REFERENCES

1. Gao Y, Jiang J, Zhang C, Zhang W, Ma Z, Jiang Y. Lithium-ion battery aging mechanisms and life model under different charging stresses. J Power Sources 2017;356:103-14.

2. Zhou J, Qian T, Liu J, Wang M, Zhang L, Yan C. High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Lett 2019;19:3066-73.

3. Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat Energy 2019;4:365-73.

4. Liu N, Lu Z, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 2014;9:187-92.

5. Jung JW, Ryu WH, Shin J, Park K, Kim ID. Glassy metal alloy nanofiber anodes employing graphene wrapping layer: toward ultralong-cycle-life lithium-ion batteries. ACS Nano 2015;9:6717-27.

6. Li J, Ma C, Chi M, Liang C, Dudney NJ. Solid electrolyte: the key for high-voltage lithium batteries. Adv Energy Mater 2015;5:1401408.

7. Janek J, Zeier WG. A solid future for battery development. Nat Energy 2016;1:16141.

8. Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2017;2:16103.

9. Wright PV. Electrical conductivity in ionic complexes of poly(ethylene oxide). Brit Poly J 1975;7:319-27.

10. Fenton D, Parker J, Wright P. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973;14:589.

11. Armand M. Polymer solid electrolytes - an overview. Solid State Ion 1983;9-10:745-54.

12. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017;33:363-86.

13. Feuillade G, Perche P. Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 1975;5:63-9.

14. Song J, Wang Y, Wan C. Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 1999;77:183-97.

15. Cheng X, Pan J, Zhao Y, Liao M, Peng H. Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 2018;8:1702184.

16. Ren W, Ding C, Fu X, Huang Y. Advanced gel polymer electrolytes for safe and durable lithium metal batteries: challenges, strategies, and perspectives. Energy Stor Mater 2021;34:515-35.

17. Chen S, Wen K, Fan J, Bando Y, Golberg D. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. J Mater Chem A 2018;6:11631-63.

18. Xu L, Tang S, Cheng Y, et al. Interfaces in solid-state lithium batteries. Joule 2018;2:1991-2015.

19. Weston J, Steele B. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ion 1982;7:75-9.

20. Croce F, Appetecchi GB, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998;394:456-8.

21. Yue L, Ma J, Zhang J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Stor Mater 2016;5:139-64.

22. Yoshida K, Nakamura M, Kazue Y, et al. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J Am Chem Soc 2011;133:13121-9.

23. Wetjen M, Kim G, Joost M, Appetecchi GB, Winter M, Passerini S. Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials. J Power Sources 2014;246:846-57.

24. Nie K, Wang X, Qiu J, et al. Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode. ACS Energy Lett 2020;5:826-32.

25. Yang X, Jiang M, Gao X, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal -OH group? Energy Environ Sci 2020;13:1318-25.

26. Pandian S, Adiga S, Tagade P, Hariharan K, Mayya K, Lee Y. Electrochemical stability of ether based salt-in-polymer based electrolytes: computational investigation of the effect of substitution and the type of salt. J Power Sources 2018;393:204-10.

27. Zhang Z, Hu L, Wu H, et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ Sci 2013;6:1806-10.

28. Sun H, Xie X, Huang Q, et al. Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries. Angew Chem Int Ed 2021;60:18335-43.

29. Xie X, Wang Z, He S, et al. Influencing factors on Li-ion conductivity and interfacial stability of solid polymer electrolytes, exampled by polycarbonates, polyoxalates and polymalonates. Angew Chem Int Ed 2023;62:e202218229.

30. Tang L, Chen B, Zhang Z, et al. Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries. Nat Commun 2023;14:2301.

31. Lv Z, Zhou Q, Zhang S, et al. Cyano-reinforced in-situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries. Energy Stor Mater 2021;37:215-23.

