REFERENCES

1. Whittingham MS. History, evolution, and future status of energy storage. Proc IEEE 2012;100:1518-34.

2. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013;135:1167-76.

3. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414:359-67.

4. Ding Y, Cano ZP, Yu A, Lu J, Chen Z. Automotive Li-ion batteries: current status and future perspectives. Electrochem Energy Rev 2019;2:1-28.

5. Dahn JR, Zheng T, Liu Y, Xue JS. Mechanisms for lithium insertion in carbonaceous materials. Science 1995;270:590-3.

6. Palomares V, Casas-cabanas M, Castillo-martínez E, Han MH, Rojo T. Update on Na-based battery materials. A growing research path. Energy Environ Sci 2013;6:2312.

7. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 2012;5:5884.

8. Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 2011;21:3859-67.

9. Imtiaz S, Amiinu IS, Xu Y, Kennedy T, Blackman C, Ryan KM. Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Mater Today 2021;48:241-69.

10. Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 2021;17:e1903194.

11. Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater 2018;28:1703857.

12. An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 2018;12:12932-40.

13. Liu Q, Fan L, Ma R, et al. Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem Commun 2018;54:11773-6.

14. Hwang IS, Lee YH, Yoon JM, Hwa Y, Park CM. GaSb nanocomposite: new high-performance anode material for Na- and K-ion batteries. Compos Part B Eng 2022;243:110142.

15. Chen Y, Sun H, Guo J, et al. Research on carbon-based and metal-based negative electrode materials via DFT calculation for high potassium storage performance: a review. Energy Mater 2023;3:300044.

16. Fu T, Li PC, He HC, Ding SS, Cai Y, Zhang M. Electrospinning with sulfur powder to prepare CNF@G-Fe9S10 nanofibers with controllable particles distribution for stable potassium-ion storage. Rare Met 2023;42:111-21.

17. Finegan DP, Scheel M, Robinson JB, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat Commun 2015;6:6924.

18. Takada K. Solid state batteries with sulfide-based solid electrolytes. Solid State Ionics 2004;172:25-30.

19. Yu S, Siegel DJ. Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes. ACS Appl Mater Inter 2018;10:38151-8.

20. Lu Y, Zhao CZ, Yuan H, Cheng XB, Huang JQ, Zhang Q. Critical Current density in solid-state lithium metal batteries: mechanism, influences, and strategies. Adv Funct Mater 2021;31:2009925.

21. Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater 2006;18:2226-9.

22. Xia X, Dahn JR. Study of the reactivity of Na/hard carbon with different solvents and electrolytes. J Electrochem Soc 2012;159:A515-9.

23. Stevens DA, Dahn JR. The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 2001;148:A803.

24. Irisarri E, Ponrouch A, Palacin MR. Review - hard carbon negative electrode materials for sodium-ion batteries. J Electrochem Soc 2015;162:A2476-82.

25. Takada K, Inada T, Kajiyama A, et al. Solid-state lithium battery with graphite anode. Solid State Ionics 2003;158:269-74.

26. Höltschi L, Borca CN, Huthwelker T, et al. Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries. Electrochim Acta 2021;389:138735.

27. Park CM, Kim JH, Kim H, Sohn HJ. Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 2010;39:3115-41.

28. Liu N, Li W, Pasta M, Cui Y. Nanomaterials for electrochemical energy storage. Front Phys 2014;9:323-50.

29. Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-ion batteries. Chem Rev 2014;114:11444-502.

30. Nam KH, Park CM. Layered Sb2Te3 and its nanocomposite: a new and outstanding electrode material for superior rechargeable Li-ion batteries. J Mater Chem A 2016;4:8562-5.

31. Hwang IS, Lee YH, Ganesan V, Hwa Y, Park CM. High-energy-density gallium antimonide compound anode and optimized nanocomposite fabrication route for Li-ion batteries. ACS Appl Energy Mater 2022;5:8940-51.

32. Tian H, Tian H, Wang S, et al. High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode. Nat Commun 2020;11:5025.

33. Park CM, Sohn HJ. Quasi-intercalation and facile amorphization in layered ZnSb for Li-ion batteries. Adv Mater 2010;22:47-52.

34. Park CM, Sohn HJ. Novel antimony/aluminum/carbon nanocomposite for high-performance rechargeable lithium batteries. Chem Mater 2008;20:3169-73.

