REFERENCES

1. Van Noorden R. The rechargeable revolution: a better battery. Nature 2014;507:26-8.

2. Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater 2018;30:1800561.

3. Kang S, Cheng J, Gao W, Cui L. Toward safer lithium metal batteries: a review. Energy Mater 2023;3:300043.

4. Feng Y, Zhou L, Ma H, et al. Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ Sci 2022;15:1711-59.

5. Xiao D, Lv X, Fan J, Li Q, Chen Z. Zn-based batteries for energy storage. Energy Mater 2023;3:300007.

6. Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020;4:771-99.

7. Gourley SW, Brown R, Adams BD, Higgins D. Zinc-ion batteries for stationary energy storage. Joule 2023;7:1415-36.

8. Chen L, An Q, Mai L. Recent advances and prospects of cathode materials for rechargeable aqueous zinc-ion batteries. Adv Mater Inter 2019;6:1900387.

9. Han M, Chen D, Lu Q, Fang G. Aqueous rechargeable Zn-iodine batteries: issues, strategies and perspectives. Small 2023:e2310293.

10. Alfaruqi MH, Gim J, Kim S, et al. Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J Power Sources 2015;288:320-7.

11. Cui Y, Ding Y, Guo L, et al. Ultra-long Zn3V2O7(OH)2·2H2O nanowires grown on carbon cloth as cathode material for aqueous zinc-ion batteries. Energy Mater 2023;3:300023.

12. Zhang K, Kuang Q, Wu J, et al. Layered structural Zn2Mo3O8 as electrode material for aqueous zinc-ion batteries. Electrochim Acta 2022;403:139629.

13. Lu Y, Wang J, Zeng S, et al. An ultrathin defect-rich Co3O4 nanosheet cathode for high-energy and durable aqueous zinc ion batteries. J Mater Chem A 2019;7:21678-83.

14. Zhang Y, Wang Y, Lu L, Sun C, Yu DY. Vanadium hexacyanoferrate with two redox active sites as cathode material for aqueous Zn-ion batteries. J Power Sources 2021;484:229263.

15. Li Y, Zhao J, Hu Q, et al. Prussian blue analogs cathodes for aqueous zinc ion batteries. Mater Today Energy 2022;29:101095.

16. Xu Y, Huang W, Liu J, et al. Promoting the reversibility of electrolytic MnO2-Zn battery with high areal capacity by VOSO4 mediator. Energy Mater 2024;4:400005.

17. Mathew V, Sambandam B, Kim S, et al. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: a focused view on performance, mechanism, and developments. ACS Energy Lett 2020;5:2376-400.

18. Schon TB, McAllister BT, Li PF, Seferos DS. Correction: the rise of organic electrode materials for energy storage. Chem Soc Rev 2016;45:6405-6.

19. Li Z, Tan J, Wang Y, et al. Building better aqueous Zn-organic batteries. Energy Environ Sci 2023;16:2398-431.

20. Wang H, Wu Q, Cheng L, Zhu G. The emerging aqueous zinc-organic battery. Coord Chem Rev 2022;472:214772.

21. Tie Z, Niu Z. Design strategies for high-performance aqueous Zn/organic batteries. Angew Chem Int Ed Engl 2020;59:21293-303.

22. Cui H, Ma L, Huang Z, Chen Z, Zhi C. Organic materials-based cathode for zinc ion battery. SmartMat 2022;3:565-81.

23. Zheng S, Wang Q, Hou Y, Li L, Tao Z. Recent progress and strategies toward high performance zinc-organic batteries. J Energy Chem 2021;63:87-112.

24. Cui J, Guo Z, Yi J, et al. Organic cathode materials for rechargeable zinc batteries: mechanisms, challenges, and perspectives. ChemSusChem 2020;13:2160-85.

25. Sun T, Fan HJ. Understanding cathode materials in aqueous zinc-organic batteries. Curr Opin Electrochem 2021;30:100799.

26. Zhang M, Zhang Y, Huang W, Zhang Q. Recent progress in calix[n]quinone (n = 4, 6) and pillar[5]quinone electrodes for secondary rechargeable batteries. Batter Supercaps 2020;3:476-87.