32. Dong T, Zhang H, Hu R, et al. A rigid-flexible coupling poly(vinylene carbonate) based cross-linked network: a versatile polymer platform for solid-state polymer lithium batteries. Energy Stor Mater 2022;50:525-32.

33. Li S, Zhang SQ, Shen L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci 2020;7:1903088.

34. Meng N, Zhu X, Lian F. Particles in composite polymer electrolyte for solid-state lithium batteries: a review. Particuology 2022;60:14-36.

35. Pan J, Zhao P, Wang N, Huang F, Dou S. Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ Sci 2022;15:2753-75.

36. Zhu Y, Cao J, Chen H, Yu Q, Li B. High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J Mater Chem A 2019;7:6832-9.

37. Yu J, Wang C, Li S, Liu N, Zhu J, Lu Z. Li+-containing, continuous silica nanofibers for high Li+ conductivity in composite polymer electrolyte. Small 2019;15:e1902729.

38. Huang H, Ding F, Zhong H, et al. Nano-SiO2-embedded poly(propylene carbonate)-based composite gel polymer electrolyte for lithium-sulfur batteries. J Mater Chem A 2018;6:9539-49.

39. Zhao XG, Jin EM, Park J, Gu H. Hybrid polymer electrolyte composite with SiO2 nanofiber filler for solid-state dye-sensitized solar cells. Compos Sci Technol 2014;103:100-5.

40. Zhai H, Gong T, Xu B, et al. Stabilizing polyether electrolyte with a 4 V metal oxide cathode by nanoscale interfacial coating. ACS Appl Mater Interfaces 2019;11:28774-80.

41. Arya A, Sharma AL. Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J Phys D Appl Phys 2018;51:045504.

42. Cao J, Wang L, He X, et al. In situ prepared nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J Mater Chem A 2013;1:5955-61.

43. Masoud EM, El-bellihi A, Bayoumy WA, Mohamed EA. Polymer composite containing nano magnesium oxide filler and lithiumtriflate salt: an efficient polymer electrolyte for lithium ion batteries application. J Mol Liq 2018;260:237-44.

44. Dhatarwal P, Choudhary S, Sengwa R. Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO-PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium ion batteries. Compos Commun 2018;10:11-7.

45. Lv F, Wang Z, Shi L, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. J Power Sources 2019;441:227175.

46. Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater 2019;31:e1902029.

47. Wang Z, Huang X, Chen L. Understanding of effects of nano-Al2O3 particles on ionic conductivity of composite polymer electrolytes. Electrochem Solid State Lett 2003;6:E40.

48. Wang Y, Wu L, Lin Z, et al. Hydrogen bonds enhanced composite polymer electrolyte for high-voltage cathode of solid-state lithium battery. Nano Energy 2022;96:107105.

49. Yang H, Zhang B, Jing M, et al. In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries (Adv. Energy Mater. 39/2022). Adv Energy Mater 2022;12:2201762.

50. Fu K, Gong Y, Hitz GT, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries. Energy Environ Sci 2017;10:1568-75.

51. Xie H, Yang C, Fu K, et al. Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Adv Energy Mater 2018;8:1703474.

52. Bae J, Li Y, Zhang J, et al. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew Chem Int Ed 2018;57:2096-100.

53. Liu S, Liu W, Ba D, et al. Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv Mater 2023;35:e2110423.

54. Xu R, Xiao Y, Zhang R, et al. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv Mater 2019;31:e1808392.

55. Li Y, Xu B, Xu H, et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem Int Ed 2017;56:753-6.

56. Choi J, Lee C, Yu J, Doh C, Lee S. Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J Power Sources 2015;274:458-63.

57. Cai D, Qi X, Xiang J, et al. A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery. Chem Eng J 2022;435:135030.

58. Reddy MV, Julien CM, Mauger A, Zaghib K. Sulfide and oxide inorganic solid electrolytes for all-solid-state li batteries: a review. Nanomaterials 2020;10:1606.

59. Xu H, Chien PH, Shi J, et al. High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proc Natl Acad Sci USA 2019;116:18815-21.

