REFERENCES

1. Wang W, Xiong F, Zhu S, Chen J, Xie J, An Q. Defect engineering in molybdenum-based electrode materials for energy storage. eScience 2022;2:278-94.

2. Zhang J, Chen Z, Xu T, et al. Vanadium nitride nanoparticles embedded in carbon matrix with pseudocapacitive behavior for high performance lithium-ion capacitors. Rare Met 2022;41:2460-9.

3. Li G, Guo S, Xiang B, et al. Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries. Energy Mater 2022;2:200020.

4. Wang C, Yan B, Zheng J, et al. Recent progress in template-assisted synthesis of porous carbons for supercapacitors. Adv Powder Mater 2022;1:100018.

5. Wei X, Liu B, Chen Z, et al. Recent advances in modulation engineering-enabled metal compounds for potassium-ion storage. Energy Stor Mater 2022;51:815-39.

6. Chang H, Wu Y, Han X, Yi T. Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater 2021;1:100003.

7. Kang J, Zhao Z, Li H, Meng Y, Hu B, Lu H. An overview of aqueous zinc-ion batteries based on conversion-type cathodes. Energy Mater 2022;2:200009.

8. Li X, Wang Y, Lv L, Zhu G, Qu Q, Zheng H. Electroactive organics as promising anode materials for rechargeable lithium ion and sodium ion batteries. Energy Mater 2022;2:200014.

9. Mu J, Liu Z, Lai Q, et al. An industrial pathway to emerging presodiation strategies for increasing the reversible ions in sodium-ion batteries and capacitors. Energy Mater 2022;2:200043.

10. Xiao Z, Wang X, Meng J, Wang H, Zhao Y, Mai L. Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries. Mater Today 2022;56:114-34.

11. Huang Y, Haider R, Xu S, Liu K, Ma Z, Yuan X. Recent progress of novel non-carbon anode materials for potassium-ion battery. Energy Stor Mater 2022;51:327-60.

12. Yan Y, Zeng T, Liu S, Shu C, Zeng Y. Lithium metal stabilization for next-generation lithium-based batteries: from fundamental chemistry to advanced characterization and effective protection. Energy Mater 2023;3:300002.

13. Wu X, Chen Y, Xing Z, et al. Advanced carbon-based anodes for potassium-ion batteries. Adv Energy Mater 2019;9:1900343.

14. Yuan F, Li Z, Zhang D, et al. Fundamental understanding and research progress on the interfacial behaviors for potassium-ion battery anode. Adv Sci 2022;9:e2200683.

15. Xiao D, Lv X, Fan J, Li Q, Chen Z. Zn-based batteries for energy storage. Energy Mater 2023;3:300007.

16. Liu M, Wang Y, Wu F, et al. Advances in carbon materials for sodium and potassium storage. Adv Funct Mater 2022;32:2203117.

17. Wang X, Wang H. Designing carbon anodes for advanced potassium-ion batteries: materials, modifications, and mechanisms. Adv Powder Mater 2022;1:100057.

18. Zong W, Guo H, Ouyang Y, et al. Topochemistry-driven synthesis of transition-metal selenides with weakened van der waals force to enable 3D-printed Na-ion hybrid capacitors. Adv Funct Mater 2022;32:2110016.

19. Shi Y, Zhu B, Guo X, et al. MOF-derived metal sulfides for electrochemical energy applications. Energy Stor Mater 2022;51:840-72.

20. Hong Z, Maleki H, Ludwig T, et al. New insights into carbon-based and MXene anodes for Na and K-ion storage: a review. J Energy Chem 2021;62:660-91.

21. Zhang Y, Wang Y, Hou L, Yuan C. Recent progress of carbon-based anode materials for potassium ion batteries. Chem Rec 2022;22:e202200072.

22. Lei H, Li J, Zhang X, et al. A review of hard carbon anode: rational design and advanced characterization in potassium ion batteries. InfoMat 2022;4:e12272.

23. Wang H, Ye W, Yang Y, Zhong Y, Hu Y. Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives. Nano Energy 2021;85:105942.

