REFERENCES

1. Xu J, Zhang J, Pollard TP, et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023;614:694-700.

2. Ning Z, Li G, Melvin DLR, et al. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 2023;618:287-93.

3. Wang CY, Liu T, Yang XG, et al. Fast charging of energy-dense lithium-ion batteries. Nature 2022;611:485-90.

4. He M, Chen J, Hu A, Yan Z, Cao L, Long J. Manipulating cation-water chemistry to inhibit hydrogen evolution of zinc metal anodes. Energy Stor Mater 2023;62:102941.

5. Zou R, Liu W, Ran F. Sulfur-containing polymer cathode materials: from energy storage mechanism to energy density. InfoMat 2022;4:e12319.

6. Li Z, Sami I, Yang J, Li J, Kumar RV, Chhowalla M. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries. Nat Energy 2023;8:84-93.

7. Wang G, Zhu M, Zhang Y, et al. Double interface regulation: toward highly stable lithium metal anode with high utilization. InfoMat 2022;4:e12293.

8. Zhao C, Yan Z, Zhou B, et al. Identifying the role of lewis-base sites for the chemistry in lithium-oxygen batteries. Angew Chem Int Ed 2023;62:e202302746.

9. Hu A, Chen W, Du X, et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ Sci 2021;14:4115-24.

10. Hu A, Lv W, Lei T, et al. Heterostructured NiS2/ZnIn2S4 realizing toroid-like Li2O2 deposition in lithium-oxygen batteries with low-donor-number solvents. ACS Nano 2020;14:3490-9.

11. Kim MS, Zhang Z, Rudnicki PE et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat Mater 2022;21:445-54.

12. Hu A, Li F, Chen W, et al. Ion transport kinetics in low-temperature lithium metal batteries. Adv Energy Mater 2022;12:2202432.

13. Yin Y, Yang Y, Cheng D, et al. Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries. Nat Energy 2022;7:548-59.

14. Hu A, Zhou M, Lei T, et al. Optimizing redox reactions in aprotic lithium-sulfur batteries. Adv Energy Mater 2020;10:2002180.

15. Zhou B, Li T, Hu A, et al. Scalable fabrication of ultra-fine lithiophilic nanoparticles encapsulated in soft buffered hosts for long-life anode-free Li2S-based cells. Nanoscale 2023;15:15318-27.

16. Meng Y, Zhou D, Liu R, et al. Designing phosphazene-derivative electrolyte matrices to enable high-voltage lithium metal batteries for extreme working conditions. Nat Energy 2023;8:1023-33.

17. Chen S, Zheng J, Yu L, et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2018;2:1548-58.

18. Yang B, Pan Y, Li T, et al. High-safety lithium metal pouch cells for extreme abuse conditions by implementing flame-retardant perfluorinated gel polymer electrolytes. Energy Stor Mater 2024;65:103124.

19. Li Y, Hu A, Gan X, et al. Synergy of in-situ heterogeneous interphases tailored lithium deposition. Nano Res 2023;16:8304-12.

20. Phan AL, Jayawardana C, Le PM, et al. Solvent-free electrolyte for high-temperature rechargeable lithium metal batteries. Adv Funct Mater 2023;33:2301177.

21. Wang S, Xu K, Song H, et al. A high-energy long-cycling solid-state lithium-metal battery operating at high temperatures. Adv Energy Mater 2022;12:2201866.

22. Zhou Q, Dong S, Lv Z, et al. Lithium metal batteries: a temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries (Adv. Energy Mater. 6/2020). Adv Energy Mater 2020;10:2070023.

23. Zhu GR, Zhang Q, Liu QS, et al. Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries. Nat Commun 2023;14:4617.

24. Yuan S, Ding K, Zeng X, et al. Advanced nonflammable organic electrolyte promises safer Li-metal batteries: from solvation structure perspectives. Adv Mater 2023;35:e2206228.

