REFERENCES

1. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev 2014;114:11636-82.

2. Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 2018;3:18013.

3. Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater 2018;8:1703137.

4. Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev 2017;46:3529-614.

5. Chayambuka K, Mulder G, Danilov DL, Notten PHL. Sodium-ion battery materials and electrochemical properties reviewed. Adv Energy Mater 2018;8:1800079.

6. Fang C, Huang Y, Zhang W, et al. Routes to high energy cathodes of sodium-ion batteries. Adv Energy Mater 2016;6:1501727.

7. Xiao J, Li X, Tang K, et al. Recent progress of emerging cathode materials for sodium ion batteries. Mater Chem Front 2021;5:3735-64.

8. Xiang X, Zhang K, Chen J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv Mater 2015;27:5343-64.

9. Bommier C, Ji X. Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes. Small 2018;14:e1703576.

10. Song J, Xiao B, Lin Y, Xu K, Li X. Interphases in sodium-ion batteries. Adv Energy Mater 2018;8:1703082.

11. Ponrouch A, Monti D, Boschin A, Steen B, Johansson P, Palacín MR. Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A 2015;3:22-42.

12. Lao M, Zhang Y, Luo W, Yan Q, Sun W, Dou SX. Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater 2017;29:1700622.

13. Yu P, Tang W, Wu F, et al. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met 2020;39:1019-33.

14. Chang G, Zhao Y, Dong L, et al. A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. J Mater Chem A 2020;8:4996-5048.

15. Goodenough JB. Evolution of strategies for modern rechargeable batteries. Acc Chem Res 2013;46:1053-61.

16. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114:11503-618.

17. Jin Y, Xu Y, Le PML, et al. Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases. ACS Energy Lett 2020;5:3212-20.

18. Mu L, Feng X, Kou R, et al. Deciphering the cathode-electrolyte interfacial chemistry in sodium layered cathode materials. Adv Energy Mater 2018;8:1801975.

19. Han B, Zou Y, Zhang Z, et al. Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nat Commun 2021;12:3066.

20. Park J, Ku K, Son SB, et al. Effect of electrolytes on the cathode-electrolyte interfacial stability of Fe-based layered cathodes for sodium-ion batteries. J Electrochem Soc 2022;169:030536.

21. Moeez I, Susanto D, Chang W, Lim HD, Chung KY. Artificial cathode electrolyte interphase by functional additives toward long-life sodium-ion batteries. Chem Eng J 2021;425:130547.

22. Bodenes L, Darwiche A, Monconduit L, Martinez H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J Power Sources 2015;273:14-24.

23. Zhang X, Qiao Y, Guo S, et al. Manganese-based Na-rich materials boost anionic redox in high-performance layered cathodes for sodium-ion batteries. Adv Mater 2019;31:e1807770.

24. Fondard J, Irisarri E, Courrèges C, Palacin MR, Ponrouch A, Dedryvère R. SEI composition on hard carbon in Na-ion batteries after long cycling: influence of salts (NaPF6, NaTFSI) and additives (FEC, DMCF). J Electrochem Soc 2020;167:070526.

25. Ghigna P, Quartarone E. Operando x-ray absorption spectroscopy on battery materials: a review of recent developments. J Phys Energy 2021;3:032006.

26. Chen M, Chou SL, Dou SX. Understanding challenges of cathode materials for sodium-ion batteries using synchrotron-based X-ray absorption spectroscopy. Batteries Supercaps 2019;2:842-51.

27. Wang PF, Xiao Y, Piao N, et al. Both cationic and anionic redox chemistry in a P2-type sodium layered oxide. Nano Energy 2020;69:104474.

28. Huang J, Guo X, Du X, et al. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ Sci 2019;12:1550-7.

29. Hirsh HS, Sayahpour B, Shen A, et al. Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life. Energy Storage Mater 2021;42:78-87.

30. Song H, Su J, Wang C. Multi-ions electrolyte enabled high performance voltage tailorable room-temperature Ca-metal batteries. Adv Energy Mater 2021;11:2003685.

