REFERENCES

1. Davidson DJ. Exnovating for a renewable energy transition. Nat Energy 2019;4:254-6.

2. Whittingham MS. History, evolution, and future status of energy storage. Proc IEEE 2012;100:1518-34.

3. Kim H, Boysen DA, Newhouse JM, et al. Liquid metal batteries: past, present, and future. Chem Rev 2013;113:2075-99.

4. Chao D, Zhou W, Xie F, et al. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci Adv 2020;6:eaba4098.

5. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013;135:1167-76.

6. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2010;22:587-603.

7. Winter M, Barnett B, Xu K. Before Li ion batteries. Chem Rev 2018;118:11433-56.

8. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 2011;4:3243-62.

9. Gao X, Zhou Y, Han D, et al. Thermodynamic understanding of Li-dendrite formation. Joule 2020;4:1864-79.

10. Zhang X, Wang A, Liu X, Luo J. Dendrites in lithium metal anodes: suppression, regulation, and elimination. ACC Chem Res 2019;52:3223-32.

11. Peled E, Menkin S. Review - SEI: past, present and future. J Electrochem Soc 2017;164:A1703.

12. Liu Q, Cresce A, Schroeder M, et al. Insight on lithium metal anode interphasial chemistry: reduction mechanism of cyclic ether solvent and SEI film formation. Energy Stor Mater 2019;17:366-73.

13. Lu J, Wu T, Amine K. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat Energy 2017;2:17011.

14. Lagadec MF, Zahn R, Wood V. Characterization and performance evaluation of lithium-ion battery separators. Nat Energy 2019;4:16-25.

15. Atkins D, Ayerbe E, Benayad A, et al. Understanding battery interfaces by combined characterization and simulation approaches: challenges and perspectives. Adv Energy Mater 2022;12:2102687.

16. Nazri G, Muller RH. In situ X-ray diffraction of surface layers on lithium in nonaqueous electrolyte. J Electrochem Soc 1985;132:1385.

17. Balasubramanian M, Sun X, Yang X, Mcbreen J. In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries. J Power Sources 2001;92:1-8.

18. Waluś S, Barchasz C, Colin JF, et al. New insight into the working mechanism of lithium-sulfur batteries: in situ and operando X-ray diffraction characterization. Chem Commun 2013;49:7899-901.

19. Xia M, Liu T, Peng N, et al. Lab-scale in situ X-ray diffraction technique for different battery systems: designs, applications, and perspectives. Small Methods 2019;3:1900119.

20. Guo JZ, Wang PF, Wu XL, et al. High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance. Adv Mater 2017;29:1701968.

21. Benayad A, Morales-Ugarte JE, Santini CC, Bouchet R. Operando XPS: a novel approach for probing the lithium/electrolyte interphase dynamic evolution. J Phys Chem A 2021;125:1069-81.

22. Hikima K, Shimizu K, Kiuchi H, et al. Reaction mechanism of Li2MnO3 electrodes in an all-solid-state thin-film battery analyzed by operando hard X-ray photoelectron spectroscopy. J Am Chem Soc 2022;144:236-47.

23. Shutthanandan V, Nandasiri M, Zheng J, et al. Applications of XPS in the characterization of battery materials. J Electron Spectros Relat Phenomena 2019;231:2-10.

24. Zhang Z, Said S, Smith K, et al. Characterizing batteries by in situ electrochemical atomic force microscopy: a critical review. Adv Energy Mater 2021;11:2101518.

25. Lang S, Shi Y, Hu X, Yan H, Wen R, Wan L. Recent progress in the application of in situ atomic force microscopy for rechargeable batteries. Curr Opin Electrochem 2019;17:134-42.

26. Liu T, Lin L, Bi X, et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat Nanotechnol 2019;14:50-6.

27. Ning Z, Jolly DS, Li G, et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat Mater 2021;20:1121-9.

28. Lu X, Bertei A, Finegan DP, et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling. Nat Commun 2020;11:2079.

29. Jervis R, Kok MD, Neville TP, et al. In situ compression and X-ray computed tomography of flow battery electrodes. J Energy Chem 2018;27:1353-61.

