.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/