REFERENCES

1. Suntola T. Atomic layer epitaxy. Mater Sci Rep 1989;4:261-312.

2. Santinacci L. Atomic layer deposition: an efficient tool for corrosion protection. Curr Opin Colloid Interface Sci 2023;63:101674.

3. O’Neill BJ, Jackson DHK, Lee J, et al. Catalyst design with atomic layer deposition. ACS Catal 2015;5:1804-25.

4. Bakke JR, Pickrahn KL, Brennan TP, Bent SF. Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. Nanoscale 2011;3:3482-508.

5. Hossain MA, Khoo KT, Cui X, et al. Atomic layer deposition enabling higher efficiency solar cells: a review. Nano Mater Sci 2020;2:204-26.

6. Raiford JA, Oyakhire ST, Bent SF. Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells. Energy Environ Sci 2020;13:1997-2023.

7. Xing Z, Xiao J, Hu T, et al. Atomic layer deposition of metal oxides in perovskite solar cells: present and future. Small Methods 2020;4:2000588.

8. Sinha S, Nandi DK, Pawar PS, Kim SH, Heo J. A review on atomic layer deposited buffer layers for Cu(In,Ga)Se2(CIGS) thin film solar cells: past, present, and future. Solar Energy 2020;209:515-37.

9. Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 2014;7:982-8.

10. De Wolf S, Holovsky J, Moon SJ, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 2014;5:1035-9.

11. Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016;354:206-9.

12. George SM. Atomic layer deposition: an overview. Chem Rev 2010;110:111-31.

13. Yang Y, Luo Y, Ma S, Zhu C, Zhu L, Guo X. Advances of electron transport materials in perovskite solar cells: synthesis and application. Prog Chem 2021;33:281-302.

14. Lobe S, Bauer A, Uhlenbruck S, Fattakhova-Rohlfing D. Physical vapor deposition in solid-state battery development: from materials to devices. Adv Sci 2021;8:e2002044.

15. Wang M, Carmalt CJ. Film fabrication of perovskites and their derivatives for photovoltaic applications via chemical vapor deposition. ACS Appl Energy Mater 2022;5:5434-48.

16. Brinkmann KO, Gahlmann T, Riedl T. Atomic layer deposition of functional layers in planar perovskite solar cells. Solar RRL 2020;4:1900332.

17. Gordon RG, Hausmann D, Kim E, Shepard J. A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches. Chem Vap Depos 2003;9:73-8.

18. Puurunen RL. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys 2005;97:121301.

19. Putkonen M, Niinistö L. Organometallic precursors for atomic layer deposition. In: Precursor chemistry of advanced materials, Fischer RA, editor. Berlin: Springer; 2005. pp. 125-45.

20. Richey NE, de Paula C, Bent SF. Understanding chemical and physical mechanisms in atomic layer deposition. J Chem Phys 2020;152:040902.

21. Zhao R, Zhang K, Zhu J, et al. Surface passivation of organometal halide perovskites by atomic layer deposition: an investigation of the mechanism of efficient inverted planar solar cells. Nanoscale Adv 2021;3:2305-15.

22. Yu B, Tang F, Yang Y, et al. Impermeable atomic layer deposition for sputtering buffer layer in efficient semi-transparent and tandem solar cells via activating unreactive substrate. Adv Mater 2023;35:e2202447.

23. Zhang Y, Yang Y, Mbumba MT, et al. Research progress of buffer layer and encapsulation layer prepared by atomic layer deposition to improve the stability of perovskite solar cells. Solar RRL 2022;6:2200823.

24. Lee KM, Chang SH, Wang KH, et al. Thickness effects of ZnO thin film on the performance of tri-iodide perovskite absorber based photovoltaics. Solar Energy 2015;120:117-22.

25. Matsui T, Bivour M, Hermle M, Sai H. Atomic-layer-deposited TiOx nanolayers function as efficient hole-selective passivating contacts in silicon solar cells. ACS Appl Mater Interfaces 2020;12:49777-85.