30. Kodama M, Komiyama S, Ohashi A, Horikawa N, Kawamura K, Hirai S. High-pressure in situ X-ray computed tomography and numerical simulation of sulfide solid electrolyte. J Power Sources 2020;462:228160.

31. Bhattacharyya R, Key B, Chen H, Best AS, Hollenkamp AF, Grey CP. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat Mater 2010;9:504-10.

32. Liu X, Liang Z, Xiang Y, et al. Solid-state NMR and MRI spectroscopy for Li/Na batteries: materials, interface, and in situ characterization. Adv Mater 2021;33:e2005878.

33. Li J, Chen S, Ke F, Wei G, Huang L, Sun S. In situ microscope FTIR spectroscopic studies of interfacial reactions of Sn-Co alloy film anode of lithium ion battery. J Electroanal Chem 2010;649:171-6.

34. Cheng H, Zhu C, Lu M, Yang Y. In situ micro-FTIR study of the solid-solid interface between lithium electrode and polymer electrolytes. J Power Sources 2007;174:1027-31.

35. Cheng Q, Wei L, Liu Z, et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nat Commun 2018;9:2942.

36. Xue L, Li Y, Hu A, et al. In situ/operando raman techniques in lithium-sulfur batteries. Small Struct 2022;3:2100170.

37. Gong C, Pu SD, Gao X, et al. Revealing the role of fluoride-rich battery electrode interphases by operando transmission electron microscopy. Adv Energy Mater 2021;11:2003118.

38. Zhu YG, Leverick G, Giordano L, et al. Nitrate-mediated four-electron oxygen reduction on metal oxides for lithium-oxygen batteries. Joule 2022;6:1887-903.

39. Li F, Li ML, Wang HF, et al. Oxygen vacancy-mediated growth of amorphous discharge products toward an ultrawide band light-assisted Li-O2 batteries. Adv Mater 2022;34:e2107826.

40. Chen B, Zhang H, Xuan J, Offer GJ, Wang H. Seeing is believing: in situ/operando optical microscopy for probing electrochemical energy systems. Adv Mater Technol 2020;5:2000555.

41. Merryweather AJ, Schnedermann C, Jacquet Q, Grey CP, Rao A. Operando optical tracking of single-particle ion dynamics in batteries. Nature 2021;594:522-8.

42. Serra-Maia R, Kumar P, Meng AC, et al. Nanoscale chemical and structural analysis during in situ scanning/transmission electron microscopy in liquids. ACS Nano 2021;15:10228-40.

43. Bülter H, Peters F, Schwenzel J, Wittstock G. Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy. Angew Chem Int Ed 2014;53:10531-5.

44. Woods J, Bhattarai N, Chapagain P, Yang Y, Neupane S. In situ transmission electron microscopy observations of rechargeable lithium ion batteries. Nano Energy 2019;56:619-40.

45. Zhang C, Firestein KL, Fernando JFS, Siriwardena D, von Treifeldt JE, Golberg D. Recent progress of in situ transmission electron microscopy for energy materials. Adv Mater 2020;32:e1904094.

46. Fan Z, Zhang L, Baumann D, et al. In situ transmission electron microscopy for energy materials and devices. Adv Mater 2019;31:e1900608.

47. Fahad S, Wei Z, Kushima A. In-situ TEM observation of fast and stable reaction of lithium polysulfide infiltrated carbon composite and its application as a lithium sulfur battery electrode for improved cycle lifetime. J Power Sources 2021;506:230175.

48. Wen Y, Ding S, Ma C, et al. In situ TEM visualization of Ag catalysis in Li-O2 nanobatteries. Nano Res 2023;16:6833-9.

49. Wang K, Hua W, Huang X, et al. Synergy of cations in high entropy oxide lithium ion battery anode. Nat Commun 2023;14:1487.

50. Zhang Y, Zhao W, Kang C, et al. Phase-junction engineering triggered built-in electric field for fast-charging batteries operated at -30 °C. Matter 2023;6:1928-44.