25. Liu Q, Liu R, Cui Y, et al. Dendrite-free and long-cycling lithium metal battery enabled by ultrathin, 2D shield-defensive, and single lithium-ion conducting polymeric membrane. Adv Mater 2022;34:e2108437.

26. Kim J, Engelhard MH, Lu B, et al. High current-density-charging lithium metal batteries enabled by double-layer protected lithium metal anode. Adv Funct Mater 2022;32:2207172.

27. Liang J, Chen Q, Liao X, et al. A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew Chem Int Ed 2020;59:6561-6.

28. Sheng O, Jin C, Yang T, Ju Z, Luo J, Tao X. Designing biomass-integrated solid polymer electrolytes for safe and energy-dense lithium metal batteries. Energy Environ Sci 2023;16:2804-24.

29. Li R, Fan Y, Zhao C, et al. Air-stable protective layers for lithium anode achieving safe lithium metal batteries. Small Methods 2023;7:e2201177.

30. Huang L, Lu T, Xu G, et al. Thermal runaway routes of large-format lithium-sulfur pouch cell batteries. Joule 2022;6:906-22.

31. Zhang X, Huang L, Xie B, et al. Deciphering the thermal failure mechanism of anode-free lithium metal pouch batteries. Adv Energy Mater 2023;13:2203648.

32. Chen R, Nolan AM, Lu J, et al. The thermal stability of lithium solid electrolytes with metallic lithium. Joule 2020;4:812-21.

33. Wang J, Yang K, Sun S, et al. Advances in thermal-related analysis techniques for solid-state lithium batteries. InfoMat 2023;5:e12401.

34. Feng X, Ren D, He X, Ouyang M. Mitigating thermal runaway of lithium-ion batteries. Joule 2020;4:743-70.

35. Yang S, Hu J, Jiang F, Yuan H, Park HS, Huang J. Safer solid-state lithium metal batteries: mechanisms and strategies. InfoMat 2024;6:e12512.

36. Gou J, Zhang Z, Wang S, Huang J, Cui K, Wang H. An ultrahigh modulus gel electrolytes reforming the growing pattern of Li dendrites for interfacially stable lithium-metal batteries. Adv Mater 2024;36:e2309677.

37. Cavers H, Molaiyan P, Abdollahifar M, Lassi U, Kwade A. Perspectives on improving the safety and sustainability of high voltage lithium-ion batteries through the electrolyte and separator region. Adv Energy Mater 2022;12:2200147.

38. Lee S, Park K, Koo B, et al. Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes. Adv Funct Mater 2020;30:2003132.

39. Zhang L, Min F, Luo Y, et al. Practical 4.4 V Li||NCM811 batteries enabled by a thermal stable and HF free carbonate-based electrolyte. Nano Energy 2022;96:107122.

40. Hu L, Wang J, Wang K, et al. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries. Nat Commun 2023;14:3807.

41. Wang C, Xu BB, Zhang X, et al. Ion hopping: design principles for strategies to improve ionic conductivity for inorganic solid electrolytes. Small 2022;18:e2107064.

42. Zhao C, Pan Y, Li R, et al. A safe anode-free lithium metal pouch cell enabled by integrating stable quasi-solid electrolytes with oxygen-free cathodes. Chem Eng J 2023;463:142386.

43. Jia H, Onishi H, Wagner R, Winter M, Cekic-Laskovic I. Intrinsically safe gel polymer electrolyte comprising flame-retarding polymer matrix for lithium ion battery application. ACS Appl Mater Interfaces 2018;10:42348-55.

44. Liu K, Liu W, Qiu Y, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci Adv 2017;3:e1601978.

45. Jaumaux P, Liu Q, Zhou D, et al. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew Chem Int Ed 2020;59:9134-42.

46. Son K, Hwang SM, Woo S, Paik M, Song EH, Kim Y. Thermal and chemical characterization of the solid-electrolyte interphase in Li-ion batteries using a novel separator sampling method. J Power Sources 2019;440:227083.