27. Macdiarmid AG, Chiang J, Halpern M, et al. “Polyaniline”: interconversion of metallic and insulating forms. Mol Cryst Liq Cryst 1985;121:173-80.

28. Koshika K, Sano N, Oyaizu K, Nishide H. An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte. Chem Commun 2009:836-8.

29. Häupler B, Rössel C, Schwenke AM, et al. Aqueous zinc-organic polymer battery with a high rate performance and long lifetime. NPG Asia Mater 2016;8:e283.

30. Zhao Q, Huang W, Luo Z, et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci Adv 2018;4:eaao1761.

31. Glatz H, Lizundia E, Pacifico F, Kundu D. An organic cathode based dual-ion aqueous zinc battery enabled by a cellulose membrane. ACS Appl Energy Mater 2019;2:1288-94.

32. Tie Z, Liu L, Deng S, Zhao D, Niu Z. Proton insertion chemistry of a zinc-organic battery. Angew Chem Int Ed Engl 2020;59:4920-4.

33. Gao Y, Li G, Wang F, et al. A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Mater 2021;40:31-40.

34. Song Z, Miao L, Duan H, et al. Anionic co-insertion charge storage in dinitrobenzene cathodes for high-performance aqueous zinc-organic batteries. Angew Chem Int Ed Engl 2022;61:e202208821.

35. Chen Y, Dai H, Fan K, et al. Frontispiece: a recyclable and scalable high-capacity organic battery. Angew Chem Int Ed Engl 2023;62:e202302539.

36. Poizot P, Gaubicher J, Renault S, Dubois L, Liang Y, Yao Y. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem Rev 2020;120:6490-557.

37. Esser B, Dolhem F, Becuwe M, Poizot P, Vlad A, Brandell D. A perspective on organic electrode materials and technologies for next generation batteries. J Power Sources 2021;482:228814.

38. Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem 2020;4:127-42.

39. Guo Z, Ma Y, Dong X, Huang J, Wang Y, Xia Y. An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew Chem Int Ed Engl 2018;57:11737-41.

40. Nam KW, Kim H, Beldjoudi Y, Kwon TW, Kim DJ, Stoddart JF. Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries. J Am Chem Soc 2020;142:2541-8.

41. Shi M, Das P, Wu ZS, Liu TG, Zhang X. Aqueous organic batteries using the proton as a charge carrier. Adv Mater 2023;35:e2302199.

42. Deng X, Sarpong JK, Zhang G, et al. Proton storage chemistry in aqueous zinc-organic batteries: a review. InfoMat 2023;5:e12382.

43. Wang Y, Wang C, Ni Z, et al. Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries. Adv Mater 2020;32:e2000338.

44. Ye Z, Xie S, Cao Z, et al. High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater 2021;37:378-86.

45. Chen Y, Li J, Zhu Q, et al. Two-dimensional organic supramolecule via hydrogen bonding and π-π stacking for ultrahigh capacity and long-life aqueous zinc-organic batteries. Angew Chem Int Ed Engl 2022;61:e202116289.

46. Koshika K, Sano N, Oyaizu K, Nishide H. An aqueous, electrolyte-type, rechargeable device utilizing a hydrophilic radical polymer-cathode. Macromol Chem Phys 2009;210:1989-95.

47. Luo Y, Zheng F, Liu L, et al. A high-power aqueous zinc-organic radical battery with tunable operating voltage triggered by selected anions. ChemSusChem 2020;13:2239-44.

48. Winsberg J, Janoschka T, Morgenstern S, et al. Poly(TEMPO)/zinc hybrid-flow battery: a novel, “green,” high voltage, and safe energy storage system. Adv Mater 2016;28:2238-43.

49. C´iric´-Marjanovic´ G, Mentus S. Charge-discharge characteristics of polythiopheneas a cathode active material in a rechargeable battery. J Appl Electrochem 1998;28:103-6.

50. Simons TJ, Salsamendi M, Howlett PC, Forsyth M, Macfarlane DR, Pozo-gonzalo C. Rechargeable Zn/PEDOT battery with an imidazolium-based ionic liquid as the electrolyte. ChemElectroChem 2015;2:2071-8.