51. Ye W, Li X, Zhang B, et al. Superfast mass transport of Na/K via mesochannels for dendrite-free metal batteries. Adv Mater 2023;35:e2210447.

52. Wang H, Liu F, Yu R, Wu J. Unraveling the reaction mechanisms of electrode materials for sodium-ion and potassium-ion batteries by in situ transmission electron microscopy. Interdiscip Mater 2022;1:196-212.

53. Gong C, Pu SD, Zhang S, et al. The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes. Energy Environ Sci 2023;16:535-45.

54. Pu SD, Gong C, Gao X, et al. Current-density-dependent electroplating in Ca electrolytes: from globules to dendrites. ACS Energy Lett 2020;5:2283-90.

55. Zhang Q, Ma J, Mei L, et al. In situ TEM visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter 2022;5:1235-50.

56. Park J, Koo K, Noh N, et al. Graphene liquid cell electron microscopy: progress, applications, and perspectives. ACS Nano 2021;15:288-308.

57. de Jonge N, Houben L, Dunin-borkowski RE, Ross FM. Resolution and aberration correction in liquid cell transmission electron microscopy. Nat Rev Mater 2019;4:61-78.

58. Pu S, Gong C, Robertson AW. Liquid cell transmission electron microscopy and its applications. R Soc Open Sci 2020;7:191204.

59. Gupta T, Schneider NM, Park JH, Steingart D, Ross FM. Spatially dependent dose rate in liquid cell transmission electron microscopy. Nanoscale 2018;10:7702-10.

60. de Jonge N. Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers. Ultramicroscopy 2018;187:113-25.

61. Abellan P, Mehdi BL, Parent LR, et al. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett 2014;14:1293-9.

62. Tao S, Li M, Lyu M, et al. In operando closed-cell transmission electron microscopy for rechargeable battery characterization: scientific breakthroughs and practical limitations. Nano Energy 2022;96:107083.

63. Grogan JM, Schneider NM, Ross FM, Bau HH. Bubble and pattern formation in liquid induced by an electron beam. Nano Lett 2014;14:359-64.

64. Lee J, Nicholls D, Browning ND, Mehdi BL. Controlling radiolysis chemistry on the nanoscale in liquid cell scanning transmission electron microscopy. Phys Chem Chem Phys 2021;23:17766-73.

65. Schneider NM, Norton MM, Mendel BJ, Grogan JM, Ross FM, Bau HH. Electron-water interactions and implications for liquid cell electron microscopy. J Phys Chem C 2014;118:22373-82.

66. Yang R, Mei L, Fan Y, et al. Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes. Nat Protoc 2023;18:555-78.

67. Sasaki Y, Mizushima A, Mita Y, Yoshida K, Kuwabara A, Ikuhara Y. Design and fabrication of an electrochemical chip for liquid-phase transmission electron microscopy. Microscopy 2022;71:238-41.

68. Zeng Z, Zhang X, Bustillo K, et al. In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett 2015;15:5214-20.

69. Karakulina OM, Demortière A, Dachraoui W, Abakumov AM, Hadermann J. In situ electron diffraction tomography using a liquid-electrochemical transmission electron microscopy cell for crystal structure determination of cathode materials for Li-ion batteries. Nano Lett 2018;18:6286-91.

70. Sasaki Y, Yoshida K, Kawasaki T, Kuwabara A, Ukyo Y, Ikuhara Y. In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode. J Power Sources 2021;481:228831.

71. Gu M, Parent LR, Mehdi BL, et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett 2013;13:6106-12.

72. Paul PP, Mcshane EJ, Colclasure AM, et al. A review of existing and emerging methods for lithium detection and characterization in Li-ion and Li-metal batteries. Adv Energy Mater 2021;11:2100372.

73. Xu Y, Dong K, Jie Y, et al. Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives. Adv Energy Mater 2022;12:2200398.

