REFERENCES

1. Divakaran AM, Minakshi M, Bahri PA, et al. Rational design on materials for developing next generation lithium-ion secondary battery. Prog Solid State Chem 2021;62:100298.

2. Dillard CD, Nevle EP. Supply chain disruptions in the energy industry: challenges with the supply of lithium-ion batteries. Foley & Lardner LLP. 2022. Available from: https://www.foley.com/en/insights/publications/2022/09/supply-chain-disruptions-energy-lithium-ion [Last accessed on 1 Aug 2023].

3. Tedesco M. The paradox of lithium. News from the Columbia Climate School. 2023. Available from: https://news.climate.columbia.edu/2023/01/18/the-paradox-of-lithium/ [Last accessed on 1 Aug 2023].

4. Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 2018;3:18013.

5. Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S. Towards K-ion and Na-ion batteries as “beyond Li-ion”. Chem Rec 2018;18:459-79.

6. Matsuda Y, Nakashima H, Morita M, Takasu Y. Behavior of some ions in mixed organic electrolytes of high energy density batteries. J Electrochem Soc 1981;128:2552-6.

7. Marcus Y. Transfer of ions between solvents: some new results concerning volumes, heat capacities and other quantities. Pure Appl Chem 1996;68:1495-500.

8. Okoshi M, Yamada Y, Komaba S, Yamada A, Nakai H. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J Electrochem Soc 2017;164:A54-60.

9. Xu Y, Ding T, Sun D, Ji X, Zhou X. Recent advances in electrolytes for potassium-ion batteries. Adv Funct Mater 2023;33:2211290.

10. SMM - China metal market. 2023. Available from: https://www.metal.com/ [Last accessed on 1 Aug 2023].

11. Anoopkumar V, Bibin J, Mercy TD. Potassium-ion batteries: key to future large-scale energy storage? ACS Appl Energy Mater 2020;3:9478-92.

12. Eftekhari A. On the theoretical capacity/energy of lithium batteries and their counterparts. ACS Sustain Chem Eng 2019;7:3684-7.

13. Eftekhari A. Potassium secondary cell based on Prussian blue cathode. J Power Sources 2004;126:221-8.

14. Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries. J Am Chem Soc 2015;137:11566-9.

15. Komaba S, Hasegawa T, Dahbi M, Kubota K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem Commun 2015;60:172-5.

16. Xue L, Li Y, Gao H, et al. Low-cost high-energy potassium cathode. J Am Chem Soc 2017;139:2164-7.

17. Rajagopalan R, Tang Y, Ji X, Jia C, Wang H. Advancements and challenges in potassium ion batteries: a comprehensive review. Adv Funct Mater 2020;30:1909486.

18. Hosaka T, Kubota K, Hameed AS, Komaba S. Research development on K-ion batteries. Chem Rev 2020;120:6358-466.

19. Zhao S, Guo Z, Yan K, et al. The rise of Prussian blue analogs: challenges and opportunities for high-performance cathode materials in potassium-ion batteries. Small Struct 2021;2:2000054.

20. Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the layered oxides. Physica B+C 1980;99:81-5.

21. Jo JH, Choi JU, Park YJ, et al. P2-K0.75[Ni1/3Mn2/3]O2 cathode material for high power and long life potassium-ion batteries. Adv Energy Mater 2020;10:1903605.

22. Nathan MGT, Yu H, Kim GT, et al. Recent advances in layered metal-oxide cathodes for application in potassium-ion batteries. Adv Sci 2022;9:e2105882.

23. Hosaka T, Shimamura T, Kubota K, Komaba S. Polyanionic compounds for potassium-ion batteries. Chem Rec 2019;19:735-45.

24. Recham N, Rousse G, Sougrati MT, et al. Preparation and characterization of a stable FeSO4 F-based framework for alkali ion insertion electrodes. Chem Mater 2012;24:4363-70.

25. Zhang W, Huang W, Zhang Q. Organic materials as electrodes in potassium-ion batteries. Chemistry 2021;27:6131-44.

26. Ding J, Zhang H, Fan W, Zhong C, Hu W, Mitlin D. Review of emerging potassium-sulfur batteries. Adv Mater 2020;32:e1908007.

27. Liu Q, Deng W, Pan Y, Sun CF. Approaching the voltage and energy density limits of potassium-selenium battery chemistry in a concentrated ether-based electrolyte. Chem Sci 2020;11:6045-52.