24. Tian Z, Chui N, Lian R, et al. Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: a free-standing anode for high-performance potassium-ion storage. Energy Stor Mater 2020;27:591-8.

25. Okoshi M, Yamada Y, Komaba S, Yamada A, Nakai H. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J Electrochem Soc 2017;164:A54.

26. Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries. J Am Chem Soc 2015;137:11566-9.

27. Zhu Y, Wang Y, Wang Y, Xu T, Chang P. Research progress on carbon materials as negative electrodes in sodium- and potassium-ion batteries. Carbon Energy 2022;4:1182-213.

28. Wang Z, Hong P, Zhao H, Lei Y. Recent developments and future prospects of transition metal compounds as electrode materials for potassium-ion hybrid capacitors. Adv Mater Technol 2023;8:2200515.

29. Imtiaz S, Amiinu IS, Xu Y, Kennedy T, Blackman C, Ryan KM. Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Mater Today 2021;48:241-69.

30. Tan W, Wang L, Liu K, et al. Bitumen-derived onion-like soft carbon as high-performance potassium-ion battery anode. Small 2022;18:e2203494.

31. Geng C, Chen Y, Sun Z, et al. “Pulverization-reaggregation”-induced in situ pore expansion in carbon for fast potassium storage. J Mater Chem A 2022;10:22399-407.

32. Liu Z, Wu S, Song Y, et al. Non-negligible influence of oxygen in hard carbon as an anode material for potassium-ion batteries. ACS Appl Mater Interfaces 2022;14:47674-84.

33. Wang X, Zhao J, Chen Y, et al. Molybdenum sulfide selenide ultrathin nanosheets anchored on carbon tubes for rapid-charging sodium/potassium-ion batteries. J Colloid Interface Sci 2022;628:1041-8.

34. Sun X, Zhang B, Chen M, et al. Space-confined growth of Bi2Se3 nanosheets encapsulated in N-doped carbon shell lollipop-like composite for full/half potassium-ion and lithium-ion batteries. Nano Today 2022;43:101408.

35. Hao Z, Shi X, Zhu W, et al. Bismuth nanoparticles embedded in a carbon skeleton as an anode for high power density potassium-ion batteries. Chem Sci 2022;13:11376-81.

36. Chang H, Shi L, Chen Y, Wang P, Yi T. Advanced MOF-derived carbon-based non-noble metal oxygen electrocatalyst for next-generation rechargeable Zn-air batteries. Coord Chem Rev 2022;473:214839.

37. Xie Q, Ou H, Yang Q, et al. A review on metal-organic framework-derived anode materials for potassium-ion batteries. Dalton Trans 2021;50:9669-84.

38. Lin J, Chenna Krishna Reddy R, Zeng C, Lin X, Zeb A, Su C. Metal-organic frameworks and their derivatives as electrode materials for potassium ion batteries: a review. Coord Chem Rev 2021;446:214118.

39. Fonseca J, Gong T. Fabrication of metal-organic framework architectures with macroscopic size: a review. Coord Chem Rev 2022;462:214520.

40. Liu C, Bai Y, Li W, Yang F, Zhang G, Pang H. In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew Chem Int Ed 2022;61:e202116282.

41. Zhao X, Zheng Y, Dai H, et al. Wet-chemistry: a useful tool for deriving metal-organic frameworks toward supercapacitors and secondary batteries. Adv Mater Interfaces 2022;9:2102595.

42. Ren Y, Wang X, Ma J, Zheng Q, Wang L, Jiang W. Metal-organic framework-derived carbon-based composites for electromagnetic wave absorption: dimension design and morphology regulation. J Mater Sci Technol 2023;132:223-51.

43. Cao S, Li Y, Tang Y, et al. Space-confined metal ion strategy for carbon materials derived from cobalt benzimidazole frameworks with high desalination performance in simulated seawater. Adv Mater 2023;35:e2301011.

44. Shen M, Ma H. Metal-organic frameworks (MOFs) and their derivative as electrode materials for lithium-ion batteries. Coord Chem Rev 2022;470:214715.

45. Ye Z, Jiang Y, Li L, Wu F, Chen R. Rational design of MOF-based materials for next-generation rechargeable batteries. Nanomicro Lett 2021;13:203.