74. Liu X, Tong Y, Wu Y, Zheng J, Sun Y, Li H. In-depth mechanism understanding for potassium-ion batteries by electroanalytical methods and advanced in situ characterization techniques. Small Methods 2021;5:e2101130.

75. Liu D, Shadike Z, Lin R, et al. Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv Mater 2019;31:e1806620.

76. Wang H, Yu Z, Kong X, et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 2022;6:588-616.

77. Zhao C, Zhao B, Yan C, et al. Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: a review. Energy Stor Mater 2020;24:75-84.

78. Yang H, Li J, Sun Z, et al. Reliable liquid electrolytes for lithium metal batteries. Energy Stor Mater 2020;30:113-29.

79. Eweka E, Owen J, Ritchie A. Electrolytes and additives for high efficiency lithium cycling. J Power Sources 1997;65:247-51.

80. Lu Y, Tu Z, Shu J, Archer LA. Stable lithium electrodeposition in salt-reinforced electrolytes. J Power Sources 2015;279:413-8.

81. Kong F, Kostecki R, Nadeau G, et al. In situ studies of SEI formation. J Power Sources 2001;97-8:58-66.

82. Liu W, Liu P, Mitlin D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv Energy Mater 2020;10:2002297.

83. Zhai P, Liu L, Gu X, Wang T, Gong Y. Interface engineering for lithium metal anodes in liquid electrolyte. Adv Energy Mater 2020;10:2001257.

84. Zhang X, Cheng X, Zhang Q. Advances in interfaces between Li metal anode and electrolyte. Adv Mater Interfaces 2018;5:1701097.

85. Huang JY, Zhong L, Wang CM, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010;330:1515-20.

86. Zeng Z, Liang WI, Liao HG, Xin HL, Chu YH, Zheng H. Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett 2014;14:1745-50.

87. Sacci RL, Black JM, Balke N, Dudney NJ, More KL, Unocic RR. Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett 2015;15:2011-8.

88. Mehdi BL, Qian J, Nasybulin E, et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett 2015;15:2168-73.

89. Leenheer AJ, Jungjohann KL, Zavadil KR, Sullivan JP, Harris CT. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 2015;9:4379-89.

90. Kushima A, So KP, Su C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 2017;32:271-9.

91. Jiang G, Li F, Wang H, et al. Perspective on high-concentration electrolytes for lithium metal batteries. Small Struct 2021;2:2000122.

92. Qian J, Henderson WA, Xu W, et al. High rate and stable cycling of lithium metal anode. Nat Commun 2015;6:6362.

93. Harrison KL, Zavadil KR, Hahn NT, et al. Lithium self-discharge and its prevention: direct visualization through in situ electrochemical scanning transmission electron microscopy. ACS Nano 2017;11:11194-205.

94. Zhao J, Liao L, Shi F, et al. Surface fluorination of reactive battery anode materials for enhanced stability. J Am Chem Soc 2017;139:11550-8.

95. Cao X, Gao P, Ren X, et al. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proc Natl Acad Sci USA 2021;118:e2020357118.

96. Ko J, Yoon YS. Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: is LiF the key to commercializing Li metal batteries? Ceram Int 2019;45:30-49.

97. Tan J, Matz J, Dong P, Shen J, Ye M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv Energy Mater 2021;11:2100046.

98. Lee S, Shangguan J, Alvarado J, et al. Unveiling the mechanisms of lithium dendrite suppression by cationic polymer film induced solid-electrolyte interphase modification. Energy Environ Sci 2020;13:1832-42.

99. Lee S, Shangguan J, Betzler S, Harris SJ, Doeff MM, Zheng H. Lithium metal stripping mechanisms revealed through electrochemical liquid cell electron microscopy. Nano Energy 2022;102:107641.

100. Sun L, Liu Y, Shao R, Wu J, Jiang R, Jin Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Stor Mater 2022;46:482-502.

101. Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012;7:414-29.

102. Jin Y, Zhu B, Lu Z, Liu N, Zhu J. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv Energy Mater 2017;7:1700715.