31. Jin Y, Xu Y, Le PML, et al. Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases. ACS Energy Lett 2020;5:3212-20.

32. Andre D, Meiler M, Steiner K, Wimmer C, Soczka-Guth T, Sauer DU. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. J Power Sources 2011;196:5334-41.

33. Walther F, Koerver R, Fuchs T, et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem Mater 2019;31:3745-55.

34. Schwieters T, Evertz M, Mense M, Winter M, Nowak S. Lithium loss in the solid electrolyte interphase: lithium quantification of aged lithium ion battery graphite electrodes by means of laser ablation inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectroscopy. J Power Sources 2017;356:47-55.

35. Kim H, Kim H, Ding Z, et al. Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater 2016;6:1600943.

36. Dou X, Hasa I, Saurel D, et al. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater Today 2019;23:87-104.

37. Zhao LF, Hu Z, Lai WH, et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv Energy Mater 2021;11:2002704.

38. Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 2011;21:3859-67.

39. Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl Mater Interfaces 2011;3:4165-8.

40. Dahbi M, Nakano T, Yabuuchi N, et al. Effect of hexafluorophosphate and fluoroethylene carbonate on electrochemical performance and the surface layer of hard carbon for sodium-ion batteries. ChemElectroChem 2016;3:1856-67.

41. Tang K, Fu L, White RJ, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2012;2:873-7.

42. Luo W, Schardt J, Bommier C, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J Mater Chem A 2013;1:10662-6.

43. Zhou X, Guo Y. Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries. ChemElectroChem 2014;1:83-6.

44. Xie H, Wu Z, Wang Z, et al. Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries. J Mater Chem A 2020;8:3606-12.

45. Bommier C, Luo W, Gao WY, Greaney A, Ma S, Ji X. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon 2014;76:165-74.

46. Ponrouch A, Goñi AR, Palacín MR. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 2013;27:85-8.

47. Zhu YE, Gu H, Chen YN, Yang D, Wei J, Zhou Z. Hard carbon derived from corn straw piths as anode materials for sodium ion batteries. Ionics 2018;24:1075-81.

48. Jin J, Yu BJ, Shi ZQ, Wang CY, Chong CB. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J Power Sources 2014;272:800-7.

49. Yang T, Qian T, Wang M, et al. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater 2016;28:539-45.

50. Cao Y, Xiao L, Sushko ML, et al. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 2012;12:3783-7.

51. Lotfabad EM, Ding J, Cui K, et al. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014;8:7115-29.

52. Jiang X, Liu X, Zeng Z, et al. A bifunctional fluorophosphate electrolyte for safer sodium-ion batteries. iScience 2018;10:114-22.

53. Li Y, Xu S, Wu X, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A 2015;3:71-7.

54. Li W, Zeng L, Yang Z, et al. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale 2014;6:693-8.

55. Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013;7:11004-15.

56. Liu X, Jiang X, Zeng Z, et al. High capacity and cycle-stable hard carbon anode for nonflammable sodium-ion batteries. ACS Appl Mater Interfaces 2018;10:38141-50.

57. Li Y, Hu YS, Titirici MM, Chen L, Huang X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 2016;6:1600659.

58. Li Y, Lu Y, Meng Q, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv Energy Mater 2019;9:1902852.

59. Zhang Q, Wang Z, Li X, et al. Comparative study of 1,3-propane sultone, prop-1-ene-1,3-sultone and ethylene sulfate as film-forming additives for sodium ion batteries. J Power Sources 2022;541:231726.

60. Shao Y, Xiao J, Wang W, et al. Surface-driven sodium ion energy storage in nanocellular carbon foams. Nano Lett 2013;13:3909-14.

61. Feng J, An Y, Ci L, Xiong S. Nonflammable electrolyte for safer non-aqueous sodium batteries. J Mater Chem A 2015;3:14539-44.