46. Zhang Y, Sha M, Fu Q, Zhao H, Lei Y. An overview of metal-organic frameworks-derived carbon as anode materials for sodium- and potassium-ion batteries. Mater Today Sustain 2022;18:100156.

47. Jiang H, Zhang S, Yan L, et al. Stress-dispersed superstructure of Sn3(PO4)2@PC derived from programmable assembly of metal-organic framework as long-life potassium/sodium-ion batteries anodes. Adv Sci 2023;10:e2206587.

48. Qiu D, Hou Y. Carbon materials toward efficient potassium storage: rational design, performance evaluation and potassium storage mechanism. Green Energy Environ 2023;8:115-40.

49. Li Y, Zhang J, Chen M. MOF-derived carbon and composites as advanced anode materials for potassium ion batteries: a review. Sustain Mater Technol 2020;26:e00217.

50. Rajagopalan R, Tang Y, Ji X, Jia C, Wang H. Advancements and challenges in potassium ion batteries: a comprehensive review. Adv Funct Mater 2020;30:1909486.

51. Li W, Bi Z, Zhang W, et al. Advanced cathodes for potassium-ion batteries with layered transition metal oxides: a review. J Mater Chem A 2021;9:8221-47.

52. Hwang J, Myung S, Sun Y. Recent progress in rechargeable potassium batteries. Adv Funct Mater 2018;28:1802938.

53. Zhang W, Yin J, Wang W, Bayhan Z, Alshareef HN. Status of rechargeable potassium batteries. Nano Energy 2021;83:105792.

54. Jin S, Liang P, Jiang Y, et al. Preferentially engineering edge-nitrogen sites in porous hollow spheres for ultra-fast and reversible potassium storage. Chem Eng J 2022;435:134821.

55. Xu C, Mu J, Zhou T, et al. Surface redox pseudocapacitance boosting vanadium nitride for high-power and ultra-stable potassium-ion capacitors. Adv Funct Mater 2022;32:2206501.

56. Gao J, Wang G, Wang W, et al. Engineering electronic transfer dynamics and ion adsorption capability in dual-doped carbon for high-energy potassium ion hybrid capacitors. ACS Nano 2022;16:6255-65.

57. Chen Y, Shi X, Lu B, Zhou J. Concave engineering of hollow carbon spheres toward advanced anode material for sodium/potassium-ion batteries. Adv Energy Mater 2022;12:2202851.

58. Dou S, Tian Q, Liu T, et al. Stress-regulation design of mesoporous carbon spheres anodes with radial pore channels toward ultrastable potassium-ion batteries. Small Sci 2022;2:2200045.

59. Cheng G, Zhang W, Wang W, et al. Sulfur and nitrogen codoped cyanoethyl cellulose-derived carbon with superior gravimetric and volumetric capacity for potassium ion storage. Carbon Energy 2022;4:986-1001.

60. Cheng N, Zhou W, Liu J, Liu Z, Lu B. Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nanomicro Lett 2022;14:146.

61. Zhang X, Han R, Liu Y, et al. Porous and graphitic structure optimization of biomass-based carbon materials from 0D to 3D for supercapacitors: a review. Chem Eng J 2023;460:141607.

62. Chen D, Zhang W, Luo K, et al. Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization. Energy Environ Sci 2021;14:2244-62.

63. Zhang M, Li Y, Wu F, Bai Y, Wu C. Boost sodium-ion batteries to commercialization: strategies to enhance initial coulombic efficiency of hard carbon anode. Nano Energy 2021;82:105738.

64. Zhang Z, Duan L, Li A, Xu J, Shen J, Zhou X. Layered oxide cathodes promoted by crystal regulation strategies for potassium-ion batteries. Chemistry 2022;28:e202201562.

65. Nathan MGT, Yu H, Kim GT, et al. Recent advances in layered metal-oxide cathodes for application in potassium-ion batteries. Adv Sci 2022;9:e2105882.

66. Cao B, Zhang Q, Liu H, et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv Energy Mater 2018;8:1801149.

67. Bi H, He X, Yang L, Li H, Jin B, Qiu J. Interconnected carbon nanocapsules with high N/S co-doping as stable and high-capacity potassium-ion battery anode. J Energy Chem 2022;66:195-204.