103. Chae S, Ko M, Kim K, Ahn K, Cho J. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 2017;1:47-60.

104. Gonzalez A, Yang N, Liu R. Silicon anode design for lithium-ion batteries: progress and perspectives. J Phys Chem C 2017;121:27775-87.

105. Yoshio M, Wang H, Fukuda K, Umeno T, Dimov N, Ogumi Z. Carbon-coated Si as a lithium-ion battery anode material. J Electrochem Soc 2002;149:A1598.

106. Xu K, Liu X, Guan K, et al. Research progress on coating structure of silicon anode materials for lithium-ion batteries. ChemSusChem 2021;14:5135-60.

107. Sim S, Oh P, Park S, Cho J. Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries. Adv Mater 2013;25:4498-503.

108. Gu M, Li Y, Li X, et al. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 2012;6:8439-47.

109. McDowell MT, Lee SW, Harris JT, et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett 2013;13:758-64.

110. Leenheer AJ, Jungjohann KL, Zavadil KR, Harris CT. Phase boundary propagation in Li-alloying battery electrodes revealed by liquid-cell transmission electron microscopy. ACS Nano 2016;10:5670-8.

111. Wang CM, Li X, Wang Z, et al. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett 2012;12:1624-32.

112. Zhou H, Xin F, Pei B, Whittingham MS. What limits the capacity of layered oxide cathodes in lithium batteries? ACS Energy Lett 2019;4:1902-6.

113. Liu X, Xu G, Kolluru VSC, et al. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nat Energy 2022;7:808-17.

114. Ding Z, Yang C, Zou J, et al. Reaction mechanism and structural evolution of fluorographite cathodes in solid-state K/Na/Li batteries. Adv Mater 2021;33:e2006118.

115. House RA, Rees GJ, Pérez-osorio MA, et al. First-cycle voltage hysteresis in Li-rich 3D cathodes associated with molecular O2 trapped in the bulk. Nat Energy 2020;5:777-85.

116. House RA, Marie J, Pérez-osorio MA, Rees GJ, Boivin E, Bruce PG. The role of O2 in O-redox cathodes for Li-ion batteries. Nat Energy 2021;6:781-9.

117. Holtz ME, Yu Y, Gunceler D, et al. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett 2014;14:1453-9.

118. Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater 2018;8:1703137.

119. Tian Z, Zou Y, Liu G, et al. Electrolyte solvation structure design for sodium ion batteries. Adv Sci 2022;9:e2201207.

120. Doi K, Yamada Y, Okoshi M, et al. Reversible sodium metal electrodes: is fluorine an essential interphasial component? Angew Chem Int Ed 2019;58:8024-8.

121. Ma L, Cui J, Yao S, et al. Dendrite-free lithium metal and sodium metal batteries. Energy Stor Mater 2020;27:522-54.

122. Lee B, Paek E, Mitlin D, Lee SW. Sodium metal anodes: emerging solutions to dendrite growth. Chem Rev 2019;119:5416-60.

123. Seh ZW, Sun J, Sun Y, Cui Y. A highly reversible room-temperature sodium metal anode. ACS Cent Sci 2015;1:449-55.

124. Bao C, Wang B, Liu P, et al. Solid electrolyte interphases on sodium metal anodes. Adv Funct Mater 2020;30:2004891.

125. Xu M, Li Y, Ihsan-ul-haq M, et al. NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries. Energy Stor Mater 2022;44:477-86.

126. Zeng Z, Barai P, Lee S, et al. Electrode roughness dependent electrodeposition of sodium at the nanoscale. Nano Energy 2020;72:104721.

127. Shi Y, Chen Y, Shi L, et al. An overview and future perspectives of rechargeable zinc batteries. Small 2020;16:e2000730.

128. Huy VP, Hieu LT, Hur J. Zn metal anodes for Zn-ion batteries in mild aqueous electrolytes: challenges and strategies. Nanomaterials 2021;11:2746.