47. Zhang Q, Zhang X, Yuan H, Huang J. Thermally stable and nonflammable electrolytes for lithium metal batteries: progress and perspectives. Small Science 2021;1:2100058.

48. Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 2011;158:R1.

49. Fu C, Venturi V, Kim J, et al. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat Mater 2020;19:758-66.

50. Chen J, Cheng Z, Liao Y, Yuan L, Li Z, Huang Y. Selection of redox mediators for reactivating dead Li in lithium metal batteries. Adv Energy Mater 2022;12:2201800.

51. Gan Y, Liu M, Tan R, et al. Flame-retardant crosslinked polymer stabilizes graphite-silicon composite anode for self-extinguishing lithium-ion batteries. Adv Energy Mater 2022;12:2202779.

52. Tian X, Yi Y, Fang B, et al. Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries. Chem Mater 2020;32:9821-48.

53. Li S, Zhang S, Chai S, et al. Structured solid electrolyte interphase enable reversible Li electrodeposition in flame-retardant phosphate-based electrolyte. Energy Stor Mater 2021;42:628-35.

54. Huang Q, Li X, Zhang G, Weng J, Wang Y, Deng J. Innovative thermal management and thermal runaway suppression for battery module with flame retardant flexible composite phase change material. J Clean Prod 2022;330:129718.

55. Xie J, Qiao S, Wang Y, et al. Three-in-one fire-retardant poly(phosphate)-based fast ion-conductor for all-solid-state lithium batteries. J Energy Chem 2023;80:324-34.

56. Du Y, Liu X, Chen L, et al. 3D hierarchical fireproof gel polymer electrolyte towards high-performance and comprehensive safety lithium-ion batteries. Chem Eng J 2023;476:146605.

57. Zhang C, Lu Z, Song M, et al. Highly oxidation-resistant ether gel electrolytes for 4.7 V high-safety lithium metal batteries. Adv Energy Mater 2023;13:2203870.

58. Zhu J, Zhang J, Zhao R, et al. In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries. Energy Stor Mater 2023;57:92-101.

59. Le Mong A, Kim D. Acceleration of selective lithium ion transport of PAES-g-2PEG self-assembled flexible solid-state electrolytes for lithium secondary batteries. Energy Stor Mater 2022;47:394-407.

60. Yang SJ, Yao N, Jiang FN, et al. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angew Chem Int Ed 2022;61:e202214545.

61. Jiang FN, Cheng XB, Yang SJ, et al. Thermoresponsive electrolytes for safe lithium-metal batteries. Adv Mater 2023;35:e2209114.

62. Zhang S, Sun F, Du X, et al. In situ -polymerized lithium salt as a polymer electrolyte for high-safety lithium metal batteries. Energy Environ Sci 2023;16:2591-602.

63. Huang X, Huang S, Wang T, et al. Polyether-b-amide based solid electrolytes with well-adhered interface and fast kinetics for ultralow temperature solid-state lithium metal batteries. Adv Funct Mater 2023;33:2300683.

64. Ouyang D, Chen M, Liu J, Wei R, Weng J, Wang J. Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions. RSC Adv 2018;8:33414-24.

65. Zhou Z, Li M, Zhou X, Li L, Ju X, Yang L. Investigating thermal runaway triggering mechanism of the prismatic lithium iron phosphate battery under thermal abuse. Renew Energy 2024;220:119674.

66. Jiang G, Liu J, Wang Z, Ma J. Stable non-flammable phosphate electrolyte for lithium metal batteries via solvation regulation by the additive. Adv Funct Mater 2023;33:2300629.

67. Wang X, He W, Xue H, et al. A nonflammable phosphate-based localized high-concentration electrolyte for safe and high-voltage lithium metal batteries. Sustain Energy Fuels 2022;6:1281-8.