68. Zhang X, Chen D, Zhou Y, et al. Mesoporous carbon nanosheet-assembled flowers towards superior potassium storage. Chinese Chem Lett 2021;32:1161-4.

69. Liu H, Du H, Zhao W, et al. Fast potassium migration in mesoporous carbon with ultrathin framework boosting superior rate performance for high-power potassium storage. Energy Stor Mater 2021;40:490-8.

70. Suo G, Li D, Feng L, Hou X, Yang Y, Wang W. SnO2 nanosheets grown on stainless steel mesh as a binder free anode for potassium ion batteries. J Electroanal Chem 2019;833:113-8.

71. Liu T, Zhang X, Xia M, et al. Functional cation defects engineering in TiS2 for high-stability anode. Nano Energy 2020;67:104295.

72. Huang J, Lin X, Tan H, Zhang B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater 2018;8:1703496.

73. Yang Y, Li D, Zhang J, et al. Sn nanoparticles anchored on N doped porous carbon as an anode for potassium ion batteries. Mater Lett 2019;256:126613.

74. Huang X, Liu D, Guo X, Sui X, Qu D, Chen J. Phosphorus/carbon composite anode for potassium-ion batteries: insights into high initial coulombic efficiency and superior cyclic performance. ACS Sustain Chem Eng 2018;6:16308-14.

75. Yuan F, Shi C, Li Q, et al. Unraveling the effect of intrinsic carbon defects on potassium storage performance. Adv Funct Mater 2022;32:2208966.

76. Wang H, Du H, Zhang H, et al. Regulated adsorption-diffusion and enhanced charge transfer in expanded graphite cohered with N, B bridge-doping carbon patches to boost K-ion storage. J Energy Chem 2023;76:67-74.

77. Yang B, Li B, Xiang Z. Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction. Nano Res 2023;16:1338-61.

78. Lu XF, Xia BY, Zang SQ, Lou XWD. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed 2020;59:4634-50.

79. Xiong P, Zhao X, Xu Y. Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes. ChemSusChem 2018;11:202-8.

80. Li D, Cheng X, Xu R, et al. Manipulation of 2D carbon nanoplates with a core-shell structure for high-performance potassium-ion batteries. J Mater Chem A 2019;7:19929-38.

81. Liu S, Yang B, Zhou J, Song H. Nitrogen-rich carbon-onion-constructed nanosheets: an ultrafast and ultrastable dual anode material for sodium and potassium storage. J Mater Chem A 2019;7:18499-509.

82. Shao M, Li C, Li T, et al. Pushing the energy output and cycling lifespan of potassium-ion capacitor to high level through metal-organic framework derived porous carbon microsheets anode. Adv Funct Mater 2020;30:2006561.

83. Zheng G, Xing Z, Gao X, Nie C, Xu Z, Ju Z. Fabrication of 2D Cu-BDC MOF and its derived porous carbon as anode material for high-performance Li/K-ion batteries. Appl Surf Sci 2021;559:149701.

84. Zhang W, Jiang X, Wang X, et al. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew Chem Int Ed 2017;56:8435-40.

85. Li Y, Zhong W, Yang C, et al. N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem Eng J 2019;358:1147-54.

86. Liu C, Wang J, Wan J, Yu C. MOF-on-MOF hybrids: synthesis and applications. Coord Chem Rev 2021;432:213743.

87. Yu D, Song Q, Cui J, et al. Designing core-shell metal-organic framework hybrids: toward high-efficiency electrochemical potassium storage. J Mater Chem A 2021;9:26181-8.

88. Liang Z, Wu Y, Cheng J, et al. A metal-organic framework nanorod-assembled superstructure and its derivative: unraveling the fast potassium storage mechanism in nitrogen-modified micropores. Small 2021;17:e2100135.

89. Yuan F, Wang J, Wang H, et al. Dual-carbon coupled three-dimensional superstructures with dominant mesopores targeting fast potassium-ion storage. Compos Part B Eng 2023;248:110379.