129. Song M, Tan H, Chao D, Fan HJ. Recent advances in Zn-ion batteries. Adv Funct Mater 2018;28:1802564.

130. Yang Q, Li Q, Liu Z, et al. Dendrites in Zn-based batteries. Adv Mater 2020;32:e2001854.

131. Hao J, Li X, Zeng X, Li D, Mao J, Guo Z. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ Sci 2020;13:3917-49.

132. Hao J, Li B, Li X, et al. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv Mater 2020;32:e2003021.

133. Yi Z, Chen G, Hou F, Wang L, Liang J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater 2021;11:2003065.

134. Park JH, Schneider NM, Steingart DA, Deligianni H, Kodambaka S, Ross FM. Control of growth front evolution by Bi additives during ZnAu electrodeposition. Nano Lett 2018;18:1093-8.

135. Li M, Ran L, Knibbe R. Zn electrodeposition by an in situ electrochemical liquid phase transmission electron microscope. J Phys Chem Lett 2021;12:913-8.

136. Sasaki Y, Yoshida K, Kuwabara A, Ikuhara Y. On-chip electrochemical analysis combined with liquid-phase electron microscopy of zinc deposition/dissolution. J Electrochem Soc 2021;168:112511.

137. Huang Y, Gu Q, Guo Z, et al. Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study. Energy Stor Mater 2022;46:243-51.

138. Chamoun M, Brant WR, Tai C, Karlsson G, Noréus D. Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions. Energy Stor Mater 2018;15:351-60.

139. Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater 2018;17:543-9.

140. Zhang N, Cheng F, Liu Y, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc 2016;138:12894-901.

141. Olbasa BW, Fenta FW, Chiu SF, et al. High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes. ACS Appl Energy Mater 2020;3:4499-508.

142. Niu J, Zhang Z, Aurbach D. Alloy anode materials for rechargeable Mg ion batteries. Adv Energy Mater 2020;10:2000697.

143. Asif M, Kilian S, Rashad M. Uncovering electrochemistries of rechargeable magnesium-ion batteries at low and high temperatures. Energy Stor Mater 2021;42:129-44.

144. Mao M, Gao T, Hou S, Wang C. A critical review of cathodes for rechargeable Mg batteries. Chem Soc Rev 2018;47:8804-41.

145. Shao Y, Gu M, Li X, et al. Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett 2014;14:255-60.

146. Ling C, Banerjee D, Matsui M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim Acta 2012;76:270-4.

147. Wu YA, Yin Z, Farmand M, et al. In-situ multimodal imaging and spectroscopy of Mg electrodeposition at electrode-electrolyte interfaces. Sci Rep 2017;7:42527.

148. Kwak JH, Jeoun Y, Oh SH, et al. Operando visualization of morphological evolution in Mg metal anode: insight into dendrite suppression for stable Mg metal batteries. ACS Energy Lett 2022;7:162-70.

149. Ding MS, Diemant T, Behm RJ, Passerini S, Giffin GA. Dendrite growth in Mg metal cells containing Mg(TFSI)2/glyme electrolytes. J Electrochem Soc 2018;165:A1983.

150. Davidson R, Verma A, Santos D, et al. Formation of magnesium dendrites during electrodeposition. ACS Energy Lett 2019;4:375-6.

151. Singh N, Arthur TS, Tutusaus O, et al. Achieving high cycling rates via in situ generation of active nanocomposite metal anodes. ACS Appl Energy Mater 2018;1:4651-61.

152. Lipson AL, Pan B, Lapidus SH, Liao C, Vaughey JT, Ingram BJ. Rechargeable Ca-ion batteries: a new energy storage system. Chem Mater 2015;27:8442-7.

153. Nielson KV, Liu TL. Dawn of calcium batteries. Angew Chem Int Ed 2020;59:3368-70.

154. Dompablo ME, Ponrouch A, Johansson P, Palacín MR. Achievements, challenges, and prospects of calcium batteries. Chem Rev 2020;120:6331-57.

155. Nielson KV, Luo J, Liu TL. Optimizing calcium electrolytes by solvent manipulation for calcium batteries. Batter Supercaps 2020;3:766-72.