68. Zhang S, Li S, Lu Y. Designing safer lithium-based batteries with nonflammable electrolytes: a review. eScience 2021;1:163-77.

69. Tan S, Yue J, Tian Y, et al. In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. Energy Stor Mater 2021;39:186-93.

70. Xiao L, Zeng Z, Liu X, et al. Stable Li metal anode with “ion-solvent-coordinated” nonflammable electrolyte for safe Li metal batteries. ACS Energy Lett 2019;4:483-8.

71. Chen J, Yang Z, Liu G, et al. Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries. Energy Stor Mater 2020;25:305-12.

72. Long M, Wu G, Wang X, Wang Y. Self-adaptable gel polymer electrolytes enable high-performance and all-round safety lithium ion batteries. Energy Stor Mater 2022;53:62-71.

73. Lu D, Zhang S, Li J, et al. Transformed solvation structure of noncoordinating flame-retardant assisted propylene carbonate enabling high voltage Li-Ion batteries with high safety and long cyclability. Adv Energy Mater 2023;13:2300684.

74. Fan X, Ji X, Chen L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat Energy 2019;4:882-90.

75. Liu Y, Tao X, Wang Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 2022;375:739-45.

76. Wu J, Wang X, Liu Q, et al. A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nat Commun 2021;12:5746.

77. Hu A, Chen W, Li F, et al. Nonflammable polyfluorides-anchored quasi-solid electrolytes for ultra-safe anode-free lithium pouch cells without thermal runaway. Adv Mater 2023;35:e2304762.

78. Liu F, Lan T, Chen K et al. In situ polymerized flame retardant gel electrolyte for high-performance and safety-enhanced lithium metal batteries. ACS Appl Mater Interfaces 2023;15:23136-45.

79. Das S, Bhattacharyya AJ. Influence of water and thermal history on ion transport in lithium salt-succinonitrile plastic crystalline electrolytes. Solid State Ionics 2010;181:1732-9.

80. Hu P, Chai J, Duan Y, Liu Z, Cui G, Chen L. Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J Mater Chem A 2016;4:10070-83.

81. Sun Q, Wang S, Ma Y, et al. Fumaronitrile-fixed in-situ gel polymer electrolyte balancing high safety and superior electrochemical performance for Li metal batteries. Energy Stor Mater 2022;44:537-46.

82. Zhang D, Shi Y, An J, Yang S, Li B. Triallyl cyanurate copolymerization delivered nonflammable and fast ion conducting elastic polymer electrolytes. J Mater Chem A 2022;10:23095-102.

83. Zhang Q, Zhang X, Hou L, et al. Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries. Adv Energy Mater 2022;12:2200139.

84. Liu Y, Li C, Li C, et al. Porous, robust, thermally stable, and flame retardant nanocellulose/polyimide separators for safe lithium-ion batteries. J Mater Chem A 2023;11:23360-9.

85. Zhang H, Chen J, Liu J, et al. Gel electrolyte with flame retardant polymer stabilizing lithium metal towards lithium-sulfur battery. Energy Stor Mater 2023;61:102885.

86. Zhang Q, Liu X, Li H, et al. A multifunctional silicon-doped polyether network for double stable interfaces in quasi-solid-state lithium metal batteries. Small 2022;18:e2106395.

87. Chen Y, Ling C, Long K, et al. A siloxane-based self-healing gel electrolyte with deep eutectic solvents for safe quasi-solid-state lithium metal batteries. Chem Eng J 2024;488:150888.

88. Yang JH, Jeong YK, Kim W. Dual flame-retardant mechanism-assisted suppression of thermal runaway in lithium metal batteries with improved electrochemical performances. Adv Energy Mater 2024:2304366.

89. Roh Y, Kim D, Jin D, et al. Enhanced safety of lithium ion batteries through a novel functional separator with encapsulated flame retardant and hydroxide ceramics. Chem Eng J 2023;474:145937.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/