51. Cui H, Wang T, Huang Z, et al. High-voltage organic cathodes for zinc-ion batteries through electron cloud and solvation structure regulation. Angew Chem Int Ed Engl 2022;61:e202203453.

52. Zhang H, Zhong L, Xie J, Yang F, Liu X, Lu X. A COF-like N-rich conjugated microporous polytriphenylamine cathode with pseudocapacitive anion storage behavior for high-energy aqueous zinc dual-ion batteries. Adv Mater 2021;33:e2101857.

53. Lee MH, Kwon G, Lim H, et al. High-energy and long-lasting organic electrode for a rechargeable aqueous battery. ACS Energy Lett 2022;7:3637-45.

54. Wang S, Huang S, Yao M, Zhang Y, Niu Z. Engineering active sites of polyaniline for AlCl2+ storage in an aluminum-ion battery. Angew Chem Int Ed Engl 2020;59:11800-7.

55. Wang J, Liu J, Hu M, et al. A flexible, electrochromic, rechargeable Zn//PPy battery with a short circuit chromatic warning function. J Mater Chem A 2018;6:11113-8.

56. Pandey PC, Prakash R. Electrochemical synthesis of polyindole and its evaluation for rechargeable battery applications. J Electrochem Soc 1998;145:999-1003.

57. Cai Z, Hou C. Study on the electrochemical properties of zinc/polyindole secondary battery. J Power Sources 2011;196:10731-6.

58. Cai Z, Guo J, Yang H, Xu Y. Electrochemical properties of electrospun poly(5-cyanoindole) submicron-fibrous electrode for zinc/polymer secondary battery. J Power Sources 2015;279:114-22.

59. Kye H, Kang Y, Jang D, Kwon JE, Kim B. p-type redox-active organic electrode materials for next-generation rechargeable batteries. Adv Energy Sustain Res 2022;3:2200030.

60. Qiu X, Wang N, Dong X, et al. A high-voltage Zn-organic battery using a nonflammable organic electrolyte. Angew Chem Int Ed Engl 2021;60:21025-32.

61. He W, Ren Y, Lamsal BS, et al. Decreasing water activity using the tetrahydrofuran electrolyte additive for highly reversible aqueous zinc metal batteries. ACS Appl Mater Interfaces 2023;15:6647-56.

62. Li J, Guo Z, Wu J, et al. Dextran: a multifunctional and universal electrolyte additive for aqueous Zn ion batteries. Adv Energy Mater 2023;13:2301743.

63. Dawut G, Lu Y, Miao L, Chen J. High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode. Inorg Chem Front 2018;5:1391-6.

64. Lin Z, Shi HY, Lin L, Yang X, Wu W, Sun X. A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat Commun 2021;12:4424.

65. Kumankuma-Sarpong J, Tang S, Guo W, Fu Y. Naphthoquinone-based composite cathodes for aqueous rechargeable zinc-ion batteries. ACS Appl Mater Interfaces 2021;13:4084-92.

66. Kundu D, Oberholzer P, Glaros C, et al. Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling. Chem Mater 2018;30:3874-81.

67. Wang X, Chen L, Lu F, Liu J, Chen X, Shao G. Boosting aqueous Zn2+ storage in 1,4,5,8-naphthalenetetracarboxylic dianhydride through nitrogen substitution. ChemElectroChem 2019;6:3644-7.

68. Xie J, Yu F, Zhao J, et al. An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery. Energy Storage Mater 2020;33:283-9.

69. Sun T, Li Z, Zhi Y, Huang Y, Fan HJ, Zhang Q. Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) as an efficient cathode for high-performance aqueous zinc-organic batteries. Adv Funct Mater 2021;31:2010049.

70. Mirle C, Medabalmi V, Ramanujam K. Electrode and conductive additive compatibility yielding excellent rate capability and long cycle life for sustainable organic aqueous Zn-ion batteries. ACS Appl Energy Mater 2021;4:1218-27.

71. Sun T, Zhang W, Nian Q, Tao Z. Molecular engineering design for high-performance aqueous zinc-organic battery. Nanomicro Lett 2023;15:36.