156. Song H, Li Y, Tian F, Wang C. Electrolyte optimization and interphase regulation for significantly enhanced storage capability in Ca-metal batteries. Adv Funct Mater 2022;32:2200004.

157. Li Z, Fuhr O, Fichtner M, Zhao-karger Z. Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries. Energy Environ Sci 2019;12:3496-501.

158. Li L, Chang Z, Zhang X. Recent progress on the development of metal-air batteries. Adv Sustain Syst 2017;1:1700036.

159. Sun Y, Liu X, Jiang Y, et al. Recent advances and challenges in divalent and multivalent metal electrodes for metal-air batteries. J Mater Chem A 2019;7:18183-208.

160. Mei J, Liao T, Liang J, Qiao Y, Dou SX, Sun Z. Toward promising cathode catalysts for nonlithium metal-oxygen batteries. Adv Energy Mater 2020;10:1901997.

161. Sharon D, Hirshberg D, Afri M, Frimer AA, Noked M, Aurbach D. Aprotic metal-oxygen batteries: recent findings and insights. J Solid State Electrochem 2017;21:1861-78.

162. Wang H, Xu Q. Materials design for rechargeable metal-air batteries. Matter 2019;1:565-95.

163. Liu T, Vivek JP, Zhao EW, Lei J, Garcia-Araez N, Grey CP. Current challenges and routes forward for nonaqueous lithium-air batteries. Chem Rev 2020;120:6558-625.

164. Wang Y, Lu Y. Nonaqueous lithium-oxygen batteries: reaction mechanism and critical open questions. Energy Stor Mater 2020;28:235-46.

165. Khan Z, Vagin M, Crispin X. Can hybrid Na-air batteries outperform nonaqueous Na-O2 batteries? Adv Sci 2020;7:1902866.

166. Yadegari H, Sun X. Recent advances on sodium-oxygen batteries: a chemical perspective. ACC Chem Res 2018;51:1532-40.

167. Park J, Hwang JY, Kwak WJ. Potassium-oxygen batteries: significance, challenges, and prospects. J Phys Chem Lett 2020;11:7849-56.

168. Li C, Sun Y, Gebert F, Chou S. Current progress on rechargeable magnesium-air battery. Adv Energy Mater 2017;7:1700869.

169. Ryu J, Park M, Cho J. Advanced technologies for high-energy aluminum-air batteries. Adv Mater 2019;31:e1804784.

170. Yang D, Zhang L, Yan X, Yao X. Recent progress in oxygen electrocatalysts for zinc-air batteries. Small Methods 2017;1:1700209.

171. Peng L, Shang L, Zhang T, Waterhouse GIN. Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc-air batteries. Adv Energy Mater 2020;10:2003018.

172. Mckerracher RD, Ponce de leon C, Wills RGA, Shah AA, Walsh FC. A review of the iron-air secondary battery for energy storage. ChemPlusChem 2015;80:323-35.

173. Débart A, Bao J, Armstrong G, Bruce PG. An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 2007;174:1177-82.

174. Débart A, Paterson AJ, Bao J, Bruce PG. Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed 2008;47:4521-4.

175. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater 2011;11:19-29.

176. Zhang SS, Foster D, Read J. Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. J Power Sources 2010;195:1235-40.

177. Peng Z, Freunberger SA, Hardwick LJ, et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew Chem Int Ed 2011;50:6351-5.

178. Read J. Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 2002;149:A1190.

179. Schwager P, Bülter H, Plettenberg I, Wittstock G. Review of local in situ probing techniques for the interfaces of lithium-ion and lithium-oxygen batteries. Energy Technol 2016;4:1472-85.

180. Zhu YG, Liu Q, Rong Y, et al. Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries. Nat Commun 2017;8:14308.

181. Mirzaeian M, Hall PJ. Characterizing capacity loss of lithium oxygen batteries by impedance spectroscopy. J Power Sources 2010;195:6817-24.

182. Kushima A, Koido T, Fujiwara Y, Kuriyama N, Kusumi N, Li J. Charging/discharging nanomorphology asymmetry and rate-dependent capacity degradation in Li-oxygen battery. Nano Lett 2015;15:8260-5.