60. Ma C, Cui W, Liu X, Ding Y, Wang Y. In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives. InfoMat 2022;4:e12232.

61. Zhu Y, Xiao S, Shi Y, Yang Y, Hou Y, Wu Y. A composite gel polymer electrolyte with high performance based on poly(vinylidene fluoride) and polyborate for lithium ion batteries. Adv Energy Mater 2014;4:1300647.

62. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 2019;5:2326-52.

63. Li G, Li Z, Zhang P, Zhang H, Wu Y. Research on a gel polymer electrolyte for Li-ion batteries. Pure Appl Chem 2008;80:2553-63.

64. Sun Q, Wang S, Ma Y, et al. Li-ion transfer mechanism of gel polymer electrolyte with sole fluoroethylene carbonate solvent. Adv Mater 2023;35:e2300998.

65. Chen M, Ma C, Ding Z, et al. Upgrading electrode/electrolyte interphases via polyamide-based quasi-solid electrolyte for long-life nickel-rich lithium metal batteries. ACS Energy Lett 2021;6:1280-9.

66. Zeng Y, Yang J, Shen X, et al. New UV-initiated lithiated-interpenetrating network gel-polymer electrolytes for lithium-metal batteries. J Power Sources 2022;541:231681.

67. Gao X, Yuan W, Yang Y, et al. High-performance and highly safe solvate ionic liquid-based gel polymer electrolyte by rapid UV-curing for lithium-ion batteries. ACS Appl Mater Interfaces 2022;14:43397-406.

68. Li S, Sun Y, Li N, et al. Porosity development at Li-rich layered cathodes in all-solid-state battery during in situ delithiation. Nano Lett 2022;22:4905-11.

69. Wang L, Xie R, Chen B, et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat Commun 2020;11:5889.

70. Koerver R, Walther F, Aygün I, et al. Redox-active cathode interphases in solid-state batteries. J Mater Chem A 2017;5:22750-60.

71. Koerver R, Aygün I, Leichtweiß T, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem Mater 2017;29:5574-82.

72. Zhao CZ, Zhao Q, Liu X, et al. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode. Adv Mater 2020;32:e1905629.

73. Yan Y, Ju J, Dong S, et al. In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv Sci 2021;8:2003887.

74. Li Z, Zhou X, Guo X. High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes. Energy Stor Mater 2020;29:149-55.

75. Lu X, Daemi SR, Bertei A, et al. Microstructural evolution of battery electrodes during calendering. Joule 2020;4:2746-68.

76. Judez X, Eshetu GG, Li C, Rodriguez-Martinez LM, Zhang H, Armand M. Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes. Joule 2018;2:2208-24.

77. Zhao Q, Chen P, Li S, Liu X, Archer LA. Solid-state polymer electrolytes stabilized by task-specific salt additives. J Mater Chem A 2019;7:7823-30.

78. Besli MM, Xia S, Kuppan S, et al. Mesoscale chemomechanical interplay of the LiNi0.8Co0.15Al0.05O2 cathode in solid-state polymer batteries. Chem Mater 2019;31:491-501.

79. Lu X, Bertei A, Finegan DP, et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling. Nat Commun 2020;11:2079.

80. Yang L, Zhang J, Xue W, et al. Anomalous thermal decomposition behavior of polycrystalline LiNi0.8Mn0.1Co0.1O2 in PEO-based solid polymer electrolyte. Adv Funct Mater 2022;32:2200096.

81. Zhu GR, Zhang Q, Liu QS, et al. Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries. Nat Commun 2023;14:4617.

82. An H, Liu Q, Deng B, et al. Eliminating local electrolyte failure induced by asynchronous reaction for high-loading and long-lifespan all-solid-state batteries. Adv Funct Mater 2023;33:2305186.

83. Liu Y, Liu H, Lin Y, et al. Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery. Adv Funct Mater 2021;31:2104863.

