REFERENCES

1. Yuan F, Zhang W, Zhang D, et al. Recent progress in electrochemical performance of binder-free anodes for potassium-ion batteries. Nanoscale 2021;13:5965-84.

2. Wu Y, Zhao H, Wu Z, et al. Rational design of carbon materials as anodes for potassium-ion batteries. Energy Stor Mater 2021;34:483-507.

3. Yang M, Kong Q, Feng W, Yao W. N/O double-doped biomass hard carbon material realizes fast and stable potassium ion storage. Carbon 2021;176:71-82.

4. Yang M, Kong Q, Feng W, Yao W, Wang Q. Hierarchical porous nitrogen, oxygen, and phosphorus ternary doped hollow biomass carbon spheres for high-speed and long-life potassium storage. Carbon Energy 2022;4:45-59.

5. McCulloch WD, Ren X, Yu M, Huang Z, Wu Y. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl Mater Inter 2015;7:26158-66.

6. Han Y, Li T, Li Y, et al. Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. Energy Stor Mater 2019;20:46-54.

7. Ma L, Lv Y, Wu J, et al. Recent advances in anode materials for potassium-ion batteries: a review. Nano Res 2021;14:4442-70.

8. An Y, Fei H, Zeng G, et al. Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte. J Power Sources 2018;378:66-72.

9. Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries. J Am Chem Soc 2015;137:11566-9.

10. Han C, Han K, Wang X, et al. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale 2018;10:6820-6.

11. Zeng S, Chen X, Xu R, et al. Boosting the potassium storage performance of carbon anode via integration of adsorption-intercalation hybrid mechanisms. Nano Energy 2020;73:104807.

12. Tao S, Xu W, Zheng J, et al. Soybean roots-derived N, P Co-doped mesoporous hard carbon for boosting sodium and potassium-ion batteries. Carbon 2021;178:233-42.

13. Wu X, Chen Y, Xing Z, et al. Advanced carbon-based anodes for potassium-ion batteries. Adv Energy Mater 2019;9:1900343.

14. Xu H, Rosa AL, Frauenheim T, Zhang RQ. N-doped ZnO nanowires: surface segregation, the effect of hydrogen passivation and applications in spintronics. Phys Stat Sol 2010;247:2195-201.

15. Zhu Y, Wang Y, Wang Y, Xu T, Chang P. Research progress on carbon materials as negative electrodes in sodium- and potassium-ion batteries. Carbon Energy 2022;4:1182-213.

16. Ma C, Shao X, Cao D. Nitrogen-doped graphenenanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 2012;22:8911-15.

17. Liu W, Deng X, Cai S. Transport properties for carbon chain sandwiched between heteroatom-doped carbon nanotubes with different doping sites. AIP Adv 2016;6:075103.

18. Wang Z, Selbach SM, Grande T. Van der Waals density functional study of the energetics of alkali metal intercalation in graphite. RSC Adv 2014;4:4069-79.

19. Luo P, Zheng C, He J, et al. Structural engineering in graphite-based metal-ion batteries. Adv Funct Mater 2022;32:2107277.

20. Li X, Li J, Ma L, et al. Graphite anode for potassium ion batteries: current status and perspective. Energy Environ Mater 2022;5:458-69.

21. Wang D, Zhang J, Dong Y, et al. Progress on graphitic carbon materials for potassium- based energy storage. New Carbon Mater 2021;36:435-48.

22. Costard E, Bois P, Marcadet X, Nedelcu A. QWIP and 3rd generation IR imagers. Infrared Technol Appl 2005 ;5783:728.

23. Dimiev AM, Shukhina K, Behabtu N, Pasquali M, Tour JM. Stage transitions in graphite intercalation compounds: role of the graphite structure. J Phys Chem C 2019;123:19246-53.

24. Xing Z, Qi Y, Jian Z, Ji X. Polynanocrystalline graphite: a new carbon anode with superior cycling performance for K-ion batteries. ACS Appl Mater Inter 2017;9:4343-51.