183. Aurbach D, Mccloskey BD, Nazar LF, Bruce PG. Advances in understanding mechanisms underpinning lithium-air batteries. Nat Energy 2016;1:16128.

184. Thotiyl MM, Freunberger SA, Peng Z, Bruce PG. The carbon electrode in nonaqueous Li-O2 cells. J Am Chem Soc 2013;135:494-500.

185. Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG. Charging a Li-O2 battery using a redox mediator. Nat Chem 2013;5:489-94.

186. Johnson L, Li C, Liu Z, et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat Chem 2014;6:1091-9.

187. Yang K, Li Y, Jia L, et al. Atomic/nano-scale in-situ probing the shuttling effect of redox mediator in Na-O2 batteries. J Energy Chem 2021;56:438-43.

188. Ko Y, Kim H, Cho S, et al. Liquid-based janus electrolyte for sustainable redox mediation in lithium-oxygen batteries. Adv Energy Mater 2021;11:2102096.

189. Yang C, Han J, Liu P, et al. Direct observations of the formation and redox-mediator-assisted decomposition of Li2O2 in a liquid-cell Li-O2 microbattery by scanning transmission electron microscopy. Adv Mater 2017;29:1702752.

190. Lee D, Park H, Ko Y, et al. Direct observation of redox mediator-assisted solution-phase discharging of Li-O2 battery by liquid-phase transmission electron microscopy. J Am Chem Soc 2019;141:8047-52.

191. Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J. From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein J Nanotechnol 2015;6:1016-55.

192. Hartmann P, Bender CL, Vračar M, et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 2013;12:228-32.

193. Lutz L, Dachraoui W, Demortière A, et al. Operando monitoring of the solution-mediated discharge and charge processes in a Na-O2 battery using liquid-electrochemical transmission electron microscopy. Nano Lett 2018;18:1280-9.

194. Tarnev T, Cychy S, Andronescu C, Muhler M, Schuhmann W, Chen YT. A universal nano-capillary based method of catalyst immobilization for liquid-cell transmission electron microscopy. Angew Chem Int Ed 2020;59:5586-90.

195. Robertson AW, Zhu G, Mehdi BL, Jacobs RMJ, De Yoreo J, Browning ND. Nanoparticle immobilization for controllable experiments in liquid-cell transmission electron microscopy. ACS Appl Mater Interfaces 2018;10:22801-8.

196. Stricker EA, Ke X, Wainright JS, Unocic RR, Savinell RF. Current density distribution in electrochemical cells with small cell heights and coplanar thin electrodes as used in ec-S/TEM cell geometries. J Electrochem Soc 2019;166:H126.

197. Zhang X, Liu W, Chen Z, Huang Y, Liu W, Yu Y. Pitfalls in electrochemical liquid cell transmission electron microscopy for dendrite observation. Adv Energy Sustain Res 2022;3:2100160.

198. Peng X, Tu Q, Zhang Y, et al. Unraveling Li growth kinetics in solid electrolytes due to electron beam charging. Sci Adv 2023;9:eabq3285.

199. Koo K, Park J, Ji S, Toleukhanova S, Yuk JM. Liquid-flowing graphene chip-based high-resolution electron microscopy. Adv Mater 2021;33:e2005468.

200. Dunn G, Adiga VP, Pham T, et al. Graphene-sealed flow cells for in situ transmission electron microscopy of liquid samples. ACS Nano 2020;14:9637-43.

201. Stevens A, Yang H, Hao W, et al. Subsampled STEM-ptychography. Appl Phys Lett 2018;113:033104.

202. Yang Y, Shao YT, Lu X, et al. Elucidating cathodic corrosion mechanisms with operando electrochemical transmission electron microscopy. J Am Chem Soc 2022;144:15698-708.

203. Yang Y, Louisia S, Yu S, et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 2023;614:262-9.

204. Spurgeon SR, Ophus C, Jones L, et al. Towards data-driven next-generation transmission electron microscopy. Nat Mater 2021;20:274-9.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/