84. Wang L, Zhang X, Wang T, et al. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers. Adv Energy Mater 2018;8:1801528.

85. Liang L, Yuan W, Chen X, Liao H. Flexible, nonflammable, highly conductive and high-safety double cross-linked poly(ionic liquid) as quasi-solid electrolyte for high performance lithium-ion batteries. Chem Eng J 2021;421:130000.

86. Didwal PN, Verma R, Nguyen AG, Ramasamy HV, Lee GH, Park CJ. Improving cyclability of all-solid-state batteries via stabilized electrolyte-electrode interface with additive in poly(propylene carbonate) based solid electrolyte. Adv Sci 2022;9:e2105448.

87. Chen Y, Cui Y, Wang S, et al. Durable and adjustable interfacial engineering of polymeric electrolytes for both stable Ni-rich cathodes and high-energy metal anodes. Adv Mater 2023;35:e2300982.

88. Ni L, Zhang S, Di A, et al. Challenges and strategies towards single-crystalline Ni-rich layered cathodes. Adv Energy Mater 2022;12:2201510.

89. Liu K, Pei A, Lee HR, et al. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J Am Chem Soc 2017;139:4815-20.

90. Yu X, Wang L, Ma J, Sun X, Zhou X, Cui G. Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries. Adv Energy Mater 2020;10:1903939.

91. Ding P, Wu L, Lin Z, et al. Molecular self-assembled ether-based polyrotaxane solid electrolyte for lithium metal batteries. J Am Chem Soc 2023;145:1548-56.

92. Li X, Lv M, Tian Y, et al. Negatively charged polymeric interphase for regulated uniform lithium-ion transport in stable lithium metal batteries. Nano Energy 2021;87:106214.

93. Zhou T, Zhao Y, Choi JW, Coskun A. Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries. Angew Chem Int Ed 2021;60:22791-6.

94. Chen N, Dai Y, Xing Y, et al. Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy Environ Sci 2017;10:1660-7.

95. Lu Y, Zhao C, Yuan H, Cheng X, Huang J, Zhang Q. Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies. Adv Funct Mater 2021;31:2009925.

96. Kim J, Ma H, Cha H, et al. A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy Environ Sci 2018;11:1449-59.

97. Wang H, Zhu QL, Zou R, Xu Q. Metal-organic frameworks for energy applications. Chem 2017;2:52-80.

98. Qian J, Li Y, Zhang M, et al. Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield. Nano Energy 2019;60:866-74.

99. Huo H, Wu B, Zhang T, et al. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Stor Mater 2019;18:59-67.

100. Cui S, Wu X, Yang Y, et al. Heterostructured gel polymer electrolyte enabling long-cycle quasi-solid-state lithium metal batteries. ACS Energy Lett 2022;7:42-52.

101. Ma Q, Fu S, Wu A, et al. Designing bidirectionally functional polymer electrolytes for stable solid lithium metal batteries. Adv Energy Mater 2023;13:2203892.

102. Yang F, Liu Y, Liu T, et al. Fluorinated strategies among all-solid-state lithium metal batteries from microperspective. Small Struct 2023;4:2200122.

103. Qi S, Li M, Gao Y, et al. Enabling scalable polymer electrolyte with dual-reinforced stable interface for 4.5 V lithium-metal batteries. Adv Mater 2023;35:e2304951.

104. Liu FQ, Wang WP, Yin YX, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci Adv 2018;4:eaat5383.

105. Lou S, Liu Q, Zhang F, et al. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nat Commun 2020;11:5700.

106. Zhang N, Deng T, Zhang S, et al. Critical review on low-temperature Li-ion/metal batteries. Adv Mater 2022;34:e2107899.

107. Li Z, Yu R, Weng S, Zhang Q, Wang X, Guo X. Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries. Nat Commun 2023;14:482.