62. Luo W, Bommier C, Jian Z, et al. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl Mater Interfaces 2015;7:2626-31.

63. Kim DH, Kang B, Lee H. Comparative study of fluoroethylene carbonate and succinic anhydride as electrolyte additive for hard carbon anodes of Na-ion batteries. J Power Sources 2019;423:137-43.

64. Bai P, Han X, He Y, et al. Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries. Energy Stor Mater 2020;25:324-33.

65. Che H, Liu J, Wang H, et al. Rubidium and cesium ions as electrolyte additive for improving performance of hard carbon anode in sodium-ion battery. Electrochem Commun 2017;83:20-3.

66. Wang J, Yamada Y, Sodeyama K, et al. Fire-extinguishing organic electrolytes for safe batteries. Nat Energy 2018;3:22-9.

67. Zhang J, Wang DW, Lv W, et al. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci 2017;10:370-6.

68. Cometto C, Yan G, Mariyappan S, Tarascon JM. Means of using cyclic voltammetry to rapidly design a stable DMC-based electrolyte for Na-ion batteries. J Electrochem Soc 2019;166:A3723-30.

69. Yan G, Reeves K, Foix D, et al. A new electrolyte formulation for securing high temperature cycling and storage performances of Na-ion batteries. Adv Energy Mater 2019;9:1901431.

70. Che H, Yang X, Wang H, et al. Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives. J Power Sources 2018;407:173-9.

71. Dugas R, Ponrouch A, Gachot G, David R, Palacin MR, Tarascon JM. Na reactivity toward carbonate-based electrolytes: the effect of FEC as additive. J Electrochem Soc 2016;163:A2333-9.

72. Liu Q, Mu D, Wu B, Wang L, Gai L, Wu F. Density functional theory research into the reduction mechanism for the solvent/additive in a sodium-ion battery. ChemSusChem 2017;10:786-96.

73. Wang E, Niu Y, Yin YX, Guo YG. Manipulating electrode/electrolyte interphases of sodium-ion batteries: strategies and perspectives. ACS Materials Lett 2021;3:18-41.

74. Hu S, Zhao H, Qian Y, et al. Improved high-temperature performance of LiNi0.5Co0.2Mn0.3O2/artificial graphite lithium ion pouch cells by difluoroethylene carbonate. J Energy Storage 2023;57:106266.

75. Ma L, Glazier SL, Petibon R, et al. A guide to ethylene carbonate-free electrolyte making for Li-ion cells. J Electrochem Soc 2017;164:A5008-18.

76. Yu Z, Yu W, Chen Y, et al. Tuning fluorination of linear carbonate for lithium-ion batteries. J Electrochem Soc 2022;169:040555.

77. Lee H, Choi S, Choi S, et al. SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5V Li-ion batteries. Electrochem Commun 2007;9:801-6.

78. Leggesse EG, Jiang JC. Theoretical study of the reductive decomposition of 1,3-propane sultone: SEI forming additive in lithium-ion batteries. RSC Adv 2012;2:5439-46.

79. Liu Q, Xu R, Mu D, et al. Progress in electrolyte and interface of hard carbon and graphite anode for sodium-ion battery. Carbon Energy 2022;4:458-79.

80. Xia L, Xia Y, Liu Z. A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries. J Power Sources 2015;278:190-6.

81. Ji W, Huang H, Zhang X, et al. A redox-active organic salt for safer Na-ion batteries. Nano Energy 2020;72:104705.

82. Zheng X, Fu H, Hu C, et al. Toward a stable sodium metal anode in carbonate electrolyte: a compact, inorganic alloy interface. J Phys Chem Lett 2019;10:707-14.

83. Wang H, Wang C, Matios E, Li W. Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew Chem 2018;130:7860-3.

84. Fang W, Jiang H, Zheng Y, et al. A bilayer interface formed in high concentration electrolyte with SbF3 additive for long-cycle and high-rate sodium metal battery. J Power Sources 2020;455:227956.