35. Zhao Q, Meng Y, Su L, Cen W, Wang Q, Xiao D. Nitrogen/oxygen codoped hierarchical porous Carbons/Selenium cathode with excellent lithium and sodium storage behavior. J Colloid Interface Sci 2022;608:265-74.

36. He B, Feng L, Hong G, et al. A generic F-doped strategy for biomass hard carbon to achieve fast and stable kinetics in sodium/potassium-ion batteries. Chem Eng J 2024;490:151636.

37. Sung JH, Park CM. Amorphized Sb-based composite for high-performance Li-ion battery anodes. J Electroanal Chem 2013;700:12-6.

38. Sung JH, Park CM. Sb-based nanostructured composite with embedded TiO2 for Li-ion battery anodes. Mater Lett 2013;98:15-8.

39. Chen X, Mu Y, Liao Z, et al. Advancing high-performance one-dimensional Si/carbon anodes: current status and challenges. Carbon Neutral 2024;3:199-221.

40. Ying H, Han WQ. Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv Sci 2017;4:1700298.

41. Wang A, Kadam S, Li H, Shi S, Qi Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Comput Mater 2018;4:15.

42. He M, Kravchyk K, Walter M, Kovalenko MV. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. Nano Lett 2014;14:1255-62.

43. Park CM, Jeon KJ. Porous structured SnSb/C nanocomposites for Li-ion battery anodes. Chem Commun 2011;47:2122-4.

44. Nam KH, Park CM. 2D layered Sb2Se3-based amorphous composite for high-performance Li- and Na-ion battery anodes. J Power Sources 2019;433:126639.

45. Choi JH, Ha CW, Choi HY, Seong JW, Park CM, Lee SM. Porous carbon-free SnSb anodes for high-performance Na-ion batteries. J Power Sources 2018;386:34-9.

46. Park CM, Sohn HJ. A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries. Electrochim Acta 2009;54:6367-73.

47. Park MG, Song JH, Sohn JS, Lee CK, Park CM. Co-Sb intermetallic compounds and their disproportionated nanocomposites as high-performance anodes for rechargeable Li-ion batteries. J Mater Chem A 2014;2:11391-9.

48. Park CM, Sohn HJ. Electrochemical Characteristics of TiSb2 and Sb/TiC/C nanocomposites as anodes for rechargeable Li-ion batteries. J Electrochem Soc 2010;157:A46.

49. Liu D, Liu ZJ, Li X, et al. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries. Small 2017;13:1702000.

50. Park CM, Sohn HJ. Antimonides (FeSb2, CrSb2) with orthorhombic structure and their nanocomposites for rechargeable Li-ion batteries. Electrochim Acta 2010;55:4987-94.

51. Seo JU, Park CM. Nanostructured SnSb/MOx (M = Al or Mg)/C composites: hybrid mechanochemical synthesis and excellent Li storage performances. J Mater Chem A 2013;1:15316.

52. Li H, Yamaguchi T, Matsumoto S, et al. Circumventing huge volume strain in alloy anodes of lithium batteries. Nat Commun 2020;11:1584.

53. Park CM, Hwa Y, Sung NE, Sohn HJ. Stibnite (Sb2S3) and its amorphous composite as dual electrodes for rechargeable lithium batteries. J Mater Chem 2010;20:1097-102.

54. Jang YH, Park CM. High-performance CoSbS-based Na-ion battery anodes. Mater Today Energy 2020;17:100470.

55. Wang F, Chen G, Zhang N, Liu X, Ma R. Engineering of carbon and other protective coating layers for stabilizing silicon anode materials. Carbon Energy 2019;1:219-45.

56. Meng W, Guo M, Cheng L, Bai Z, Yang F. Effect of polypyrrole coating on lithium storage for hollow Sb microspheres. J Electron Mater 2019;48:2233-41.

57. Gabaudan V, Touja J, Cot D, Flahaut E, Stievano L, Monconduit L. Double-walled carbon nanotubes, a performing additive to enhance capacity retention of antimony anode in potassium-ion batteries. Electrochem Commun 2019;105:106493.

58. Pfeifer K, Arnold S, Budak Ö, et al. Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion batteries. J Mater Chem A 2020;8:6092-104.

59. Wang S, Lee PK, Yang X, Rogach AL, Armstrong AR, Yu DYW. Polyimide-cellulose interaction in Sb anode enables fast charging lithium-ion battery application. Mater Today Energy 2018;9:295-302.