28. Wang X, Wang H. Designing carbon anodes for advanced potassium-ion batteries: materials, modifications, and mechanisms. Adv Powder Mater 2022;1:100057.

29. Sha M, Liu L, Zhao H, Lei Y. Anode materials for potassium-ion batteries: current status and prospects. Carbon Energy 2020;2:350-69.

30. Zhang W, Pang WK, Sencadas V, Guo Z. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2018;2:1534-47.

31. Ni L, Xu G, Li C, Cui G. Electrolyte formulation strategies for potassium-based batteries. Exploration 2022;2:20210239.

32. Sun H, Liang P, Zhu G, et al. A high-performance potassium metal battery using safe ionic liquid electrolyte. Proc Natl Acad Sci USA 2020;117:27847-53.

33. Yoshii K, Masese T, Kato M, Kubota K, Senoh H, Shikano M. Sulfonylamide-based ionic liquids for high-voltage potassium-ion batteries with honeycomb layered cathode oxides. ChemElectroChem 2019;6:3901-10.

34. Hosaka T, Kubota K, Kojima H, Komaba S. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries. Chem Commun 2018;54:8387-90.

35. Touja J, Le Pham PN, Louvain N, Monconduit L, Stievano L. Effect of the electrolyte on K-metal batteries. Chem Commun 2020;56:14673-6.

36. Zhang Q, Mao J, Pang WK, et al. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv Energy Mater 2018;8:1703288.

37. Zhao J, Zou X, Zhu Y, Xu Y, Wang C. Electrochemical intercalation of potassium into graphite. Adv Funct Mater 2016;26:8103-10.

38. Liu G, Cao Z, Zhou L, et al. Additives engineered nonflammable electrolyte for safer potassium ion batteries. Adv Funct Mater 2020;30:2001934.

39. Tan H, Lin X. Electrolyte design strategies for non-aqueous high-voltage potassium-based batteries. Molecules 2023;28:823.

40. Zhao X, Lu Y, Qian Z, Wang R, Guo Z. Potassium-sulfur batteries: status and perspectives. EcoMat 2020;2:e12038.

41. Suo G, Zhang J, Li D, et al. Flexible N doped carbon/bubble-like MoS2 core/sheath framework: buffering volume expansion for potassium ion batteries. J Colloid Interface Sci 2020;566:427-33.

42. Fei H, Liu Y, An Y, et al. Stable all-solid-state potassium battery operating at room temperature with a composite polymer electrolyte and a sustainable organic cathode. J Power Sources 2018;399:294-8.

43. Zhang X, Meng J, Wang X, Xiao Z, Wu P, Mai L. Comprehensive insights into electrolytes and solid electrolyte interfaces in potassium-ion batteries. Energy Stor Mater 2021;38:30-49.

44. Xu Y, Titirici M, Chen J, et al. 2023 roadmap for potassium-ion batteries. J Phys Energy 2023;5:021502.

45. Narayan R, Laberty-robert C, Pelta J, Tarascon J, Dominko R. Self-healing: an emerging technology for next-generation smart batteries. Adv Energy Mater 2022;12:2102652.

46. Mei J, Liao T, Peng H, Sun Z. Bioinspired materials for energy storage. Small Methods 2022;6:e2101076.

47. Lu C, Chen X. Learn from nature: bio-inspired structure design for lithium-ion batteries. EcoMat 2022;4:e12181.

48. Zhao Y, Ruether T, Bhatt AI, Staines J. Australian landscape for lithium ion battery recycling and reuse in 2020 - current status, gap analysis and industry perspectives. 2021. Available from: https://fbicrc.com.au/wp-content/uploads/2021/03/CSIRO-Report-Australian-landscape-for-lithium-ion-battery-recycling-and-reuse-in-2020.pdf [Last accessed on 1 Aug 2023].

49. Yu F, Li S, Chen W, Wu T, Peng C. Biomass-derived materials for electrochemical energy storage and conversion: overview and perspectives. Energy Environ Mater 2019;2:55-67.

50. Hudak NS. 4 - Nanostructured electrode materials for lithium-ion batteries. In: lithium-ion batteries. Amsterdam, The Netherlands: Elsevier; 2014. pp. 57-82.

51. Guari Y, Cahu M, Félix G, et al. Nanoheterostructures based on nanosized Prussian blue and its Analogues: design, properties and applications. Coord Chem Rev 2022;461:214497.