25. Zhang W, Liu Y, Guo Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv 2019;5:eaav7412.

26. Lei K, Li F, Mu C, et al. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ Sci 2017;10:552-7.

27. Komaba S, Hasegawa T, Dahbi M, Kubota K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem Commun 2015;60:172-5.

28. Sun Y, Xiao H, Li H, et al. Nitrogen/Oxygen co-doped hierarchically porous carbon for high-performance potassium storage. Chemistry 2019;25:7359-65.

29. Luo W, Wan J, Ozdemir B, et al. Potassium ion batteries with graphitic materials. Nano Lett 2015;15:7671-7.

30. Li J, Yi Y, Zuo X, et al. Graphdiyne/Graphene/Graphdiyne sandwiched carbonaceous anode for potassium-ion batteries. ACS Nano 2022;16:3163-72.

31. Yuan F, Lei Y, Wang H, et al. Pseudo-capacitance reinforced modified graphite for fast-charging potassium-ion batteries. Carbon 2021;185:48-56.

32. Capone I, Aspinall J, Lee HJ, Xiao AW, Ihli J, Pasta M. A red phosphorus-graphite composite as anode material for potassium-ion batteries. Mater Today Energy 2021;21:100840.

33. Ma G, Huang K, Ma J, Ju Z, Xing Z, Zhuang Q. Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J Mater Chem A 2017;5:7854-61.

34. Lee B, Kim M, Kim S, et al. High capacity adsorption - dominated potassium and sodium ion storage in activated crumpled graphene. Adv Energy Mater 2020;10:1903280.

35. Li L, Liu L, Hu Z, et al. Understanding high-rate K+-solvent Co-intercalation in natural graphite for potassium-ion batteries. Angew Chem Int Ed 2020;59:12917-24.

36. Vaalma C, Giffin GA, Buchholz D, Passerini S. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J Electrochem Soc 2016;163:A1295-9.

37. Liu Y, Dai H, Wu L, et al. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries. Adv Energy Mater 2019;9:1901379.

38. Jian Z, Xing Z, Bommier C, Li Z, Ji X. Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv Energy Mater 2016;6:1501874.

39. He X, Liao J, Tang Z, et al. Highly disordered hard carbon derived from skimmed cotton as a high-performance anode material for potassium-ion batteries. J Power Sources 2018;396:533-41.

40. Zhang Y, Yang L, Tian Y, et al. Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Mater Chem Phys 2019;229:303-9.

41. Stevens DA, Dahn JR. An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J Electrochem Soc 2000;147:4428.

42. Kim J, Lee G, Lau VW, et al. A microstructural investigation into Na-ion storage behaviors of cellulose-based hard carbons for Na-ion batteries. J Phys Chem C 2021;125:14559-66.

43. Bommier C, Surta TW, Dolgos M, Ji X. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett 2015;15:5888-92.

44. Li W, Zhang R, Chen Z, et al. Microstructure-dependent K+ storage in porous hard carbon. Small 2021;17:e2100397.

45. Wu Z, Wang L, Huang J, et al. Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries. Electrochimica Acta 2019;306:446-53.

46. Yuan F, Zhang D, Li Z, et al. Unraveling the intercorrelation between micro/mesopores and K migration behavior in hard carbon. Small 2022;18:e2107113.

47. Wang X, Han K, Qin D, et al. Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries. Nanoscale 2017;9:18216-22.

48. Bin DS, Chi ZX, Li Y, et al. Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres. J Am Chem Soc 2017;139:13492-8.

49. Chen C, Wang Z, Zhang B, et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Stor Mater 2017;8:161-8.

50. Zhang Y, Pan A, Ding L, et al. Nitrogen-doped yolk-shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl Mater Inter 2017;9:3624-33.

51. Lu Y, Li D, Lyu C, et al. High nitrogen doped carbon nanofiber aerogels for sodium ion batteries: synergy of vacancy defects to boost sodium ion storage. Appl Surf Sci 2019;496:143717.

52. Gao Y, Ru Q, Zheng M, et al. Recovery of kitchen bio-waste from spent black tea as hierarchical biomorphic carbon electrodes for ultra-long lifespan potassium-ion storage. Appl Surf Sci 2021;555:149675.