108. Zhang D, Liu Z, Wu Y, et al. In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries. Adv Sci 2022;9:e2104277.

109. Li T, Zhang X, Shi P, Zhang Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 2019;3:2647-61.

110. Liang JY, Zhang XD, Zeng XX, et al. Enabling a durable electrochemical interface via an artificial amorphous cathode electrolyte interphase for hybrid solid/liquid lithium-metal batteries. Angew Chem Int Ed 2020;59:6585-9.

111. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016;105:52-76.

112. Zhang Z, Li Y, Xu R, et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 2022;375:66-70.

113. Tu S, Zhang B, Zhang Y, et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid-electrolyte interphase. Nat Energy 2023;8:1365-74.

114. Heiskanen SK, Kim J, Lucht BL. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 2019;3:2322-33.

115. Dong H, Wang J, Wang V, et al. Effect of temperature on formation and evolution of solid electrolyte interphase on Si@Graphite@C anodes. J Energy Chem 2022;64:190-200.

116. Rezqita A, Sauer M, Foelske A, Kronberger H, Trifonova A. The effect of electrolyte additives on electrochemical performance of silicon/mesoporous carbon (Si/MC) for anode materials for lithium-ion batteries. Electrochim Acta 2017;247:600-9.

117. Kobayashi Y, Seki S, Mita Y, et al. High reversible capacities of graphite and SiO/graphite with solvent-free solid polymer electrolyte for lithium-ion batteries. J Power Sources 2008;185:542-8.

118. Aiken CP, Self J, Petibon R, Xia X, Paulsen JM, Dahn JR. A survey of in situ gas evolution during high voltage formation in Li-ion pouch cells. J Electrochem Soc 2015;162:A760-7.

119. Papp JK, Li N, Kaufman LA, et al. A comparison of high voltage outgassing of LiCoO2, LiNiO2, and Li2MnO3 layered Li-ion cathode materials. Electrochim Acta 2021;368:137505.

120. Ren D, Feng X, Lu L, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery. J Power Sources 2017;364:328-40.

121. Browning KL, Baggetto L, Unocic RR, Dudney NJ, Veith GM. Gas evolution from cathode materials: a pathway to solvent decomposition concomitant to SEI formation. J Power Sources 2013;239:341-6.

122. Han JG, Kim K, Lee Y, Choi NS. Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries. Adv Mater 2019;31:e1804822.

123. Mahne N, Renfrew SE, McCloskey BD, Freunberger SA. Electrochemical oxidation of lithium carbonate generates singlet oxygen. Angew Chem Int Ed 2018;57:5529-33.

124. Zheng X, Li X, Wang Z, et al. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery. Electrochim Acta 2016;191:832-40.

125. Jung R, Metzger M, Maglia F, Stinner C, Gasteiger HA. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J Electrochem Soc 2017;164:A1361-77.

126. Pham HQ, Kondracki Ł, Tarik M, Trabesinger S. Correlating the initial gas evolution and structural changes to cycling performance of Co-free Li-rich layered oxide cathode. J Power Sources 2022;527:231181.

127. Fell CR, Sun L, Hallac PB, Metz B, Sisk B. Investigation of the gas generation in lithium titanate anode based lithium ion batteries. J Electrochem Soc 2015;162:A1916-20.

128. Kanamura K, Toriyama S, Shiraishi S, Takehara Z. Studies on electrochemical oxidation of nonaqueous electrolytes using in situ FTIR spectroscopy: I. The effect of type of electrode on on-set potential for electrochemical oxidation of propylene carbonate containing 1.0 mol dm-3. J Electrochem Soc 1995;142:1383-9.

129. Kim Y, Park H, Warner JH, Manthiram A. Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries. ACS Energy Lett 2021;6:941-8.

130. Jiao S, Ren X, Cao R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat Energy 2018;3:739-46.

131. Jung R, Metzger M, Maglia F, Stinner C, Gasteiger HA. Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon. J Phys Chem Lett 2017;8:4820-5.