52. Ming H, Torad NLK, Chiang Y, Wu KC, Yamauchi Y. Size- and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. CrystEngComm 2012;14:3387-96.

53. Li A, Duan L, Liao J, Sun J, Man Y, Zhou X. Formation of Mn-Ni Prussian blue analogue spheres as a superior cathode material for potassium-ion batteries. ACS Appl Energy Mater 2022;5:11789-96.

54. Nithya C, Modigunta JKR, In I, Kim S, Gopukumar S. Bi2S3 nanorods deposited on reduced graphene oxide for potassium-ion batteries. ACS Appl Nano Mater 2023;6:6121-32.

55. Li Z, Yang J, Zhou Z, et al. Growth confinement and ion transportation acceleration via an in-situ formed Bi4Se3 layer for potassium ion battery anodes. Appl Surf Sci 2023;621:156785.

56. Xie F, Zhang L, Chen B, et al. Revealing the origin of improved reversible capacity of dual-shell bismuth boxes anode for potassium-ion batteries. Matter 2019;1:1681-93.

57. Zhang P, Wei Y, Zhou S, Soomro RA, Jiang M, Xu B. A metal-organic framework derived approach to fabricate in-situ carbon encapsulated Bi/Bi2O3 heterostructures as high-performance anodes for potassium ion batteries. J Colloid Interface Sci 2023;630:365-74.

58. Sun J, Tian R, Man Y, Fei Y, Zhou X. Templated synthesis of imine-based covalent organic framework hollow nanospheres for stable potassium-ion batteries. Chin Chem Lett 2023;34:108233.

59. Singh R, Rhee H. The rise of bio-inspired energy devices. Energy Stor Mater 2019;23:390-408.

60. Mishra S, Yılmaz-serçinoğlu Z, Moradi H, Bhatt D, Kuru Cİ, Ulucan-karnak F. Recent advances in bioinspired sustainable sensing technologies. Nano-Struct Nano-Objects 2023;34:100974.

61. Cui Y, Liu W, Wang X, et al. Bioinspired mineralization under freezing conditions: an approach to fabricate porous carbons with complicated architecture and superior K+ storage performance. ACS Nano 2019;13:11582-92.

62. Wang X, Chen L, He X. Bio-inspired non-conjugated poly(carbonylpyridinium) as anode material for high-performance alkali-ion (Li+, Na+, and K+) batteries. J Colloid Interface Sci 2023;643:541-50.

63. Zhang X, Wu F, Lv X, et al. Achieving sustainable and stable potassium-ion batteries by leaf-bioinspired nanofluidic flow. Adv Mater 2022;34:e2204370.

64. Duan L, Xu J, Xu Y, et al. Cocoon-shaped P3-type K0.5Mn0.7Ni0.3O2 as an advanced cathode material for potassium-ion batteries. J Energy Chem 2023;76:332-8.

65. Xu H, Ye K, Zhu K, et al. Transforming carnation-shaped MOF-Ni to Ni-Fe prussian blue analogue derived efficient bifunctional electrocatalyst for urea electrolysis. ACS Sustain Chem Eng 2020;8:16037-45.

66. Popovic J. The importance of electrode interfaces and interphases for rechargeable metal batteries. Nat Commun 2021;12:6240.

67. Kim EJ, Kumar PR, Gossage ZT, et al. Active material and interphase structures governing performance in sodium and potassium ion batteries. Chem Sci 2022;13:6121-58.

68. Marinow A, Katcharava Z, Binder WH. Self-healing polymer electrolytes for next-generation lithium batteries. Polymers 2023;15:1145.

69. Cheng Y, Xiao X, Pan K, Pang H. Development and application of self-healing materials in smart batteries and supercapacitors. Chem Eng J 2020;380:122565.

70. Ezeigwe ER, Dong L, Manjunatha R, Tan M, Yan W, Zhang J. A review of self-healing electrode and electrolyte materials and their mitigating degradation of lithium batteries. Nano Energy 2021;84:105907.

71. Ma W, Wan S, Cui X, et al. Exploration and application of self-healing strategies in lithium batteries. Adv Funct Mater 2023;33:2212821.

72. Lin WC, Yang YC, Tuan HY. Electrochemical self-healing nanocrystal electrodes for ultrastable potassium-ion storage. Small 2023;19:e2300046.