72. Buyukcakir O, Yuksel R, Begar F, et al. Ultralong-life quinone-based porous organic polymer cathode for high-performance aqueous zinc-ion batteries. ACS Appl Energy Mater 2023;6:7672-80.

73. Zhang H, Fang Y, Yang F, Liu X, Lu X. Aromatic organic molecular crystal with enhanced π-π stacking interaction for ultrafast Zn-ion storage. Energy Environ Sci 2020;13:2515-23.

74. Khayum M A, Ghosh M, Vijayakumar V, et al. Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chem Sci 2019;10:8889-94.

75. Zheng S, Shi D, Yan D, et al. Orthoquinone-based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc-organic batteries. Angew Chem Int Ed Engl 2022;61:e202117511.

76. Xu D, Zhang H, Cao Z, et al. High-rate aqueous zinc-ion batteries enabled by a polymer/graphene composite cathode involving reversible electrolyte anion doping/dedoping. J Mater Chem A 2021;9:10666-71.

77. Wang Q, Liu Y, Chen P. Phenazine-based organic cathode for aqueous zinc secondary batteries. J Power Sources 2020;468:228401.

78. Liang J, Tang M, Cheng L, et al. 2,3-diaminophenazine as a high-rate rechargeable aqueous zinc-ion batteries cathode. J Colloid Interface Sci 2022;607:1262-8.

79. Li J, Huang L, Lv H, et al. Novel organic cathode with conjugated N-heteroaromatic structures for high-performance aqueous zinc-ion batteries. ACS Appl Mater Interfaces 2022;14:38844-53.

80. Li S, Shang J, Li M, et al. Design and synthesis of a π-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life. Adv Mater 2023;35:e2207115.

81. Zhang S, Long S, Li H, Xu Q. A high-capacity organic cathode based on active N atoms for aqueous zinc-ion batteries. Chem Eng J 2020;400:125898.

82. Sun T, Zhang W, Nian Q, Tao Z. Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery. Chem Eng J 2023;452:139324.

83. Chen X, Su H, Yang B, Yin G, Liu Q. Realizing high-rate aqueous zinc-ion batteries using organic cathode materials containing electron-withdrawing groups. Sust Energy Fuels 2022;6:2523-31.

84. Sun G, Yang B, Chen X, et al. Aqueous zinc batteries using N-containing organic cathodes with Zn2+ and H+ Co-uptake. Chem Eng J 2022;431:134253.

85. Li J, Huang L, Lv H, et al. Investigations on the electrochemical behaviors of hexaazatriphenylene derivative as high-performance electrode for batteries. Electrochim Acta 2022;432:141206.

86. Wang W, Kale VS, Cao Z, et al. Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv Mater 2021;33:e2103617.

87. Wang W, Kale VS, Cao Z, et al. Phenanthroline covalent organic framework electrodes for high-performance zinc-ion supercapattery. ACS Energy Lett 2020;5:2256-64.

88. Shi Y, Wang P, Gao H, et al. π-conjugated N-heterocyclic compound with redox-active quinone and pyrazine moieties as a high-capacity organic cathode for aqueous zinc-ion batteries. Chem Eng J 2023;461:141850.

89. Sun T, Yi Z, Zhang W, Nian Q, Fan HJ, Tao Z. Dynamic balance of partial charge for small organic compound in aqueous zinc-organic battery. Adv Funct Mater 2023;33:2306675.

90. Ye F, Liu Q, Dong H, et al. Organic zinc-ion battery: planar, π-conjugated quinone-based polymer endows ultrafast ion diffusion kinetics. Angew Chem Int Ed Engl 2022;61:e202214244.

91. Huang L, Li J, Wang J, et al. Organic compound as a cathode for aqueous zinc-ion batteries with improved electrochemical performance via multiple active centers. ACS Appl Energy Mater 2022;5:15780-7.

92. Sun T, Zhang W, Zha Z, Cheng M, Li D, Tao Z. Designing a solubility-limited small organic molecule for aqueous zinc-organic batteries. Energy Storage Mater 2023;59:102778.

93. Wang Y, Wang X, Tang J, Tang W. A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries. J Mater Chem A 2022;10:13868-75.