132. Zhu Z, Wang H, Li Y, et al. A surface Se-substituted LiCo [O2-δSeδ>] cathode with ultrastable high-voltage cycling in pouch full-cells. Adv Mater 2020;32:e2005182.

133. Luo K, Roberts MR, Hao R, et al. Charge-compensation in 3D-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat Chem 2016;8:684-91.

134. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114:11503-618.

135. Li W, Li X, Chen M, et al. AlF3 modification to suppress the gas generation of Li4Ti5O12 anode battery. Electrochim Acta 2014;139:104-10.

136. Zhao K, Wang C, Yu Y, et al. Ultrathin surface coating enables stabilized zinc metal anode. Adv Mater Inter 2018;5:1800848.

137. Zhang X, Belharouak I, Li L, et al. Structural and electrochemical study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energy Mater 2013;3:1299-307.

138. Schiele A, Breitung B, Mazilkin A, et al. Silicon nanoparticles with a polymer-derived carbon shell for improved lithium-ion batteries: investigation into volume expansion, gas evolution, and particle fracture. ACS Omega 2018;3:16706-13.

139. Tong X, Ou X, Wu N, Wang H, Li J, Tang Y. High oxidation potential ≈6.0 V of concentrated electrolyte toward high-performance dual-ion battery. Adv Energy Mater 2021;11:2100151.

140. Chang C, Yao Y, Li R, et al. Self-healing single-ion-conductive artificial polymeric solid electrolyte interphases for stable lithium metal anodes. Nano Energy 2022;93:106871.

141. Fu C, Homann G, Grissa R, et al. A polymerized-ionic-liquid-based polymer electrolyte with high oxidative stability for 4 and 5 V class solid-state lithium metal batteries. Adv Energy Mater 2022;12:2200412.

142. Yao M, Ruan Q, Pan S, Zhang H, Zhang S. An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery. Adv Energy Mater 2023;13:2203640.

143. Li H, Du Y, Wu X, Xie J, Lian F. Developing “polymer-in-salt” high voltage electrolyte based on composite lithium salts for solid-state Li metal batteries. Adv Funct Mater 2021;31:2103049.

144. Yao Z, Zhu K, Li X, et al. 3D poly(vinylidene fluoride-hexafluoropropylen) nanofiber-reinforced PEO-based composite polymer electrolyte for high-voltage lithium metal batteries. Electrochim Acta 2022;404:139769.

145. Huang T, Xiong W, Ye X, et al. A cerium-doped NASICON chemically coupled poly(vinylidene fluoride-hexafluoropropylene)-based polymer electrolyte for high-rate and high-voltage quasi-solid-state lithium metal batteries. J Energy Chem 2022;73:311-21.

146. Chen L, Gu T, Ma J, et al. In situ construction of Li3N-enriched interface enabling ultra-stable solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Nano Energy 2022;100:107470.

147. Ma X, Zuo X, Wu J, et al. Polyethylene-supported ultra-thin polyvinylidene fluoride/hydroxyethyl cellulose blended polymer electrolyte for 5 V high voltage lithium ion batteries. J Mater Chem A 2018;6:1496-503.

148. Duan H, Fan M, Chen WP, et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv Mater 2019;31:e1807789.

149. He F, Tang W, Zhang X, Deng L, Luo J. High energy density solid state lithium metal batteries enabled by Sub-5 µm solid polymer electrolytes. Adv Mater 2021;33:e2105329.

150. Li J, Jing M, Li R, et al. Al2O3 fiber-reinforced polymer solid electrolyte films with excellent lithium-ion transport properties for high-voltage solid-state lithium batteries. ACS Appl Polym Mater 2022;4:7144-51.

151. Zhu M, Wu J, Liu B, et al. Multifunctional polymer electrolyte improving stability of electrode-electrolyte interface in lithium metal battery under high voltage. J Membr Sci 2019;588:117194.