73. Manju M, Thomas S, Lee SU, Kulangara Madam A. Mechanically robust, self-healing graphene like defective SiC: a prospective anode of Li-ion batteries. Appl Surf Sci 2021;541:148417.

74. Pham PN, Wernert R, Aquilanti G, Johansson P, Monconduit L, Stievano L. Prussian blue analogues for potassium-ion batteries: application of complementary operando X-ray techniques. Meet Abstr 2022;MA2022-01:60.

75. Fan Y, Tao T, Gao Y, et al. A self-healing amalgam interface in metal batteries. Adv Mater 2020;32:e2004798.

76. Luo Y, Mou P, Yuan W, et al. Anti-liquid metal permeation separator for stretchable potassium metal batteries. Chem Eng J 2023;452:139157.

77. Xue L, Gao H, Zhou W, et al. Liquid K-Na alloy anode enables dendrite-free potassium batteries. Adv Mater 2016;28:9608-12.

78. Wang J, Hu M, Zhu Y, et al. Suppression of dendrites by a self-healing elastic interface in a sodium metal battery. ACS Appl Mater Interfaces 2023;15:16598-606.

79. Zhang Y, Li Y, Shen W, Li K, Lin Y. Important role of atom diffusion in dendrite growth and the thermal self-healing mechanism. ACS Appl Energy Mater 2023;6:1933-45.

80. Zhang B, Ren L, Wang Y, Xu X, Du Y, Dou S. Gallium-based liquid metals for lithium-ion batteries. Interdiscip Mater 2022;1:354-72.

81. Lagrange P, El Makrini M, Guerard D, Herold A. Intercalation of the amalgams KHg and RbHg into graphite: reaction mechanisms and thermal stability. Synth Met 1980;2:191-6.

82. Maji R, Salvador M, Ruini A, Magri R, Degoli E. A first-principles study of self-healing binders for next-generation Si-based lithium-ion batteries. Mater Today Chem 2023;29:101474.

83. Guo P, Su A, Wei Y, et al. Healable, highly conductive, flexible, and nonflammable supramolecular ionogel electrolytes for lithium-ion batteries. ACS Appl Mater Interfaces 2019;11:19413-20.

84. Jo YH, Li S, Zuo C, et al. Self-healing solid polymer electrolyte facilitated by a dynamic cross-linked polymer matrix for lithium-ion batteries. Macromolecules 2020;53:1024-32.

85. Gan H, Zhang Y, Li S, Yu L, Wang J, Xue Z. Self-healing single-ion conducting polymer electrolyte formed via supramolecular networks for lithium metal batteries. ACS Appl Energy Mater 2021;4:482-91.

86. Xie J, Ma L, Li J, et al. Self-healing of prussian blue analogues with electrochemically driven morphological rejuvenation. Adv Mater 2022;34:e2205625.

87. Li Y, Zhang L, Zhang J, et al. Self-healing properties of alkali metals under “high-energy conditions” in batteries. Adv Energy Mater 2021;11:2100470.

88. Domorenok E, Graziano P. Understanding the European green deal: a narrative policy framework approach. Eur Policy Anal 2023;9:9-29.

89. Batteries: deal on new EU rules for design, production and waste treatment. European Parliament News. Available from: https://www.europarl.europa.eu/news/en/press-room/20221205IPR60614/batteries-deal-on-new-eu-rules-for-design-production-and-waste-treatment [Last accessed on 1 Aug 2023].

90. Johanna M. Council and parliament strike provisional deal to create a sustainable life cycle for batteries. 2022. Available from: https://www.consilium.europa.eu/en/press/press-releases/2022/12/09/council-and-parliament-strike-provisional-deal-to-create-a-sustainable-life-cycle-for-batteries/ [Last accessed on 1 Aug 2023].

91. Waldersee V, Amann C. BMW bets on design and recycling, not mining, to lower battery costs. Thomson Reuters. Available from: https://www.financedigest.com/bmw-bets-on-design-and-recycling-not-mining-to-lower-battery-costs.html [Last accessed on 1 Aug 2023].

92. Curtis T, Smith L, Buchanan H, Heath G. A circular economy for lithium-ion batteries used in mobile and stationary energy storage: drivers, barriers, enablers, and U.S. policy considerations. 2021. Available from: https://www.nrel.gov/docs/fy21osti/77035.pdf [Last accessed on 1 Aug 2023].