53. Chen C, Wu M, Wang Y, Zaghib K. Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage. J Power Sources 2019;444:227310.

54. Li J, Kaur AP, Meier MS, Cheng Y. Stacked-cup-type MWCNTs as highly stable lithium-ion battery anodes. J Appl Electrochem 2014;44:179-87.

55. Tang Y, Zhao Y, Burkert SC, Ding M, Ellis JE, Star A. Efficient separation of nitrogen-doped carbon nanotube cups. Carbon 2014;80:583-90.

56. Tang Y, Burkert SC, Zhao Y, Saidi WA, Star A. The effect of metal catalyst on the electrocatalytic activity of nitrogen-doped carbon nanotubes. J Phys Chem C 2013;117:25213-21.

57. Gabaudan V, Monconduit L, Stievano L, Berthelot R. Snapshot on negative electrode materials for potassium-ion batteries. Front Energy Res 2019;7:46.

58. Sato M. Elastic and plastic deformation of carbon nanotubes. Procedia Eng 2011;14:2366-72.

59. Zhao X, Xiong P, Meng J, Liang Y, Wang J, Xu Y. High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. J Mater Chem A 2017;5:19237-44.

60. Cao B, Zhang Q, Liu H, et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv Energy Mater 2018;8:1801149.

61. Wang G, Xiong X, Xie D, et al. Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. J Mater Chem A 2018;6:24317-23.

62. Sun J, Ma L, Sun H, et al. Design of free-standing porous carbon fibers anode with high-efficiency potassium-ion storage. Chem Eng J 2023;455:140902.

63. Wu Y, Wu Z, Yue L, et al. Directionally Tailoring Macroporous Honeycomb-Like Structured Carbon Nanofibers toward High-Capacitive Potassium Storage. ACS Appl Mater Inter 2021;13:30693-702.

64. Chen M, Wang W, Liang X, et al. Sulfur/Oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv Energy Mater 2018;8:1800171.

65. Hu X, Zhong G, Li J, et al. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ Sci 2020;13:2431-40.

66. Wen J, Xu L, Wang J, et al. Lithium and potassium storage behavior comparison for porous nanoflaked Co3O4 anode in lithium-ion and potassium-ion batteries. J Power Sources 2020;474:228491.

67. Tian S, Jiang Q, Cai T, et al. Graphitized electrospun carbon fibers with superior cyclability as a free-standing anode of potassium-ion batteries. J Power Sources 2020;474:228479.

68. Ma H, Qi X, Peng D, et al. Novel fabrication of N/S Co-doped hierarchically porous carbon for potassium-ion batteries. ChemistrySelect 2019;4:11488-95.

69. Tao L, Yang Y, Wang H, et al. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms. Energy Stor Mater 2020;27:212-25.

70. Wang Y, Yuan F, Li Z, Zhang D, Yu Q, Wang B. Heteroatom-doped carbon anode materials for potassium-ion batteries: from mechanism, synthesis to electrochemical performance. APL Mater 2022;10:030902.

71. Xu Y, Zhang C, Zhou M, et al. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat Commun 2018;9:1720.

72. Zhang M, Shoaib M, Fei H, et al. Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv Energy Mater 2019;9:1901663.

73. Tong H, Wang C, Lu J, et al. Energetic metal-organic frameworks derived highly nitrogen-doped porous carbon for superior potassium storage. Small 2020;16:e2002771.

74. Chen S, Feng Y, Wang J, Zhang E, Yu X, Lu B. Free-standing N-doped hollow carbon fibers as high-performance anode for potassium ion batteries. Sci China Mater 2021;64:547-56.

75. Zhao L, Yang H, He F, et al. Biomimetic N-doped sea-urchin-structured porous carbon for the anode material of high-energy-density potassium-ion batteries. Electrochim Acta 2021;388:138565.

76. Gong J, Zhao G, Feng J, et al. Controllable phosphorylation strategy for free-standing phosphorus/nitrogen cofunctionalized porous carbon monoliths as high-performance potassium ion battery anodes. ACS Nano 2020;14:14057-69.