94. Huang X, Qiu X, Wang W, et al. Activating organic electrode via trace dissolved organic molecules. J Am Chem Soc 2023;145:25604-13.

95. Li W, Xu H, Zhang H, et al. Tuning electron delocalization of hydrogen-bonded organic framework cathode for high-performance zinc-organic batteries. Nat Commun 2023;14:5235.

96. Sun QQ, Sun T, Du JY, et al. In situ electrochemical activation of hydroxyl polymer cathode for high-performance aqueous zinc-organic batteries. Angew Chem Int Ed Engl 2023;62:e202307365.

97. Wan F, Zhang L, Wang X, Bi S, Niu Z, Chen J. An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv Funct Mater 2018;28:1804975.

98. Liu Z, Prowald A, Höfft O, Li G, Lahiri A, Endres F. An ionic liquid-surface functionalized polystyrene spheres hybrid electrolyte for rechargeable zinc/conductive polymer batteries. ChemElectroChem 2018;5:2321-5.

99. Tang M, Zhu Q, Hu P, et al. Ultrafast rechargeable aqueous zinc-ion batteries based on stable radical chemistry. Adv Funct Mater 2021;31:2102011.

100. Wang N, Guo Z, Ni Z, et al. Molecular tailoring of an n/p-type phenothiazine organic scaffold for zinc batteries. Angew Chem Int Ed Engl 2021;60:20826-32.

101. Zhang H, Xu D, Wang L, et al. A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism. Small 2021;17:e2100902.

102. Yu P, Wang J, Gan X, Guo Z, Huang L, Song Z. Thionin as a bipolar organic cathode material for aqueous rechargeable zinc batteries. Batter Supercaps 2023;6:e202300010.

103. Yan L, Zhu Q, Qi Y, et al. Towards high-performance aqueous zinc batteries via a semi-conductive bipolar-type polymer cathode. Angew Chem Int Ed Engl 2022;61:e202211107.

104. Lu Y, Hou X, Miao L, et al. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries. Angew Chem Int Ed Engl 2019;58:7020-4.

105. Liang Y, Zhang P, Yang S, Tao Z, Chen J. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv Energy Mater 2013;3:600-5.

106. Gan X, Song Z. Small-molecule organic electrode materials for rechargeable batteries. Sci China Chem 2023;66:3070-104.

107. Liao X, Pan C, Yan H, Zhu Y, Pan Y, Yin C. Polyaniline-functionalized graphene composite cathode with enhanced Zn2+ storage performance for aqueous zinc-ion battery. Chem Eng J 2022;440:135930.

108. Mandić Z, Roković MK, Pokupčić T. Polyaniline as cathodic material for electrochemical energy sources: the role of morphology. Electrochim Acta 2009;54:2941-50.

109. Zhang S, Zhao W, Li H, Xu Q. Cross-conjugated polycatechol organic cathode for aqueous zinc-ion storage. ChemSusChem 2020;13:188-95.

110. Ni Q, Kim B, Wu C, Kang K. Non-electrode components for rechargeable aqueous zinc batteries: electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv Mater 2022;34:e2108206.

111. Kim J, Kim Y, Yoo J, Kwon G, Ko Y, Kang K. Organic batteries for a greener rechargeable world. Nat Rev Mater 2023;8:54-70.

112. Zhang L, Chen Y, Jiang Z, et al. Cation-anion redox active organic complex for high performance aqueous zinc ion battery. Energy Environ Mater 2024;7:e12507.

113. Cai T, Han Y, Lan Q, et al. Stable cycling of small molecular organic electrode materials enabled by high concentration electrolytes. Energy Storage Mater 2020;31:318-27.

114. Zhao Z, Lai J, Ho DT, et al. A novel “water-in-ionic liquid” electrolyte for Zn metal batteries. ACS Energy Lett 2023;8:608-18.

115. Yu L, Huang J, Wang S, Qi L, Wang S, Chen C. Ionic liquid “water pocket” for stable and environment-adaptable aqueous zinc metal batteries. Adv Mater 2023;35:e2210789.