93. Liang H, Hou B, Li W, et al. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries. Energy Environ Sci 2019;12:3575-84.

94. Duc Pham H, Padwal C, Fernando JFS, et al. Back-integration of recovered graphite from waste-batteries as ultra-high capacity and stable anode for potassium-ion battery. Batter Supercaps 2022;5:e202100335.

95. Zhu YH, Yin YB, Yang X, et al. Transformation of rusty stainless-steel meshes into stable, low-cost, and binder-free cathodes for high-performance potassium-ion batteries. Angew Chem Int Ed 2017;56:7881-5.

96. Ye L, Wang C, Cao L, et al. Effective regeneration of high-performance anode material recycled from the whole electrodes in spent lithium-ion batteries via a simplified approach. Green Energy Environ 2021;6:725-33.

97. Yuan X, Zhu B, Feng J, Wang C, Cai X, Qin R. Recent advance of biomass-derived carbon as anode for sustainable potassium ion battery. Chem Eng J 2021;405:126897.

98. Verma R, Singhbabu YN, Didwal PN, Nguyen A, Kim J, Park C. Biowaste orange peel-derived mesoporous carbon as a cost-effective anode material with ultra-stable cyclability for potassium-ion batteries. Batter Supercaps 2020;3:1099-111.

99. Chen C, Wang Z, Zhang B, et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Stor Mater 2017;8:161-8.

100. Xiao J, Min X, Lin Y, et al. A high-tortuosity holey graphene in-situ derived from cytomembrane/cytoderm boosts ultrastable potassium storage. J Mater Sci Technol 2023;139:69-78.

101. Zhu Z, Zhong W, Zhang Y, et al. Elucidating electrochemical intercalation mechanisms of biomass-derived hard carbon in sodium-/potassium-ion batteries. Carbon Energy 2021;3:541-53.

102. Shariati J, Haghtalab A, Mosayebi A. Fischer-Tropsch synthesis using Co and Co-Ru bifunctional nanocatalyst supported on carbon nanotube prepared via chemical reduction method. J Energy Chem 2019;28:9-22.

103. Lotfabad EM, Ding J, Cui K, et al. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014;8:7115-29.

104. Ren X, Xu S, Liu S, Chen L, Zhang D, Qiu L. Lath-shaped biomass derived hard carbon as anode materials with super rate capability for sodium-ion batteries. J Electroanal Chem 2019;841:63-72.

105. Hao R, Lan H, Kuang C, Wang H, Guo L. Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 2018;128:224-30.

106. Li H, Cheng Z, Zhang Q, et al. Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett 2018;18:7407-13.

107. Cao W, Zhang E, Wang J, et al. Potato derived biomass porous carbon as anode for potassium ion batteries. Electrochim Acta 2019;293:364-70.

108. Wu Z, Wang L, Huang J, et al. Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries. Electrochim Acta 2019;306:446-53.

109. Sun Y, Xiao H, Li H, et al. Nitrogen/oxygen co-doped hierarchically porous carbon for high-performance potassium storage. Chemistry 2019;25:7359-65.

110. Liu M, Jing D, Shi Y, Zhuang Q. Superior potassium storage in natural O/N-doped hard carbon derived from maple leaves. J Mater Sci Mater Electron 2019;30:8911-9.

111. Xu B, Qi S, Li F, et al. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett 2020;31:217-22.

112. Zhang Z, Jia B, Liu L, et al. Hollow multihole carbon bowls: a stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano 2019;13:11363-71.

113. Prabakar SJR, Han SC, Park C, et al. Spontaneous formation of interwoven porous channels in hard-wood-based hard-carbon for high-performance anodes in potassium-ion batteries. J Electrochem Soc 2017;164:A2012-6.

114. He X, Sun H, Chen X, Zhao B, Zhang X, Komarneni S. Charging mechanism analysis of macerals during triboelectrostatic enrichment process: Insights from relative dielectric constant, specific resistivity and X-ray diffraction. Fuel 2018;225:533-41.

115. Shan J, Wang J, Kiekens P, Zhao Y, Huang J. Effect of co-activation of petroleum coke and Artemisia Hedinii on potassium loss during activation and its promising application in anode material of potassium-ion batteries. Solid State Sci 2019;92:96-105.

116. Gao C, Wang Q, Luo S, et al. High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J Power Sources 2019;415:165-71.