90. Zhou X, Chen L, Zhang W, et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett 2019;19:4965-73.

91. Ruan J, Mo F, Chen Z, et al. Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv Energy Mater 2020;10:1904045.

92. Wang B, Gu L, Yuan F, et al. Edge-enrich N-doped graphitic carbon: boosting rate capability and cyclability for potassium ion battery. Chem Eng J 2022;432:134321.

93. Yang J, Ju Z, Jiang Y, et al. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 2018;30:1700104.

94. Li Y, Yang C, Zheng F, et al. High pyridine N-doped porous carbon derived from metal-organic frameworks for boosting potassium-ion storage. J Mater Chem A 2018;6:17959-66.

95. Tong H, Wang C, Lu J, et al. Energetic metal-organic frameworks derived highly nitrogen-doped porous carbon for superior potassium storage. Small 2020;16:e2002771.

96. Chen M, Wang W, Liang X, et al. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv Energy Mater 2018;8:1800171.

97. Li J, Qin W, Xie J, et al. Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 2018;53:415-24.

98. Zuo Y, Li P, Zang R, et al. Sulfur-doped flowerlike porous carbon derived from metal-organic frameworks as a high-performance potassium-ion battery anode. ACS Appl Energy Mater 2021;4:2282-91.

99. Hu X, Zhong G, Li J, et al. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ Sci 2020;13:2431-40.

100. Wu Y, Cheng J, Liang Z, et al. Puffing up hollow carbon nanofibers with high-energy metal-organic frameworks for capacitive-dominated potassium-ion storage. Small 2022;18:e2105767.

101. Zhu Z, Li X, Zhang Z, et al. N/S codoping modification based on the metal organic framework-derived carbon to improve the electrochemical performance of different energy storage devices. J Energy Chem 2022;74:394-403.

102. Lu J, Wang C, Yu H, et al. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv Funct Mater 2019;29:1906126.

103. Hu J, Guan C, Li H, et al. Boosting potassium-storage performance via confining highly dispersed molybdenum dioxide nanoparticles within N-doped porous carbon nano-octahedrons. J Colloid Interface Sci 2022;607:1109-19.

104. Dubal DP, Schneemann A, Ranc V, et al. Ultrafine TiO2 nanoparticle supported nitrogen-rich graphitic porous carbon as an efficient anode material for potassium-ion batteries. Adv Energy Sustain Res 2021;2:2100042.

105. Wang Q, Kang L, Xing Z, et al. Prussian blue analogue-derived ZnO/ZnFe2O4 core-shell nanospheres as high-performance anodes for lithium-ion and potassium-ion batteries. Batteries Supercaps 2023;6:e202200411.

106. Li H, Chen J, Zhang L, et al. A metal-organic framework-derived pseudocapacitive titanium oxide/carbon core/shell heterostructure for high performance potassium ion hybrid capacitors. J Mater Chem A 2020;8:16302-11.

107. Zhang Z, Wu C, Chen Z, et al. Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage. J Mater Chem A 2020;8:3369-78.

108. Das D, Sarkar D, Nagarajan S, Mitlin D. Cobalt phosphide (Co2P) encapsulated in nitrogen-rich hollow carbon nanocages with fast rate potassium ion storage. Chem Commun 2020;56:14889-92.

109. Jiang Y, Liang J, Yue L, et al. Reduced graphene oxide supported ZIF-67 derived CoP enables high-performance potassium ion storage. J Colloid Interface Sci 2021;604:319-26.

110. Miao W, Zhao X, Wang R, et al. Carbon shell encapsulated cobalt phosphide nanoparticles embedded in carbon nanotubes supported on carbon nanofibers: A promising anode for potassium ion battery. J Colloid Interface Sci 2019;556:432-40.

111. Yi Y, Zhao W, Zeng Z, et al. ZIF-8@ZIF-67-derived nitrogen-doped porous carbon confined CoP polyhedron targeting superior potassium-ion storage. Small 2020;16:e1906566.

112. Chen J, Chua DHC, Lee PS. The advances of metal sulfides and in situ characterization methods beyond li ion batteries: sodium, potassium, and aluminum ion batteries. Small Methods 2020;4:1900648.