60. Park CM, Yoon S, Lee SI, Kim JH, Jung J, Sohn HJ. High-rate capability and enhanced cyclability of antimony-based composites for lithium rechargeable batteries. J Electrochem Soc 2007;154:A917.

61. Shin J, Kim S, Park H, Won Jang H, Cahill DG, Braun PV. Thermal conductivity of intercalation, conversion, and alloying lithium-ion battery electrode materials as function of their state of charge. Curr Opin Solid St Mater Sci 2022;26:100980.

62. Chang D, Huo H, Johnston KE, et al. Elucidating the origins of phase transformation hysteresis during electrochemical cycling of Li-Sb electrodes. J Mater Chem A 2015;3:18928-43.

63. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc 2012;134:20805-11.

64. Caputo R. An insight into sodiation of antimony from first-principles crystal structure prediction. J Electron Mater 2016;45:999-1010.

65. Yu S, Zhang X, Zhang P. Prediction of new structures of the Na-Sb alloy anode for Na-ion batteries. J Phys Chem C 2022;126:11468-74.

66. Yu DK, Park CM. Sb-based intermetallics and nanocomposites as stable and fast Na-ion battery anodes. Chem Eng J 2021;409:127380.

67. Tian W, Zhang S, Huo C, et al. Few-layer antimonene: anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batteries. ACS Nano 2018;12:1887-93.

68. Gabaudan V, Berthelot R, Stievano L, Monconduit L. Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries. J Phys Chem C 2018;122:18266-73.

69. Zheng J, Yang Y, Fan X, et al. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ Sci 2019;12:615-23.

70. Ko YN, Choi SH, Kim H, Kim HJ. One-pot formation of Sb-carbon microspheres with graphene sheets: potassium-ion storage properties and discharge mechanisms. ACS Appl Mater Interfaces 2019;11:27973-81.

71. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114:11503-618.

72. Bian X, Dong Y, Zhao D, et al. Microsized antimony as a stable anode in fluoroethylene carbonate containing electrolytes for rechargeable lithium-/sodium-ion batteries. ACS Appl Mater Interfaces 2020;12:3554-62.

73. Sun Q, Cao Z, Ma Z, et al. Dipole-dipole interaction induced electrolyte interfacial model to stabilize antimony anode for high-safety lithium-ion batteries. ACS Energy Lett 2022;7:3545-56.

74. Cai T, Sun Q, Cao Z, et al. Electrolyte additive-controlled interfacial models enabling stable antimony anodes for lithium-ion batteries. J Phys Chem C 2022;126:20302-13.

75. Liu X, Tian Y, Cao X, et al. Aerosol-assisted synthesis of spherical Sb/C composites as advanced anodes for lithium ion and sodium ion batteries. ACS Appl Energy Mater 2018;1:6381-7.

76. Schulze MC, Belson RM, Kraynak LA, Prieto AL. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries. Energy Stor Mater 2020;25:572-84.

77. Luo W, Li F, Gaumet J, et al. Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage. Adv Energy Mater 2018;8:1703237.

78. Zhang X, Lai F, Chen Z, He X, Li Q, Wang H. Metallic Sb nanoparticles embedded in carbon nanosheets as anode material for lithium ion batteries with superior rate capability and long cycling stability. Electrochim Acta 2018;283:1689-94.

79. Pan Q, Wu Y, Zheng F, et al. Facile synthesis of M-Sb (M = Ni, Sn) alloy nanoparticles embedded in N-doped carbon nanosheets as high performance anode materials for lithium ion batteries. Chem Eng J 2018;348:653-60.

80. Yu L, Zhang L, Fu J, Yun J, Kim KH. Hierarchical tiny-Sb encapsulated in MOFs derived-carbon and TiO2 hollow nanotubes for enhanced Li/Na-Ion half-and full-cell batteries. Chem Eng J 2021;417:129106.

81. Yang T, Zhong J, Liu J, et al. A general strategy for antimony-based alloy nanocomposite embedded in swiss-cheese-like nitrogen-doped porous carbon for energy storage. Adv Funct Mater 2021;31:2009433.

82. Coquil G, Fraisse B, Biscaglia S, Aymé-perrot D, Sougrati MT, Monconduit L. ZnSnSb2 anode: a solid solution behavior enabling high rate capability in Li-ion batteries. J Power Sources 2019;441:227165.

83. Su M, Li J, He K, et al. NiSb/nitrogen-doped carbon derived from Ni-based framework as advanced anode for lithium-ion batteries. J Colloid Interface Sci 2023;629:83-91.