77. Yang J, Ju Z, Jiang Y, et al. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 2018;30:1700104.

78. Lin X, Huang J, Zhang B. Correlation between the microstructure of carbon materials and their potassium ion storage performance. Carbon 2019;143:138-46.

79. Share K, Cohn AP, Carter R, Rogers B, Pint CL. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 2016;10:9738-44.

80. Shang Y, Duan X, Wang S, Yue Q, Gao B, Xu X. Carbon-based single atom catalyst: synthesis, characterization, DFT calculations. Chin Chem Lett 2022;33:663-73.

81. Adekoya D, Qian S, Gu X, et al. DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nanomicro Lett 2020;13:13.

82. Liu Q, Hu Z, Chen M, et al. The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus prussian blue analogs. Adv Funct Mater 2020;30:1909530.

83. Xiao Z, Meng J, Xia F, et al. K+ modulated K+/vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries. Energy Environ Sci 2020;13:3129-37.

84. Zhao L, Zhang T, Zhao H, Hou Y. Polyanion-type electrode materials for advanced sodium-ion batteries. Mater Today Nano 2020;10:100072.

85. Chen M, Liu Q, Zhang Y, Xing G, Chou SL, Tang Y. Emerging polyanionic and organic compounds for high energy density, non-aqueous potassium-ion batteries. J Mater Chem A 2020;8:16061-80.

86. Liang Y, Luo C, Wang F, et al. An organic anode for high temperature potassium-ion batteries. Adv Energy Mater 2019;9:1802986.

87. Deng Q, Pei J, Fan C, et al. Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries. Nano Energy 2017;33:350-5.

88. Luo Z, Liu L, Ning J, et al. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew Chem Int Ed 2018;57:9443-6.

89. Wu Y, Jiang Y, Shi J, Gu L, Yu Y. Multichannel porous TiO2 hollow nanofibers with rich oxygen vacancies and high grain boundary density enabling superior sodium storage performance. Small 2017;13:1700129.

90. Li Y, Wang H, Wang L, et al. Mesopore-induced ultrafast Na+-storage in T-Nb2O5/carbon nanofiber films toward flexible high-power Na-ion capacitors. Small 2019;15:e1804539.

91. Cui Y, Liu W, Feng W, et al. Controlled design of well-dispersed ultrathin MoS2 nanosheets inside hollow carbon skeleton: toward fast potassium storage by constructing spacious “houses” for K ions. Adv Funct Mater 2020;30:1908755.

92. Wu Y, Hu S, Xu R, et al. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett 2019;19:1351-8.

93. Wang Q, Zhao X, Ni C, et al. Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-ion batteries. J Phys Chem C 2017;121:12652-7.

94. Chen KT, Tuan HY. Bi-Sb nanocrystals embedded in phosphorus as high-performance potassium ion battery electrodes. ACS Nano 2020;14:11648-61.

95. Xia M, Chen B, Gu F, et al. Ti3C2Tx MXene nanosheets as a robust and conductive tight on Si anodes significantly enhance electrochemical lithium storage performance. ACS Nano 2020;14:5111-20.

96. Yang Q, Wang Z, Xi W, He G. Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem Commun 2019;101:68-72.

97. Zhang L, Li Y, Zhang S, et al. Non-newtonian fluid state K-Na alloy for a stretchable energy storage device. Small Methods 2019;3:1900383.

98. Eftekhari A. Low voltage anode materials for lithium-ion batteries. Energy Stor Mater 2017;7:157-80.

99. Kim H, Kim JC, Bianchini M, Seo D, Rodriguez-garcia J, Ceder G. Recent progress and perspective in electrode materials for K-ion batteries. Adv Energy Mater 2018;8:1702384.

100. Liu Y, Zhang N, Jiao L, Tao Z, Chen J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater 2015;25:214-20.

101. Yao Q, Zhu C. Advanced post-potassium-ion batteries as emerging potassium-based alternatives for energy storage. Adv Funct Mater 2020;30:2005209.