113. Miao W, Zhang Y, Li H, et al. ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode. J Mater Chem A 2019;7:5504-12.

114. Zhou X, Wang Z, Wang Y, et al. Graphene supported FeS2 nanoparticles with sandwich structure as a promising anode for high-rate potassium-ion batteries. J Colloid Interface Sci 2023;636:73-82.

115. Choi S, Hwan Kim Y, Lee G, Seok Choi H, Kim K. MOF-derived carbon/ZnS nanoparticle composite interwoven with structural and conductive CNT scaffolds for ultradurable K-ion storage. Chem Eng J 2023;459:141663.

116. Rui B, Li J, Chang L, et al. Engineering MoS2 nanosheets anchored on metal organic frameworks derived carbon polyhedra for superior lithium and potassium storage. Front Energy Res 2019;7:142.

117. Jiang Q, Wang L, Chen J, et al. Enhancing potassium-ion battery performance by MoS2 coated nitrogen-doped hollow carbon matrix. J Alloy Compd 2021;855:157505.

118. Hu C, Ma K, Hu Y, et al. Confining MoS2 nanocrystals in MOF-derived carbon for high performance lithium and potassium storage. Green Energy Environ 2021;6:75-82.

119. Cai J, Liu C, Tao S, et al. MOFs-derived advanced heterostructure electrodes for energy storage. Coord Chem Rev 2023;479:214985.

120. Li X, Liang H, Qin B, Wang M, Zhang Y, Fan H. Rational design of heterostructured bimetallic sulfides (CoS2/NC@VS4) with VS4 nanodots decorated on CoS2 dodecahedron for high-performance sodium and potassium ion batteries. J Colloid Interface Sci 2022;625:41-9.

121. Zhang B, Xu B, Qin H, Cao L, Ou X. Highly active and stable Cu9S5-MoS2 heterostructures nanocages enabled by dual-functional Cu electrocatalyst with enhanced potassium storage. J Mater Sci Technol 2023;143:107-16.

122. Ma G, Li C, Liu F, et al. Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater Today Energy 2018;10:241-8.

123. He Y, Wang L, Dong C, et al. In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Stor Mater 2019;23:35-45.

124. Hu Y, Lu T, Zhang Y, et al. Highly dispersed ZnSe nanoparticles embedded in N-doped porous carbon matrix as an anode for potassium ion batteries. Part Part Syst Charact 2019;36:1900199.

125. Huang Q, Fan X, Ou X, Wang H, Wu L, Yang C. Fabrication of CoSe@NC nanocubes for high performance potassium ion batteries. J Colloid Interface Sci 2021;604:157-67.

126. Kim M, Kim JH, Kang YC. Solution-phase selenization engineering of zeolitic imidazolate framework (ZIF)-67-derived Co0.85Se@nitrogen-doped carbon for potassium-ion storage. Appl Surf Sci 2023;614:156218.

127. Wang H, Yu K, Wang P, Jia P, Yuan Y, Liang C. ZIF-67-derived Co/CoSe ultrafine nanocrystal Schottky heterojunction decorated hollow carbon nanospheres as new-type anodes for potassium-ion batteries. J Colloid Interface Sci 2023;645:55-65.

128. Jiang Q, Wang L, Wang Y, et al. Rational design of MoSe2 nanosheet-coated MOF-derived N-doped porous carbon polyhedron for potassium storage. J Colloid Interface Sci 2021;600:430-9.

129. Na J, Chan Kang Y, Park S. Electrospun MOF-based ZnSe nanocrystals confined in N-doped mesoporous carbon fibers as anode materials for potassium ion batteries with long-term cycling stability. Chem Eng J 2021;425:131651.

130. Wang L, Jiang Q, Yang K, et al. Self-assembly of carbon nanotubes on a hollow carbon polyhedron to enhance the potassium storage cycling stability of metal organic framework-derived metallic selenide anodes. J Colloid Interface Sci 2021;601:60-9.

131. Liu L, Meng X, Hu L, et al. Regular mesoporous structural FeSe@C composite with enhanced reversibility for fast and stable potassium storage. J Phys Chem C 2021;125:15812-20.