85. Wang S, Cai W, Sun Z, et al. Stable cycling of Na metal anodes in a carbonate electrolyte. Chem Commun 2019;55:14375-8.

86. Jiang Z, Zeng Z, Yang C, et al. Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode. Nano Lett 2019;19:8780-6.

87. Li P, Jiang Z, Huang X, Lu X, Xie J, Cheng S. Nitrofullerene as an electrolyte-compatible additive for high-performance sodium metal batteries. Nano Energy 2021;89:106396.

88. Li P, Huang X, Jiang Z, et al. High-rate sodium metal batteries enabled by trifluormethylfullerene additive. Nano Res 2022;15:7172-9.

89. Jiang R, Hong L, Liu Y, et al. An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery. Energy Stor Mater 2021;42:370-9.

90. Kreissl JJA, Langsdorf D, Tkachenko BA, Schreiner PR, Janek J, Schröder D. Incorporating diamondoids as electrolyte additive in the sodium metal anode to mitigate dendrite growth. ChemSusChem 2020;13:2661-70.

91. Zhu M, Wang G, Liu X, et al. Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-rich protection layer. Angew Chem 2020;132:6658-62.

92. Zhu M, Zhang Y, Yu F, et al. Stable sodium metal anode enabled by an interface protection layer rich in organic sulfide salt. Nano Lett 2021;21:619-27.

93. Zhu M, Li L, Zhang Y, et al. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Materials 2021;42:145-53.

94. Rodriguez R, Loeffler KE, Nathan SS, et al. In situ optical imaging of sodium electrodeposition: effects of fluoroethylene carbonate. ACS Energy Lett 2017;2:2051-7.

95. Shiraz MHA, Zhao P, Liu J. High-performance sodium-selenium batteries enabled by microporous carbon/selenium cathode and fluoroethylene carbonate electrolyte additive. J Power Sources 2020;453:227855.

96. Han M, Zhu C, Ma T, Pan Z, Tao Z, Chen J. In situ atomic force microscopy study of nano-micro sodium deposition in ester-based electrolytes. Chem Commun 2018;54:2381-4.

97. Wang Q, Zhao C, Lv X, et al. Stabilizing a sodium-metal battery with the synergy effects of a sodiophilic matrix and fluorine-rich interface. J Mater Chem A 2019;7:24857-67.

98. Pan K, Lu H, Zhong F, Ai X, Yang H, Cao Y. Understanding the electrochemical compatibility and reaction mechanism on Na metal and hard carbon anodes of PC-based electrolytes for sodium-ion batteries. ACS Appl Mater Interfaces 2018;10:39651-60.

99. Fan JJ, Dai P, Shi CG, et al. Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries. Adv Funct Mater 2021;31:2010500.

100. Feng J, Ci L, Xiong S. Biphenyl as overcharge protection additive for nonaqueous sodium batteries. RSC Adv 2015;5:96649-52.

101. Baggetto L, Marszewski M, Górka J, Jaroniec M, Veith GM. AlSb thin films as negative electrodes for Li-ion and Na-ion batteries. J Power Sources 2013;243:699-705.

102. Baggetto L, Keum JK, Browning JF, Veith GM. Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun 2013;34:41-4.

103. Baggetto L, Allcorn E, Unocic RR, Manthiram A, Veith GM. Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries. J Mater Chem A 2013;1:11163-9.

104. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc 2012;134:20805-11.

105. Ma W, Yin K, Gao H, Niu J, Peng Z, Zhang Z. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy 2018;54:349-59.

106. Kim IT, Kim SO, Manthiram A. Effect of TiC addition on SnSb-C composite anodes for sodium-ion batteries. J Power Sources 2014;269:848-54.

107. Kim IT, Allcorn E, Manthiram A. High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries. Phys Chem Chem Phys 2014;16:12884-9.

108. Kim IT, Allcorn E, Manthiram A. Cu6Sn5-TiC-C nanocomposite anodes for high-performance sodium-ion batteries. J Power Sources 2015;281:11-7.