102. Tian S, Guan D, Lu J, et al. Synthesis of the electrochemically stable sulfur-doped bamboo charcoal as the anode material of potassium-ion batteries. J Power Sources 2020;448:227572.

103. Yang G, Ilango PR, Wang S, et al. Carbon-based alloy-type composite anode materials toward sodium-ion batteries. Small 2019;15:e1900628.

104. Liang S, Cheng Y, Zhu J, Xia Y, Müller-buschbaum P. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes. Small Methods 2020;4:2000218.

105. Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater 2018;28:1703857.

106. Yang GZ, Chen YF, Feng BQ, et al. Surface-dominated potassium storage enabled by single-atomic sulfur for high-performance K-ion battery anodes. Energy Environ Sci 2023;16:1540-7.

107. Wang L, Zhao Y, Cao L, et al. CoS nanoparticle encapsulated S-doped carbon nanofiber/nanotube hybrid grown on exfoliated graphite for long-lifespan and high-rate potassium ion batteries. Appl Surf Sci 2022;603:154370.

108. Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 2021;17:e1903194.

109. Yi Z, Lin N, Zhang W, Wang W, Zhu Y, Qian Y. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale 2018;10:13236-41.

110. Gabaudan V, Berthelot R, Stievano L, Monconduit L. Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries. J Phys Chem C 2018;122:18266-73.

111. Shi Y, Wang L, Zhou D, Wu T, Xiao Z. A flower-like Sb4O5Cl2 cluster-based material as anode for potassium ion batteries. Appl Surf Sci 2022;583:152509.

112. Sultana I, Rahman MM, Mateti S, Ahmadabadi VG, Glushenkov AM, Chen Y. K-ion and Na-ion storage performances of Co3O4-Fe2O3 nanoparticle-decorated super P carbon black prepared by a ball milling process. Nanoscale 2017;9:3646-54.

113. Liu Q, Fan L, Ma R, et al. Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem Commun 2018;54:11773-6.

114. Zhang W, Miao W, Liu X, Li L, Yu Z, Zhang Q. High-rate and ultralong-stable potassium-ion batteries based on antimony-nanoparticles encapsulated in nitrogen and phosphorus Co-doped mesoporous carbon nanofibers as an anode material. J Alloys Compd 2018;769:141-8.

115. Gabaudan V, Touja J, Cot D, Flahaut E, Stievano L, Monconduit L. Double-walled carbon nanotubes, a performing additive to enhance capacity retention of antimony anode in potassium-ion batteries. Electrochem Commun 2019;105:106493.

116. An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 2018;12:12932-40.

117. Ko YN, Choi SH, Kim H, Kim HJ. One-pot formation of Sb-carbon microspheres with graphene sheets: potassium-ion storage properties and discharge mechanisms. ACS Appl Mater Inter 2019;11:27973-81.

118. Ge X, Liu S, Qiao M, et al. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew Chem Int Ed 2019;58:14578-83.

119. He XD, Liu ZH, Liao JY, et al. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J Mater Chem A 2019;7:9629-37.

120. Sultana I, Rahman MM, Liu J, et al. Antimony-carbon nanocomposites for potassium-ion batteries: insight into the failure mechanism in electrodes and possible avenues to improve cyclic stability. J Power Sources 2019;413:476-84.

121. Luo W, Li F, Gaumet J, et al. Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage. Adv Energy Mater 2018;8:1703237.

122. Huang Y, Wang Z, Jiang Y, et al. Conductivity and pseudocapacitance optimization of bimetallic antimony-indium sulfide anodes for sodium-ion batteries with favorable kinetics. Adv Sci 2018;5:1800613.

123. Yi Z, Qian Y, Tian J, Shen K, Lin N, Qian Y. Self-templating growth of Sb2Se3@C microtube: a convention-alloying-type anode material for enhanced K-ion batteries. J Mater Chem A 2019;7:12283-91.

124. Xiong P, Wu J, Zhou M, Xu Y. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 2020;14:1018-26.

125. Wang T, Shen D, Liu H, Chen H, Liu Q, Lu B. A Sb2S3 nanoflower/MXene composite as an anode for potassium-ion batteries. ACS Appl Mater Inter 2020;12:57907-15.