152. Gong Y, Wang C, Xin M, et al. Ultra-thin and high-voltage-stable Bi-phasic solid polymer electrolytes for high-energy-density Li metal batteries. Nano Energy 2024;119:109054.

153. Wang H, Song J, Zhang K, et al. A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery. Energy Environ Sci 2022;15:5149-58.

154. Yang T, Zhang W, Lou J, et al. Stable LiF-rich electrode-electrolyte interface toward high-voltage and high-energy-density lithium metal solid batteries. Small 2023;19:e2300494.

155. Wang Y, Chen S, Li Z, Peng C, Li Y, Feng W. In-situ generation of fluorinated polycarbonate copolymer solid electrolytes for high-voltage Li-metal batteries. Energy Stor Mater 2022;45:474-83.

156. Yin X, Zhao S, Lin Z, et al. A propanesultone-based polymer electrolyte for high-energy solid-state lithium batteries with lithium-rich layered oxides. J Mater Chem A 2023;11:19118-27.

157. Li Z, Fu J, Zheng S, Li D, Guo X. Self-healing polymer electrolyte for dendrite-free Li metal batteries with ultra-high-voltage Ni-rich layered cathodes. Small 2022;18:e2200891.

158. Jing C, Dai K, Liu D, et al. Crosslinked solubilizer enables nitrate-enriched carbonate polymer electrolytes for stable, high-voltage lithium metal batteries. Sci Bull 2024;69:209-17.

159. Zhu J, Zhang J, Zhao R, et al. In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries. Energy Stor Mater 2023;57:92-101.

160. Zhou G, Yu J, Ciucci F. In situ prepared all-fluorinated polymer electrolyte for energy-dense high-voltage lithium-metal batteries. Energy Stor Mater 2023;55:642-51.

161. Fang Z, Luo Y, Liu H, et al. Boosting the oxidative potential of polyethylene glycol-based polymer electrolyte to 4.36 V by Spatially restricting hydroxyl groups for high-voltage flexible lithium-ion battery applications. Adv Sci 2021;8:e2100736.

162. Zhu J, Zhao R, Zhang J, et al. Long-cycling and high-voltage solid state lithium metal batteries enabled by fluorinated and crosslinked polyether electrolytes. Angew Chem Int Ed 2024;63:e202400303.

163. Wang A, Geng S, Zhao Z, Hu Z, Luo J. In situ cross-linked plastic crystal electrolytes for wide-temperature and high-energy-density lithium metal batteries. Adv Funct Mater 2022;32:2201861.

164. Wang F, Liu H, Guo Y, et al. In situ high-performance gel polymer electrolyte with dual-reactive cross-linking for lithium metal batteries. Energy Environ Mater 2024;7:e12497.

165. Wu J, Wang X, Liu Q, et al. A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nat Commun 2021;12:5746.

166. Wang C, Liu H, Liang Y, et al. Molecular-level designed polymer electrolyte for high-voltage lithium-metal solid-state batteries. Adv Funct Mater 2023;33:2209828.

167. Liu D, Lu Z, Lin Z, Zhang C, Dai K, Wei W. Organoboron- and cyano-grafted solid polymer electrolytes boost the cyclability and safety of high-voltage lithium metal batteries. ACS Appl Mater Interfaces 2023;15:21112-22.

168. Hu R, Qiu H, Zhang H, et al. A polymer-reinforced SEI layer induced by a cyclic carbonate-based polymer electrolyte boosting 4.45 V LiCoO2/Li metal batteries. Small 2020;16:e1907163.

169. Dong T, Zhang J, Xu G, et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ Sci 2018;11:1197-203.

170. Liang JY, Zeng XX, Zhang XD, et al. Engineering janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries. J Am Chem Soc 2019;141:9165-9.

171. Zhang H, Zhou L, Du X, et al. Cyanoethyl cellulose-based eutectogel electrolyte enabling high-voltage-tolerant and ion-conductive solid-state lithium metal batteries. Carbon Energy 2022;4:1093-106.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/