84. Pan Q, Wu Y, Zhong W, et al. Carbon nanosheets encapsulated NiSb nanoparticles as advanced anode materials for lithium-ion batteries. Energy Environ Mater 2020;3:186-91.

85. Yin W, Chai W, Wang K, Ye W, Rui Y, Tang B. Facile synthesis of Sb nanoparticles anchored on reduced graphene oxides as excellent anode materials for lithium-ion batteries. J Alloy Compd 2019;797:1249-57.

86. Wang H, Yang X, Wu Q, et al. Encapsulating silica/antimony into porous electrospun carbon nanofibers with robust structure stability for high-efficiency lithium storage. ACS Nano 2018;12:3406-16.

87. Lee JO, Seo JU, Song JH, Park CM, Lee CK. Electrochemical characteristics of ternary compound CoSbS for application in Li secondary batteries. Electrochem Commun 2013;28:71-4.

88. Park MG, Lee CK, Park CM. Amorphized ZnSb-based composite anodes for high-performance Li-ion batteries. RSC Adv 2014;4:5830.

89. Lu H, Wu L, Xiao L, Ai X, Yang H, Cao Y. Investigation of the effect of fluoroethylene carbonate additive on electrochemical performance of Sb-based anode for sodium-ion batteries. Electrochim Acta 2016;190:402-8.

90. Bodenes L, Darwiche A, Monconduit L, Martinez H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J Power Sources 2015;273:14-24.

91. Liu Y, Zhou B, Liu S, Ma Q, Zhang WH. Galvanic replacement synthesis of highly uniform Sb nanotubes: reaction mechanism and enhanced sodium storage performance. ACS Nano 2019;13:5885-92.

92. Liu Y, Qing Y, Zhou B, et al. Yolk-shell Sb@Void@Graphdiyne nanoboxes for high-rate and long cycle life sodium-ion batteries. ACS Nano 2023;17:2431-9.

93. Li P, Yu L, Ji S, et al. Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries. Chem Eng J 2019;374:502-10.

94. Chen B, Qin H, Li K, et al. Yolk-shelled Sb@C nanoconfined nitrogen/sulfur co-doped 3D porous carbon microspheres for sodium-ion battery anode with ultralong high-rate cycling. Nano Energy 2019;66:104133.

95. Li H, Wang K, Zhou M, et al. Facile tailoring of multidimensional nanostructured Sb for sodium storage applications. ACS Nano 2019;13:9533-40.

96. Yang Y, Shi W, Leng S, Cheng H. Multidimensional antimony nanomaterials tailored by electrochemical engineering for advanced sodium-ion and potassium-ion batteries. J Colloid Interface Sci 2022;628:41-52.

97. Ma W, Wang J, Gao H, et al. A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy Stor Mater 2018;13:247-56.

98. Xie M, Li C, Ren S, et al. Ultrafine Sb nanoparticles in situ confined in covalent organic frameworks for high-performance sodium-ion battery anodes. J Mater Chem A 2022;10:15089-100.

99. Zheng X, You J, Fan J, et al. Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando XRD analysis. Nano Energy 2020;77:105123.

100. Ma W, Yin K, Gao H, Niu J, Peng Z, Zhang Z. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy 2018;54:349-59.

101. Gao H, Niu J, Zhang C, et al. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries. ACS Nano 2018;12:3568-77.

102. Pan J, Yu K, Mao H, et al. Crystalline Sb or Bi in amorphous Ti-based oxides as anode materials for sodium storage. Chem Eng J 2020;380:122624.

103. Choi JH, Ha CW, Choi HY, et al. Sb2S3 embedded in amorphous P/C composite matrix as high-performance anode material for sodium ion batteries. Electrochim Acta 2016;210:588-95.

104. Nam KH, Choi JH, Park CM. Highly reversible Na-ion reaction in nanostructured Sb2Te3-C composites as Na-ion battery anodes. J Electrochem Soc 2017;164:A2056-64.

105. Zhang Q, Mao J, Pang WK, et al. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv Energy Mater 2018;8:1703288.

106. Zhou L, Cao Z, Zhang J, et al. Electrolyte-mediated stabilization of high-capacity micro-sized antimony anodes for potassium-ion batteries. Adv Mater 2021;33:2005993.