132. Yang SH, Park SK, Kang YC. MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries. Nanomicro Lett 2020;13:9.

133. Ruan J, Zang J, Hu J, et al. Respective roles of inner and outer carbon in boosting the K+ storage performance of dual-carbon-confined ZnSe. Adv Sci 2022;9:e2104822.

134. Oh HG, Park S. Co-MOF derived MoSe2@CoSe2/N-doped carbon nanorods as high-performance anode materials for potassium ion batteries. Int J Energy Res 2022;46:10677-88.

135. Zhou P, Zhang M, Wang L, et al. MOFs-derived flower-like hierarchically porous Zn-Mn-Se/C composite for extraordinary rate performance and durable anode of sodium-ion and potassium-ion batteries. Small 2022;18:e2203964.

136. Yan C, Gu X, Zhang L, et al. Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: promising anode materials for sodium and potassium ion batteries. J Mater Chem A 2018;6:17371-7.

137. Gu Y, Ru Pei Y, Zhao M, Cheng Yang C, Jiang Q. Sn-, Sb- and Bi-based anodes for potassium ion battery. Chem Rec 2022;22:e202200098.

138. Su S, Liu Q, Wang J, et al. Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl Mater Interfaces 2019;11:22474-80.

139. Sun Z, Liu Y, Ye W, et al. Unveiling intrinsic potassium storage behaviors of hierarchical nano Bi@N-doped carbon nanocages framework via in situ characterizations. Angew Chem Int Ed 2021;60:7180-7.

140. Tong H, Chen S, Tu J, et al. Bi2O3 particles embedded in carbon matrix as high-performance anode materials for potassium ion batteries. J Power Sources 2022;549:232140.

141. Cheng N, Zhao J, Fan L, et al. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem Commun 2019;55:12511-4.

142. Huang H, Wang J, Yang X, et al. Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in situ TEM. Angew Chem Int Ed 2020;132:14612-8.

143. Zeng L, Huang L, Zhu J, et al. Phosphorus-based materials for high-performance alkaline metal ion batteries: progress and prospect. Small 2022;18:e2201808.

144. Sui X, Huang X, Pu H, Wang Y, Chen J. Tailoring MOF-derived porous carbon nanorods confined red phosphorous for superior potassium-ion storage. Nano Energy 2021;83:105797.

145. Liang Z, Qiu T, Cheng J, et al. Nano-confining red phosphorus in a carbon hierarchical superstructure for superior potassium storage. Batteries Supercaps 2021;5:e202100264.

146. Chen K, Chong S, Yuan L, Yang Y, Tuan H. Conversion-alloying dual mechanism anode: nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage. Energy Stor Mater 2021;39:239-49.

147. Chen Z, Wu Y, Liu X, Zhang Y, Yang L, Li H. Bi/Bi3Se4 nanoparticles embedded in hollow porous carbon nanorod: high rate capability material for potassium-ion batteries. J Energy Chem 2023;81:462-71.

148. Zhang P, Wei Y, Zhou S, Soomro RA, Jiang M, Xu B. A metal-organic framework derived approach to fabricate in-situ carbon encapsulated Bi/Bi2O3 heterostructures as high-performance anodes for potassium ion batteries. J Colloid Interface Sci 2023;630:365-74.

149. Tong Z, Kang T, Wu Y, Zhang F, Tang Y, Lee C. Novel metastable Bi:Co and Bi:Fe alloys nanodots@carbon as anodes for high rate K-ion batteries. Nano Res 2022;15:7220-6.

150. Xu Y, Titirici M, Chen J, et al. 2023 roadmap for potassium-ion batteries. J Phys Energy 2023;5:021502.

151. Chen J, Lee PS. Electrochemical supercapacitors: from mechanism understanding to multifunctional applications. Adv Energy Mater 2021;11:2003311.

152. Luo C, Wang C, Wu X, Zhang J, Chu J. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small 2017;13:1604259.

153. Cui J, Zheng H, He K. In situ TEM study on conversion-type electrodes for rechargeable ion batteries. Adv Mater 2021;33:e2000699.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/