126. Yi Z, Jiang S, Du Y, et al. Coordinatively and spatially coconfining high-loading atomic Sb in sulfur-rich 2D carbon matrix for fast K+ diffusion and storage. ACS Mater Lett 2021;3:790-8.

127. Nguyen TH, Man MT, Do HM, Nguyen VV. Magnetic properties and electronic structure of the Sb-doped MnBi from DFT calculations. Solid State Commun 2021;336:114385.

128. Zhao M, Zhao Q, Qiu J, Xue H, Pang H. Tin-based nanomaterials for electrochemical energy storage. RSC Adv 2016;6:95449-68.

129. Huang B, Pan Z, Su X, An L. Tin-based materials as versatile anodes for alkali (earth)-ion batteries. J Power Sources 2018;395:41-59.

130. Nita C, Fullenwarth J, Monconduit L, et al. Understanding the Sn loading impact on the performance of mesoporous carbon/Sn-based nanocomposites in Li-ion batteries. ChemElectroChem 2018;5:3249-57.

131. Liu Y, Zhang N, Jiao L, Chen J. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv Mater 2015;27:6702-7.

132. Sultana I, Ramireddy T, Rahman MM, Chen Y, Glushenkov AM. Tin-based composite anodes for potassium-ion batteries. Chem Commun 2016;52:9279-82.

133. Ji B, Zhang F, Song X, Tang Y. A novel potassium-ion-based dual-ion battery. Adv Mater 2017;29:1700519.

134. Li Z, Ding J, Mitlin D. Tin and Tin compounds for sodium ion battery anodes: phase transformations and performance. ACC Chem Res 2015;48:1657-65.

135. Qiu D, Guan J, Li M, et al. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv Funct Mater 2019;29:1903496.

136. Han X, Liu Y, Jia Z, et al. Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett 2014;14:139-47.

137. Ramireddy T, Kali R, Jangid MK, Srihari V, Poswal HK, Mukhopadhyay A. Insights into electrochemical behavior, phase evolution and stability of Sn upon K-alloying/de-alloying via in situ studies. J Electrochem Soc 2017;164:A2360-7.

138. Gabaudan V, Berthelot R, Sougrati MT, Lippens P, Monconduit L, Stievano L. SnSb vs. Sn: improving the performance of Sn-based anodes for K-ion batteries by synergetic alloying with Sb. J Mater Chem A 2019;7:15262-70.

139. Huang Z, Chen Z, Ding S, Chen C, Zhang M. Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification. Mater Lett 2018;219:19-22.

140. Ge X, Liu S, Qiao M, et al. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew Chem Int Ed 2019;131:14720-5.

141. Qin J, He C, Zhao N, et al. Graphene networks anchored with sn@graphene as lithium ion battery anode. ACS Nano 2014;8:1728-38.

142. Huang K, Xing Z, Wang L, et al. Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J Mater Chem A 2018;6:434-42.

143. Yang Y, Li D, Zhang J, et al. Sn nanoparticles anchored on N doped porous carbon as an anode for potassium ion batteries. Mater Lett 2019;256:126613.

144. Li D, Zhang Y, Sun Q, et al. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Stor Mater 2019;23:367-74.

145. Du Y, Yi Z, Chen B, et al. Sn4P3 nanoparticles confined in multilayer graphene sheets as a high-performance anode material for potassium-ion batteries. J Energy Chem 2022;66:413-21.

146. Li C, Bi AT, Chen HL, et al. Rational design of porous Sn nanospheres/N-doped carbon nanofibers as an ultra-stable potassium-ion battery anode material. J Mater Chem A 2021;9:5740-50.

147. Yamamoto T, Nohira T. Tin negative electrodes using an FSA-based ionic liquid electrolyte: improved performance of potassium secondary batteries. Chem Commun 2020;56:2538-41.

148. Liu C, Han X, Cao Y, Zhang S, Zhang Y, Sun J. Topological construction of phosphorus and carbon composite and its application in energy storage. Energy Stor Mater 2019;20:343-72.