107. Du X, Gao Y, Zhang B. Building elastic solid electrolyte interphases for stabilizing microsized antimony anodes in potassium ion batteries. Adv Funct Mater 2021;31:2102562.

108. Shi Y, Wang L, Zhou D, Wu T, Xiao Z. A flower-like Sb4O5Cl2 cluster-based material as anode for potassium ion batteries. Appl Surf Sci 2022;583:152509.

109. Liu X, Zhu J, Yue L, et al. Green and scalable template-free strategy to fabricate honeycomb-like interconnected porous micro-sized layered Sb for high-performance potassium storage. Small 2022;18:2204552.

110. Imtiaz S, Kapuria N, Amiinu IS, et al. Directly deposited antimony on a copper silicide nanowire array as a high-performance potassium-ion battery anode with a long cycle life. Adv Funct Mater 2023;33:2209566.

111. Guo X, Gao H, Wang S, et al. MXene-based aerogel anchored with antimony single atoms and quantum dots for high-performance potassium-ion batteries. Nano Lett 2022;22:1225-32.

112. He X, Liu Z, Liao J, et al. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J Mater Chem A 2019;7:9629-37.

113. Shi X, Liu W, Zhao S, et al. Integrated anodes from heteroatoms (N, S, and F) co-doping antimony/carbon composite for efficient alkaline ion (Li+/K+) storage. ACS Appl Energy Mater 2022;5:12925-36.

114. Han Y, Li T, Li Y, et al. Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. Energy Stor Mater 2019;20:46-54.

115. Cao K, Liu H, Jia Y, et al. Flexible antimony@carbon integrated anode for high-performance potassium-ion battery. Adv Mater Technol 2020;5:2000199.

116. Xiong P, Wu J, Zhou M, Xu Y. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 2020;14:1018-26.

117. Liu J, Zhang D, Cui J, et al. Construction of the fast potassiation path in SbxBi1-x@NC anode with ultrahigh cycling stability for potassium-ion batteries. Small 2023;19:2301444.

118. Ding H, Wang J, Fan L, et al. Sn-Sb compounds with novel structure for stable potassium storage. Chem Eng J 2020;395:125147.

119. Yi Z, Lin N, Zhang W, Wang W, Zhu Y, Qian Y. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale 2018;10:13236-41.

120. Baek S, Jie S, Lee B. Effects of fluoroethylene carbonate additive on potassium metal anode. J Mech Sci Technol 2023;37:3657-65.

121. Yoon SU, Kim H, Jin HJ, Yun YS. Effects of fluoroethylene carbonate-induced solid-electrolyte-interface layers on carbon-based anode materials for potassium ion batteries. Appl Surf Sci 2021;547:149193.

122. Wang S, Wu Y, Ma T, Chen L, Li H, Wu F. Thermal stability between sulfide solid electrolytes and oxide cathode. ACS Nano 2022;16:16158-76.

123. Lewis JA, Cavallaro KA, Liu Y, Mcdowell MT. The promise of alloy anodes for solid-state batteries. Joule 2022;6:1418-30.

124. Afyon S, Kravchyk KV, Wang S, et al. Building better all-solid-state batteries with Li-garnet solid electrolytes and metalloid anodes. J Mater Chem A 2019;7:21299-308.

125. Mo F, Ruan J, Fu W, et al. Revealing the role of liquid metals at the anode-electrolyte interface for all solid-state lithium-ion batteries. ACS Appl Mater Interfaces 2020;12:38232-40.

126. Long Z, Ruan J, Li S, et al. Could capacitive behavior be triggered in inorganic electrolyte-based all-solid-state batteries? Adv Funct Mater 2022;32:2205667.

127. Kumari P, Sharma K, Pal P, Kumar M, Ichikawa T, Jain A. Highly efficient & stable Bi & Sb anodes using lithium borohydride as solid electrolyte in Li-ion batteries. RSC Adv 2019;9:13077-81.

128. Sharma K, Singh R, Ichikawa T, Kumar M, Jain A. Lithiation mechanism of antimony chalcogenides (Sb2X3; X = S, Se, Te) electrodes for high-capacity all-solid-state Li-ion battery. Int J Energy Res 2021;45:11135-45.

129. Sharma K, Singh R, Tripathi B, Ichikawa T, Kumar M, Jain A. All-solid-state Li-ion batteries using a combination of Sb2S3/Li2S-P2S5/acetylene black as the electrode composite and LiBH4 as the electrolyte. ACS Appl Energy Mater 2021;4:6269-76.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/