REFERENCES
1. He Q, Zhou Y, Shou H, et al. Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv Mater 2022;34:e2110604.
2. Fan K, Tsang YH, Huang H. Theoretical evidence of self-intercalated 2D materials for battery and electrocatalytic applications. Energy Mater 2023;3:300047.
3. Tian X, Li X, Yang T, et al. Porous worm-like NiMoO4 coaxially decorated electrospun carbon nanofiber as binder-free electrodes for high performance supercapacitors and lithium-ion batteries. Appl Surf Sci 2018;434:49-56.
4. Cao X, Zhang L, Huang K, Zhang B, Wu J, Huang Y. Strained carbon steel as a highly efficient catalyst for seawater electrolysis. Energy Mater 2022;2:200010.
5. Tian X, Yang T, Song Y, et al. Symmetric supercapacitor operating at 1.5 V with combination of nanosheet-based NiMoO4 microspheres and redox additive electrolyte. J Energy Stor 2022;47:103960.
6. Xu HG, Zhang XY, Ding Y, et al. Rational design of hydrogen evolution reaction electrocatalysts for commercial alkaline water electrolysis. Small Struct 2023;4:2200404.
7. Zhu B, Zou R, Xu Q. Metal-organic framework based catalysts for hydrogen evolution. Adv Energy Mater 2018;8:1801193.
8. Yan D, Mebrahtu C, Wang S, Palkovits R. Innovative electrochemical strategies for hydrogen production: from electricity input to electricity output. Angew Chem Int Ed 2023;62:e202214333.
9. Li J, Xia Z, Xue Q, et al. Insights into the interfacial lewis acid-base pairs in CeO2 -loaded CoS2 electrocatalysts for alkaline hydrogen evolution. Small 2021;17:e2103018.
10. Chen Z, Gong W, Wang J, et al. Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte. Nat Commun 2023;14:5363.
11. Jin J, Yin J, Liu H, et al. Atomic sulfur filling oxygen vacancies optimizes H absorption and boosts the hydrogen evolution reaction in alkaline media. Angew Chem Int Ed 2021;60:14117-23.
12. Liu Y, Feng Q, Liu W, et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 2021;81:105641.
13. Zhang JZ, Zhang Z, Zhang HB, et al. Prussian-blue-analogue-derived ultrathin Co2P-Fe2P nanosheets for universal-pH overall water splitting. Nano Lett 2023;23:8331-8.
14. Li Y, Xu T, Huang Q, et al. C60 fullerenol to stabilize and activate Ru nanoparticles for highly efficient hydrogen evolution reaction in alkaline media. ACS Catal 2023;13:7597-605.
15. Zhao X, Li X, Xiao D, et al. Isolated Pd atom anchoring endows cobalt diselenides with regulated water-reduction kinetics for alkaline hydrogen evolution. Appl Catal B Environ 2021;295:120280.
16. Wu J, Fan J, Zhao X, et al. Atomically dispersed MoOx on rhodium metallene boosts electrocatalyzed alkaline hydrogen evolution. Angew Chem Int Ed 2022;61:e202207512.
17. Men YN, Tan Y, Li P, et al. Tailoring the 3D-orbital electron filling degree of metal center to boost alkaline hydrogen evolution electrocatalysis. Appl Catal B Environ 2021;284:119718.
18. Jiang Y, Leng J, Zhang S, et al. Modulating water splitting kinetics via charge transfer and interfacial hydrogen spillover effect for robust hydrogen evolution catalysis in alkaline media. Adv Sci 2023;10:e2302358.
19. Yang W, Li M, Zhang B, et al. Interfacial microenvironment modulation boosts efficient hydrogen evolution reaction in neutral and alkaline. Adv Funct Mater 2023;33:2304852.
20. Wan C, Zhang Z, Dong J, et al. Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nat Mater 2023;22:1022-9.
21. Zhang R, Li Y, Zhou X, et al. Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution. Nat Commun 2023;14:2460.
22. Alsabban MM, Eswaran MK, Peramaiah K, et al. Unusual activity of rationally designed cobalt phosphide/oxide heterostructure composite for hydrogen production in alkaline medium. ACS Nano 2022;16:3906-16.
23. Yi L, Ji Y, Shao P, et al. Scalable synthesis of tungsten disulfide nanosheets for alkali-acid electrocatalytic sulfion recycling and H2 generation. Angew Chem Int Ed 2021;60:21550-7.