26. Correa Baena JP, Steier L, Tress W, et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci 2015;8:2928-34.

27. Zardetto V, di Giacomo F, Lifka H, et al. Surface fluorination of ALD TiO2 electron transport layer for efficient planar perovskite solar cells. Adv Mater Inter 2018;5:1701456.

28. Jin TY, Li W, Li YQ, et al. High-performance flexible perovskite solar cells enabled by low-temperature ALD-assisted surface passivation. Adv Opt Mater 2018;6:1801153.

29. Choudhury D, Rajaraman G, Sarkar SK. Self limiting atomic layer deposition of Al2O3 on perovskite surfaces: a reality? Nanoscale 2016;8:7459-65.

30. Kuang Y, Zardetto V, van Gils R, et al. Low-temperature plasma-assisted atomic-layer-deposited SnO2 as an electron transport layer in planar perovskite solar cells. ACS Appl Mater Interfaces 2018;10:30367-78.

31. Lee Y, Lee S, Seo G, et al. Efficient planar perovskite solar cells using passivated tin oxide as an electron transport layer. Adv Sci 2018;5:1800130.

32. Hu T, Becker T, Pourdavoud N, et al. Indium-free perovskite solar cells enabled by impermeable tin-oxide electron extraction layers. Adv Mater 2017;29:1606656.

33. Ren N, Zhu C, Li R, et al. 50 °C low-temperature ALD SnO2 driven by H2O2 for efficient perovskite and perovskite/silicon tandem solar cells. Appl Phys Lett 2022;121:033502.

34. Hultqvist A, Aitola K, Sveinbjörnsson K, et al. Atomic layer deposition of electron selective SnOx and ZnO films on mixed halide perovskite: compatibility and performance. ACS Appl Mater Interfaces 2017;9:29707-16.

35. Zardetto V, Williams BL, Perrotta A, et al. Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustain Energy Fuels 2017;1:30-55.

36. Kruszyńska J, Ostapko J, Ozkaya V, et al. Atomic layer engineering of aluminum-doped zinc oxide films for efficient and stable perovskite solar cells. Adv Mater Inter 2022;9:2200575.

37. Behrendt A, Friedenberger C, Gahlmann T, et al. Highly robust transparent and conductive gas diffusion barriers based on tin oxide. Adv Mater 2015;27:5961-7.

38. Wang H, Liu Y, Liu H, et al. Effect of various oxidants on reaction mechanisms, self-limiting natures and structural characteristics of Al2O3 films grown by atomic layer deposition. Adv Mater Inter 2018;5:1701248.

39. Lee SU, Park H, Shin H, Park NG. Atomic layer deposition of SnO2 using hydrogen peroxide improves the efficiency and stability of perovskite solar cells. Nanoscale 2023;15:5044-52.

40. Kim H. Characteristics and applications of plasma enhanced-atomic layer deposition. Thin Solid Films 2011;519:6639-44.

41. Kim H. Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing. J Vac Sci Technol B 2003;21:2231-61.

42. Johnson RW, Hultqvist A, Bent SF. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 2014;17:236-46.

43. Potts SE, Keuning W, Langereis E, Dingemans G, van de Sanden MCM, Kessels WMM. Low temperature plasma-enhanced atomic layer deposition of metal oxide thin films. J Electrochem Soc 2010;157:P66.

44. Muñoz-Rojas D, Macmanus-Driscoll J. Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics. Mater Horiz 2014;1:314-20.

45. Poodt P, Knaapen R, Illiberi A, Roozeboom F, van Asten A. Low temperature and roll-to-roll spatial atomic layer deposition for flexible electronics. J Vac Sci Technol A 2012;30:01A142.

46. Illiberi A, Roozeboom F, Poodt P. Spatial atomic layer deposition of zinc oxide thin films. ACS Appl Mater Interfaces 2012;4:268-72.