149. Sun J, Zheng G, Lee HW, et al. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett 2014;14:4573-80.

150. Sun J, Lee HW, Pasta M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 2015;10:980-5.

151. Li W, Yang Z, Li M, et al. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett 2016;16:1546-53.

152. Sangster JM. K-P (potassium-phosphorus) system. J Phase Equilib Diffus 2010;31:68-72.

153. Park C, Sohn H. Black phosphorus and its composite for lithium rechargeable batteries. Adv Mater 2007;19:2465-8.

154. Zhu Y, Wen Y, Fan X, et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 2015;9:3254-64.

155. Sultana I, Rahman MM, Ramireddy T, Chen Y, Glushenkov AM. High capacity potassium-ion battery anodes based on black phosphorus. J Mater Chem A 2017;5:23506-12.

156. Huang X, Liu D, Guo X, Sui X, Qu D, Chen J. Phosphorus/Carbon composite anode for potassium-ion batteries: insights into high initial coulombic efficiency and superior cyclic performance. ACS Sustain Chem Eng 2018;6:16308-14.

157. Wu X, Zhao W, Wang H, et al. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J Power Sources 2018;378:460-7.

158. Xiong P, Bai P, Tu S, et al. Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small 2018;14:e1802140.

159. Zhang W, Mao J, Li S, Chen Z, Guo Z. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc 2017;139:3316-9.

160. Yang W, Lu Y, Zhao C, Liu H. First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries. Electron Mater Lett 2020;16:89-98.

161. Li WJ, Chou SL, Wang JZ, Liu HK, Dou SX. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett 2013;13:5480-4.

162. Sun J, Lee H, Pasta M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Stor Mater 2016;4:130-6.

163. Chang WC, Wu JH, Chen KT, Tuan HY. Red phosphorus potassium-ion battery anodes. Adv Sci 2019;6:1801354.

164. Liu D, Huang X, Qu D, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 2018;52:1-10.

165. Fang K, Liu D, Xiang X, et al. Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design. Nano Energy 2020;69:104451.

166. Bai J, Xi B, Mao H, et al. One-step construction of N,P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater 2018;30:e1802310.

167. Wang H, Wang L, Wang L, et al. Phosphorus particles embedded in reduced graphene oxide matrix to enhance capacity and rate capability for capacitive potassium-ion storage. Chemistry 2018;24:13897-902.

168. Xu L, Guo W, Zeng L, et al. V3Se4 embedded within N/P Co-doped carbon fibers for sodium/potassium ion batteries. Chem Eng J 2021;419:129607.

169. Zhao X, Huang R, Wang T, Dai X, Wei S, Ma Y. Steady semiconducting properties of monolayer PtSe2 with non-metal atom and transition metal atom doping. Phys Chem Chem Phys 2020;22:5765-73.

170. Zhang Z, Khurram M, Sun Z, Yan Q. Uniform tellurium doping in black phosphorus single crystals by chemical vapor transport. Inorg Chem 2018;57:4098-103.

171. Viti L, Politano A, Zhang K, Vitiello MS. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Nanoscale 2019;11:1995-2002.

172. Hussain F, Imran M, Rana AM, et al. Tailoring magnetic characteristics of phosphorene by the doping of Ce and Ti: a DFT study. Phys E Low Dimens Syst Nanostruct 2019;106:352-6.

173. Duan JP, Zhang JM, Wei XM, Huang YH. Electronic, magnetic and optical properties of blue phosphorene doped with Y, Zr, Nb and Mo: a first-principles study. Thin Solid Films 2021;720:138523.

174. Zhao W, Xu X, Wang L, et al. Boosting lifespan of conversion-reaction anodes for full/half potassium-ion batteries via multi-dimensional carbon nano-architectures confinement effect. J Energy Chem 2022;75:55-65.

175. Sun X, Zeng S, Man R, et al. Yolk-shell structured CoSe2/C nanospheres as multifunctional anode materials for both full/half sodium-ion and full/half potassium-ion batteries. Nanoscale 2021;13:10385-92.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/