24. Wang X, Long G, Liu B, et al. Rationally modulating the functions of Ni3Sn2-NiSnOx nanocomposite electrocatalysts towards enhanced hydrogen evolution reaction. Angew Chem Int Ed 2023;62:e202301562.
25. Li Z, Yu C, Wen Y, et al. Mesoporous hollow Cu-Ni alloy nanocage from core-shell Cu@Ni nanocube for efficient hydrogen evolution reaction. ACS Catal 2019;9:5084-95.
26. Song J, Jin YQ, Zhang L, et al. Phase-separated Mo-Ni alloy for hydrogen oxidation and evolution reactions with high activity and enhanced stability. Adv Energy Mater 2021;11:2003511.
27. Wang M, Yang H, Shi J, et al. Alloying nickel with molybdenum significantly accelerates alkaline hydrogen electrocatalysis. Angew Chem Int Ed 2021;60:5771-7.
28. Lu W, Li X, Wei F, et al. In-situ transformed Ni, S-codoped CoO from amorphous Co-Ni sulfide as an efficient electrocatalyst for hydrogen evolution in alkaline media. ACS Sustain Chem Eng 2019;7:12501-9.
29. Xu H, Fei B, Cai G, et al. Boronization-induced ultrathin 2D nanosheets with abundant crystalline - amorphous phase boundary supported on nickel foam toward efficient water splitting. Adv Energy Mater 2020;10:1902714.
30. Chen N, Du Y, Zhang G, Lu W, Cao F. Amorphous nickel sulfoselenide for efficient electrochemical urea-assisted hydrogen production in alkaline media. Nano Energy 2021;81:105605.
31. Su J, Wang Q, Fang M, et al. Metastable hexagonal-phase nickel with ultralow Pt content for an efficient alkaline/seawater hydrogen evolution reaction. ACS Appl Mater Interfaces 2023;15:51160-9.
32. Pang QQ, Bai X, Du X, Zhang S, Liu ZY, Yue XZ. Facet modulation of nickel-ruthenium nanocrystals for efficient electrocatalytic hydrogen evolution. J Colloid Interface Sci 2023;633:275-83.
33. Nguyen DN, Phu TKC, Kim J, et al. Interfacial strain-modulated nanospherical Ni2P by heteronuclei-mediated growth on Ti3C2Tx MXene for efficient hydrogen evolution. Small 2022;18:e2204797.
34. Li Y, Min K, Han B, Lee LYS. Ni nanoparticles on active (001) facet-exposed rutile TiO2 nanopyramid arrays for efficient hydrogen evolution. Appl Catal B Environ 2021;282:119548.
35. Su H, Tang Y, Shen H, et al. Insights into antiperovskite Ni3In1-xCuxN multi-crystalline nanoplates and bulk cubic particles as efficient electrocatalysts on hydrogen evolution reaction. Small 2022;18:e2105906.
36. Liu J, Wang J, Fo Y, et al. Engineering of unique Ni-Ru nano-twins for highly active and robust bifunctional hydrogen oxidation and hydrogen evolution electrocatalysis. Chem Eng J 2023;454:139959.
37. Lu J, Chen S, Zhuo Y, Mao X, Liu D, Wang Z. Greatly boosting seawater hydrogen evolution by surface amorphization and morphology engineering on MoO2/Ni3(PO4)2. Adv Funct Mater 2023;33:2308191.
38. Lyu C, Cao C, Cheng J, et al. Interfacial electronic structure modulation of Ni2P/Ni5P4 heterostructure nanosheets for enhanced pH-universal hydrogen evolution reaction performance. Chem Eng J 2023;464:142538.
39. Xu Q, Zhang J, Zhang H, et al. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ Sci 2021;14:5228-59.
40. Wei J, Zhou M, Long A, et al. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nanomicro Lett 2018;10:75.
41. Huang C, Zhou J, Duan D, et al. Roles of heteroatoms in electrocatalysts for alkaline water splitting: a review focusing on the reaction mechanism. Chin J Catal 2022;43:2091-110.
42. Liu X, Ni K, Niu C, et al. Upraising the O 2p orbital by integrating Ni with MoO2 for accelerating hydrogen evolution kinetics. ACS Catal 2019;9:2275-85.