47. Lindahl J, Hägglund C, Wätjen JT, Edoff M, Törndahl T. The effect of substrate temperature on atomic layer deposited zinc tin oxide. Thin Solid Films 2015;586:82-7.

48. Chistiakova G, Mews M, Wilks RG, Bär M, Korte L. In-system photoelectron spectroscopy study of tin oxide layers produced from tetrakis(dimethylamino)tin by plasma enhanced atomic layer deposition. J Vac Sci Technol A 2018;36:02D401.

49. Köhnen E, Jošt M, Morales-Vilches AB, et al. Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance. Sustain Energy Fuels 2019;3:1995-2005.

50. Hultqvist A, Jacobsson TJ, Svanström S, et al. SnOx atomic layer deposition on bare perovskite-an investigation of initial growth dynamics, interface chemistry, and solar cell performance. ACS Appl Energy Mater 2021;4:510-22.

51. Schulze TF, Korte L, Ruske F, Rech B. Band lineup in amorphous/crystalline silicon heterojunctions and the impact of hydrogen microstructure and topological disorder. Phys Rev B 2011;83:165314.

52. Puurunen RL, Vandervorst W. Island growth as a growth mode in atomic layer deposition: a phenomenological model. J Appl Phys 2004;96:7686-95.

53. Labbe M, Cadien K, Ivey DG. Growth of multiple island layers during iron oxide atomic layer deposition: an electron microscopy and spectroscopic ellipsometry investigation. J Phys Chem C 2022;126:19883-94.

54. Gilmer GH, Grabow MH. Models of thin film growth modes. JOM 1987;39:19-23.

55. Brinkmann KO, Zhao J, Pourdavoud N, et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nat Commun 2017;8:13938.

56. Yu X, Yan H, Peng Q. Improve the stability of hybrid halide perovskite via atomic layer deposition on activated phenyl-C61 butyric acid methyl ester. ACS Appl Mater Interfaces 2018;10:28948-54.

57. Gong J, Adnani M, Jones BT, et al. Nanoscale encapsulation of hybrid perovskites using hybrid atomic layer deposition. J Phys Chem Lett 2022;13:4082-9.

58. Wang W, Yang Z, Ding J, Kong J, Li X. Improving water-resistance of inverted flexible perovskite solar cells via tailoring the top electron-selective layers. Solar Energy Mater Solar Cells 2022;238:111609.

59. Liu J, Wu Y, Zhao Z, et al. Reducing damage of sputtering and improving conductivity of transparent electrodes for efficient semi-transparent perovskite solar cells. J Phys D Appl Phys 2023;56:365101.

60. Palmstrom AF, Eperon GE, Leijtens T, et al. Enabling flexible all-perovskite tandem solar cells. Joule 2019;3:2193-204.

61. Li W, Xu YX, Wang D, Chen F, Chen ZK. Inorganic perovskite light emitting diodes with ZnO as the electron transport layer by direct atomic layer deposition. Org Electron 2018;57:60-7.

62. Raiford JA, Boyd CC, Palmstrom AF, et al. Enhanced nucleation of atomic layer deposited contacts improves operational stability of perovskite solar cells in air. Adv Energy Mater 2019;9:1902353.

63. Yun HJ, Kim H, Choi BJ. Nucleation and growth behavior of aluminum nitride film using thermal atomic layer deposition. Ceram Int 2020;46:13372-6.

64. Baji Z, Lábadi Z, Horváth ZE, et al. Nucleation and growth modes of ALD ZnO. Cryst Growth Des 2012;12:5615-20.

65. Uğur A, Savacı U, Ay N, Turan S. Growth of ultrathin Al2O3 islands on hBN particles by atomic layer deposition in a custom fluidized bed reactor using Al(CH3) 3 and H2O. Appl Surf Sci 2021;537:147665.

66. Hagen DJ, Connolly J, Povey IM, Rushworth S, Pemble ME. Island coalescence during film growth: an underestimated limitation of Cu ALD. Adv Mater Inter 2017;4:1700274.