109. Sadan MK, Choi SH, Kim HH, et al. Effect of sodium salts on the cycling performance of tin anode in sodium ion batteries. Ionics 2018;24:753-61.

110. Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 2012;48:7070-2.

111. Ji L, Gu M, Shao Y, et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv Mater 2014;26:2901-8.

112. Zhang J, Zhang K, Yang J, et al. Engineering solid electrolyte interphase on red phosphorus for long-term and high-capacity sodium storage. Chem Mater 2020;32:448-58.

113. Yabuuchi N, Matsuura Y, Ishikawa T, et al. Phosphorus electrodes in sodium cells: small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem 2014;1:580-9.

114. Dahbi M, Yabuuchi N, Fukunishi M, et al. Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface. Chem Mater 2016;28:1625-35.

115. Li M, Muralidharan N, Moyer K, Pint CL. Solvent mediated hybrid 2D materials: black phosphorus - graphene heterostructured building blocks assembled for sodium ion batteries. Nanoscale 2018;10:10443-9.

116. Song J, Wu M, Fang K, Tian T, Wang R, Tang H. NaF-rich interphase and high initial coulombic efficiency of red phosphorus anode for sodium-ion batteries by chemical presodiation. J Colloid Interface Sci 2023;630:443-52.

117. Capone I, Hurlbutt K, Naylor AJ, Xiao AW, Pasta M. Effect of the particle-size distribution on the electrochemical performance of a red phosphorus-carbon composite anode for sodium-ion batteries. Energy Fuels 2019;33:4651-8.

118. Jian Z, Zhao B, Liu P, et al. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem Commun 2014;50:1215-7.

119. Hu Z, Wang L, Zhang K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed Engl 2014;53:12794-8.

120. Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett 2011;2:2560-5.

121. Dynarowska M, Kotwiński J, Leszczynska M, Marzantowicz M, Krok F. Ionic conductivity and structural properties of Na2Ti3O7 anode material. Solid State Ionics 2017;301:35-42.

122. Zhao L, Zhao J, Hu YS, et al. Disodium Terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater 2012;2:962-5.

123. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 2009;8:621-9.

124. López-herraiz M, Castillo-martínez E, Carretero-gonzález J, Carrasco J, Rojo T, Armand M. Oligomeric-schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers. Energy Environ Sci 2015;8:3233-41.

125. Castillo-Martínez E, Carretero-González J, Armand M. Polymeric schiff bases as low-voltage redox centers for sodium-ion batteries. Angew Chem Int Ed Engl 2014;53:5341-5.

126. Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv Mater 2019;31:e1808393.

127. Kucinskis G, Nesterova I, Sarakovskis A, Bikse L, Hodakovska J, Bajars G. Electrochemical performance of Na2FeP2O7/C cathode for sodium-ion batteries in electrolyte with fluoroethylene carbonate additive. J Alloys Compd 2022;895:162656.

128. Lee Y, Lee J, Kim H, Kang K, Choi NS. Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries. J Power Sources 2016;320:49-58.

129. Cheng Z, Mao Y, Dong Q, et al. Fluoroethylene carbonate as an additive for sodium-ion batteries: effect on the sodium cathode. Acta Phys-Chim Sin 2019;35:868-75.

130. Wu S, Su B, Kun N, et al. Fluorinated carbonate electrolyte with superior oxidative stability enables long-term cycle stability of Na2/3Ni1/3Mn2/3O2 cathodes in sodium-ion batteries. Adv Energy Mater 2020;11:2002737.

131. Shi J, Ding L, Wan Y, et al. Achieving long-cycling sodium-ion full cells in ether-based electrolyte with vinylene carbonate additive. J Energy Chem 2021;57:650-5.

132. Yang Z, He J, Lai WH, et al. Fire-retardant, stable-cycling and high-safety sodium ion battery. Angew Chem 2021;133:27292-300.