116. Luo J, Jiang X, Huang Y, et al. Poly(ionic liquid) additive: aqueous electrolyte engineering for ion rectifying and calendar corrosion relieving. Chem Eng J 2023;470:144152.

117. Geng Y, Pan L, Peng Z, et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater 2022;51:733-55.

118. Li Y, Yao H, Liu X, Yang X, Yuan D. Roles of electrolyte additive in Zn chemistry. Nano Res 2023;16:9179-94.

119. Guo S, Qin L, Zhang T, et al. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater 2021;34:545-62.

120. Naveed A, Rasheed T, Raza B, et al. Addressing thermodynamic Instability of Zn anode: classical and recent advancements. Energy Storage Mater 2022;44:206-30.

121. Ma K, Yang G, Wang C. Towards storable and durable Zn-MnO2 batteries with hydrous tetraglyme electrolyte. J Energy Chem 2023;80:432-41.

122. Ilyas F, Chen J, Zhang Y, Huang Y, Ma H, Wang J. Intrinsically safe electrolyte boosting high reversibleZn anode for rechargeable batteries. Energy Storage Mater 2023;55:566-74.

123. Li J, Ren J, Li C, et al. High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free Zn-ion battery. Nano Res 2022;15:7190-8.

124. Li Y, Yuan J, Qiao Y, et al. Recent progress in structural modification of polymer gel electrolytes for use in solid-state zinc-ion batteries. Dalton Trans 2023;52:11780-96.

125. Lu K, Jiang T, Hu H, Wu M. Hydrogel electrolytes for quasi-solid zinc-based batteries. Front Chem 2020;8:546728.

126. Wu M, Su W, Wang X, et al. Long-life aqueous zinc-organic batteries with a trimethyl phosphate electrolyte and organic cathode. ACS Sustainable Chem Eng 2023;11:957-64.

127. Du W, Ang EH, Yang Y, Zhang Y, Ye M, Li CC. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ Sci 2020;13:3330-60.

128. Hu Q, Hu J, Li Y, et al. Insights into Zn anode surface chemistry for dendrite-free Zn ion batteries. J Mater Chem A 2022;10:11288-97.

129. Bayaguud A, Fu Y, Zhu C. Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J Energy Chem 2022;64:246-62.

130. Chen J, Zhao W, Jiang J, et al. Challenges and perspectives of hydrogen evolution-free aqueous Zn-Ion batteries. Energy Storage Mater 2023;59:102767.

131. Cao J, Zhang D, Zhang X, Zeng Z, Qin J, Huang Y. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ Sci 2022;15:499-528.

132. Zhang Y, Bi S, Niu Z, Zhou W, Xie S. Design of Zn anode protection materials for mild aqueous Zn-ion batteries. Energy Mater 2022;2:200012.

133. Zhu C, Li P, Xu G, Cheng H, Gao G. Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coord Chem Rev 2023;485:215142.

134. Zheng J, Liu X, Zheng Y, et al. AgxZny protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes. Nano Lett 2023;23:6156-63.

135. Zheng J, Zhu G, Liu X, et al. Simultaneous dangling bond and zincophilic site engineering of SiNx protective coatings toward stable zinc anodes. ACS Energy Lett 2022;7:4443-50.

136. Liu X, Lu Q, Yang A, Qian Y. High ionic conductive protection layer on Zn metal anode for enhanced aqueous zinc-ion batteries. Chin Chem Lett 2023;34:107703.

137. Wang C, Xu Y, Fang Y, et al. Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries. J Am Chem Soc 2015;137:3124-30.

138. Luo W, Liu Y, Li F, Zhang Z, Chao Z, Fan J. Low-dimensional and high-crystallinity carbonyl cathodes prepared by physical vapor deposition for green aluminum organic batteries. ACS Appl Mater Interfaces 2023;15:37433-41.

139. Gong S, Xie Y, Zhao J, et al. An electrolyte-rich nano-organic cathode constructs an ultra-high voltage Zinc-ion battery. Chem Eng J 2023;476:146619.

140. Ma G, Ju Z, Xu X, et al. Enhancing organic cathodes of aqueous zinc-ion batteries via utilizing steric hindrance and electron cloud equalization. Chem Sci 2023;14:12589-97.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/