67. Wilson CA, Grubbs RK, George SM. Nucleation and growth during Al2O3 atomic layer deposition on polymers. Chem Mater 2005;17:5625-34.

68. Jur JS, Spagnola JC, Lee K, Gong B, Peng Q, Parsons GN. Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers. Langmuir 2010;26:8239-44.

69. Demelius L, Blatnik M, Unger K, Parlanti P, Gemmi M, Coclite AM. Shedding light on the initial growth of ZnO during plasma-enhanced atomic layer deposition on vapor-deposited polymer thin films. Appl Surf Sci 2022;604:154619.

70. Weiß A, Goldmann J, Kettunen S, et al. Conversion of ALD CuO thin films into transparent conductive p-type CuI thin films. Adv Mater Inter 2023;10:2201860.

71. Zhou J, Huang Q, Zhao Q, et al. Performance promotion of aluminum oxide capping layer through interface engineering for tunnel oxide passivating contacts. Solar Energy Mater Solar Cells 2022;245:111865.

72. Hagedorn S, Knauer A, Weyers M, Naumann F, Gargouri H. AlN and AlN/Al2O3 seed layers from atomic layer deposition for epitaxial growth of AlN on sapphire. J Vac Sci Technol A 2019;37:020914.

73. Lin G, Zhao MQ, Jia M, et al. Performance enhancement of monolayer MoS2 transistors by atomic layer deposition of high- k dielectric assisted by Al2O3 seed layer. J Phys D Appl Phys 2020;53:105103.

74. Yang H, Xiang D, Mao H, et al. Native oxide seeded spontaneous integration of dielectrics on exfoliated black phosphorus. ACS Appl Mater Interfaces 2020;12:24411-8.

75. Wolff CM, Caprioglio P, Stolterfoht M, Neher D. Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv Mater 2019;31:e1902762.

76. Xia J, Sohail M, Nazeeruddin MK. Efficient and stable perovskite solar cells by tailoring of interfaces. Adv Mater 2023;35:e2211324.

77. Zhao W, Duan Y. Advanced applications of atomic layer deposition in perovskite-based solar cells. Adv Photonics Res 2021;2:2100011.

78. Popov G, Mattinen M, Hatanpää T, et al. Atomic layer deposition of PbI2 thin films. Chem Mater 2019;31:1101-9.

79. Lin J, He Y, Mo H, et al. Substrate modifications for stability improvements of flexible perovskite solar cells. Energy Technol 2024;12:2300958.

80. Xiao K, Lin YH, Zhang M, et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 2022;376:762-7.

81. Xiong Z, Wu L, Zhou X, et al. Constructing tin oxides interfacial layer with gradient compositions for efficient perovskite/silicon tandem solar cells with efficiency exceeding 28%. Small 2024;20:e2308024.

82. Li J, Xing Z, Li D, et al. Suppressed ion migration in FA-rich perovskite photovoltaics through enhanced nucleation of encapsulation interface. Small 2024;20:e2305732.

83. Zheng Z, Xue Z, Zhao K, et al. Unveiling and overcoming instabilities in perovskite solar cells induced by atomic-layer-deposition tin oxide. Solar RRL 2024;8:2301076.

84. Park H, Jeong S, Kim E, Shin S, Shin H. Hole-transporting vanadium-containing oxide (V2O5-x) interlayers enhance stability of α-FAPbI3-based perovskite solar cells (~23%). ACS Appl Mater Interfaces 2022;14:42007-17.

85. Singh R, Ghosh S, Subbiah AS, Mahuli N, Sarkar SK. ALD Al2O3 on hybrid perovskite solar cells: unveiling the growth mechanism and long-term stability. Solar Energy Mater Solar Cells 2020;205:110289.

86. Seo S, Shin S, Kim E, Jeong S, Park NG, Shin H. Amorphous TiO2 coatings stabilize perovskite solar cells. ACS Energy Lett 2021;6:3332-41.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/