133. Law M, Ramar V, Balaya P. Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery. J Power Sources 2017;359:277-84.

134. Farhat D, Maibach J, Eriksson H, Edström K, Lemordant D, Ghamouss F. Towards high-voltage Li-ion batteries: reversible cycling of graphite anodes and Li-ion batteries in adiponitrile-based electrolytes. Electrochimica Acta 2018;281:299-311.

135. Song X, Meng T, Deng Y, et al. The effects of the functional electrolyte additive on the cathode material Na0.76Ni0.3Fe0.4Mn0.3O2 for sodium-ion batteries. Electrochimica Acta 2018;281:370-7.

136. Tong B, Song Z, Wan H, et al. Sulfur-containing compounds as electrolyte additives for lithium-ion batteries. InfoMat 2021;3:1364-92.

137. Xie D, Zhang M, Wu Y, Xiang L, Tang Y. A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Funct Mater 2020;30:1906770.

138. Welch J, Mogensen R, van Ekeren W, Eriksson H, Naylor AJ, Younesi R. Optimization of sodium bis(oxalato)borate (NaBOB) in triethyl phosphate (TEP) by electrolyte additives. J Electrochem Soc 2022;169:120523.

139. Nimkar A, Shpigel N, Malchik F, et al. Unraveling the role of fluorinated alkyl carbonate additives in improving cathode performance in sodium-ion batteries. ACS Appl Mater Interfaces 2021;13:46478-87.

140. Zuo W, Qiu J, Liu X, et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nat Commun 2020;11:3544.

141. Chen L, Kishore B, Song T, Walker M, Dancer C, Kendrick E. Improved lifetime of Na-ion batteries with a water-scavenging electrolyte additive. Front Energy Res 2022;10:925430.

142. Yu Y, Che H, Yang X, Deng Y, Li L, Ma ZF. Non-flammable organic electrolyte for sodium-ion batteries. Electrochem Commun 2020;110:106635.

143. Hueso KB, Armand M, Rojo T. High temperature sodium batteries: status, challenges and future trends. Energy Environ Sci 2013;6:734-49.

144. Feng J, Zhang Z, Li L, Yang J, Xiong S, Qian Y. Ether-based nonflammable electrolyte for room temperature sodium battery. J Power Sources 2015;284:222-6.

145. Zeng G, Liu Y, Gu C, et al. A nonflammable fluorinated carbonate electrolyte for sodium-ion batteries. Acta Phys-Chim Sin 2020;36:1905006-0.

146. Jia H, Yang Z, Xu Y, et al. Is nonflammability of electrolyte overrated in the overall safety performance of lithium ion batteries? Advanced Energy Materials 2023;13:2203144.

147. Ma L, Xia J, Dahn JR. Ternary electrolyte additive mixtures for Li-ion cells that promote long lifetime and less reactivity with charged electrodes at elevated temperatures. J Electrochem Soc 2015;162:A1170-4.

148. Ma L, Xia J, Xia X, Dahn JR. The impact of vinylene carbonate, fluoroethylene carbonate and vinyl ethylene carbonate electrolyte additives on electrode/electrolyte reactivity studied using accelerating rate calorimetry. J Electrochem Soc 2014;161:A1495-8.

149. Xiong DJ, Petibon R, Nie M, Ma L, Xia J, Dahn JR. Interactions between positive and negative electrodes in Li-ion cells operated at high temperature and high voltage. J Electrochem Soc 2016;163:A546-51.

150. Petibon R, Rotermund L, Nelson KJ, Gozdz AS, Xia J, Dahn JR. Study of electrolyte components in Li ion cells using liquid-liquid extraction and gas chromatography coupled with mass spectrometry. J Electrochem Soc 2014;161:A1167-72.

151. Petibon R, Chevrier VL, Aiken CP, et al. Studies of the capacity fade mechanisms of LiCoO2/Si-alloy: graphite cells. J Electrochem Soc 2016;163:A1146-56.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/