117. Wang Q, Gao C, Zhang W, et al. Biomorphic carbon derived from corn husk as a promising anode materials for potassium ion battery. Electrochim Acta 2019;324:134902.

118. Wang X, Zhao J, Yao D, et al. Bio-derived hierarchically porous heteroatoms doped-carbon as anode for high performance potassium-ion batteries. J Electroanal Chem 2020;871:114272.

119. Nagmani, Verma P, Puravankara S. Jute-fiber precursor-derived low-cost sustainable hard carbon with varying micro/mesoporosity and distinct storage mechanisms for sodium-ion and potassium-ion batteries. Langmuir 2022;38:15703-13.

120. Yuan X, Zhu B, Feng J, Wang C, Cai X, Qin R. Biomass bone-derived, N/P-doped hierarchical hard carbon for high-energy potassium-ion batteries. Mater Res Bull 2021;139:111282.

121. Hu Z, Liu Z, Zhao J, Yu X, Lu B. Rose-petals-derived hemispherical micropapillae carbon with cuticular folds for super potassium storage. Electrochim Acta 2021;368:137629.

122. Xu Z, Du S, Yi Z, et al. Water chestnut-derived slope-dominated carbon as a high-performance anode for high-safety potassium-ion batteries. ACS Appl Energy Mater 2020;3:11410-7.

123. Tao L, Liu L, Chang R, He H, Zhao P, Liu J. Structural and interface design of hierarchical porous carbon derived from soybeans as anode materials for potassium-ion batteries. J Power Sources 2020;463:228172.

124. Luo H, Chen M, Cao J, et al. Cocoon silk-derived, hierarchically porous carbon as anode for highly robust potassium-ion hybrid capacitors. Nanomicro Lett 2020;12:113.

125. Yang M, Dai J, He M, Duan T, Yao W. Biomass-derived carbon from Ganoderma lucidum spore as a promising anode material for rapid potassium-ion storage. J Colloid Interface Sci 2020;567:256-63.

126. Tian S, Guan D, Lu J, et al. Synthesis of the electrochemically stable sulfur-doped bamboo charcoal as the anode material of potassium-ion batteries. J Power Sources 2020;448:227572.

127. Chen J, Chen G, Zhao S, et al. Robust biomass-derived carbon frameworks as high-performance anodes in potassium-ion batteries. Small 2023;19:e2206588.

128. Xu L, Guo W, Zeng L, et al. V3Se4 embedded within N/P co-doped carbon fibers for sodium/potassium ion batteries. Chem Eng J 2021;419:129607.

129. Xue Q, Li D, Huang Y, et al. Vitamin K as a high-performance organic anode material for rechargeable potassium ion batteries. J Mater Chem A 2018;6:12559-64.

130. Wu Z, Zou J, Zhang Y, et al. Lignin-derived hard carbon anode for potassium-ion batteries: interplay among lignin molecular weight, material structures, and storage mechanisms. Chem Eng J 2022;427:131547.

131. Cheng G, Zhang W, Wang W, et al. Sulfur and nitrogen codoped cyanoethyl cellulose-derived carbon with superior gravimetric and volumetric capacity for potassium ion storage. Carbon Energy 2022;4:986-1001.

132. Li W, Li Z, Zhang C, et al. Hard carbon derived from rice husk as anode material for high performance potassium-ion batteries. Solid State Ionics 2020;351:115319.

133. Ronsse F, Nachenius RW, Prins W. Chapter 11 - carbonization of biomass. In: Recent advances in thermo-chemical conversion of biomass. Amsterdam, The Netherlands: Elsevier; 2015. pp. 293-324.

134. Abramova EN, Marat N, Rupasov DP, Morozova PA, Kirsanova MA, Abakumov AM. Hard carbon as a negative electrode material for potassium-ion batteries prepared with high yield through a polytetrafluoroethylene-based precursor. Carbon Trends 2021;5:100089.

135. Li Y, Adams RA, Arora A, et al. Sustainable potassium-ion battery anodes derived from waste-tire rubber. J Electrochem Soc 2017;164:A1234-8.

136. Trano S, Corsini F, Pascuzzi G, et al. Lignin as polymer electrolyte precursor for stable and sustainable potassium batteries. ChemSusChem 2022;15:e202200294.

137. Manarin E, Corsini F, Trano S, et al. Cardanol-derived epoxy resins as biobased gel polymer electrolytes for potassium-ion conduction. ACS Appl Polym Mater 2022;4:3855-65.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/