43. Chang J, Wang W, Wu D, et al. Self-supported amorphous phosphide catalytic electrodes for electrochemical hydrogen production coupling with methanol upgrading. J Colloid Interface Sci 2023;648:259-69.
44. Darband GB, Lotfi N, Aliabadi A, Hyun S, Shanmugam S. Hydrazine-assisted electrochemical hydrogen production by efficient and self-supported electrodeposited Ni-Cu-P@Ni-Cu nano-micro dendrite catalyst. Electrochim Acta 2021;382:138335.
45. Deng L, Hu F, Ma M, et al. Electronic modulation caused by interfacial Ni-O-M (M=Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics. Angew Chem Int Ed 2021;60:22276-82.
46. Li D, Hao G, Guo W, Liu G, Li J, Zhao Q. Highly efficient Ni nanotube arrays and Ni nanotube arrays coupled with NiFe layered-double-hydroxide electrocatalysts for overall water splitting. J Power Sources 2020;448:227434.
47. Liang W, Dong P, Le Z, et al. Electron density modulation of MoO2/Ni to produce superior hydrogen evolution and oxidation activities. ACS Appl Mater Interfaces 2021;13:39470-9.
48. Liang W, Zhou M, Lin X, et al. Nickel-doped tungsten oxide promotes stable and efficient hydrogen evolution in seawater. Appl Catal B Environ 2023;325:122397.
49. Liu M, Zou W, Qiu S, Su N, Cong J, Hou L. Active site tailoring of Ni-based coordination polymers for high-efficiency dual-functional HER and UOR catalysis. Adv Funct Mater 2024;34:2310155.
50. Zhou P, Wang S, Zhai G, et al. Host dependent electrocatalytic hydrogen evolution of Ni/TiO2 composites. J Mater Chem A 2021;9:6325-34.
51. Shen J, Li Q, Zhang W, et al. Spherical Co3S4 grown directly on Ni-Fe sulfides as a porous nanoplate array on FeNi3 foam: a highly efficient and durable bifunctional catalyst for overall water splitting. J Mater Chem A 2022;10:5442-51.
52. Wang J, Shao H, Ren S, Hu A, Li M. Fabrication of porous Ni-Co catalytic electrode with high performance in hydrogen evolution reaction. Appl Surf Sci 2021;539:148045.
53. Zhang B, Xu W, Liu S, et al. Enhanced interface interaction in Cu2S@Ni core-shell nanorod arrays as hydrogen evolution reaction electrode for alkaline seawater electrolysis. J Power Sources 2021;506:230235.
54. Yang B, Fu HC, Chen XH, et al. Nanoarchitectonics for synergistic action coupling of Ni nanoparticles with W2C nanowires for highly efficient alkaline hydrogen production. Appl Surf Sci 2023;630:157460.
55. Chen H, Ge D, Chen J, et al. In situ surface reconstruction synthesis of a nickel oxide/nickel heterostructural film for efficient hydrogen evolution reaction. Chem Commun 2020;56:10529-32.
56. Wang P, Qin R, Ji P, et al. Synergistic coupling of Ni nanoparticles with Ni3C nanosheets for highly efficient overall water splitting. Small 2020;16:e2001642.
57. Zhou P, Lv X, Gao Y, et al. Enhanced electrocatalytic HER performance of non-noble metal nickel by introduction of divanadium trioxide. Electrochim Acta 2019;320:134535.
58. Sun J, Zhu M, Fan M, et al. Mo2C-Ni modified carbon microfibers as an effective electrocatalyst for hydrogen evolution reaction in acidic solution. J Colloid Interface Sci 2019;543:300-6.
59. Yang L, Zhao X, Yang R, et al. In-situ growth of carbon nanotubes on Ni/NiO nanofibers as efficient hydrogen evolution reaction catalysts in alkaline media. Appl Surface Sci 2019;491:294-300.
60. Barhoum A, El-Maghrabi HH, Iatsunskyi I, et al. Atomic layer deposition of Pd nanoparticles on self-supported carbon-Ni/NiO-Pd nanofiber electrodes for electrochemical hydrogen and oxygen evolution reactions. J Colloid Interface Sci 2020;569:286-97.
61. Li T, Yin J, Sun D, et al. Manipulation of mott-schottky Ni/CeO2 heterojunctions into N-doped carbon nanofibers for high-efficiency electrochemical water splitting. Small 2022;18:e2106592.
62. Tao J, Zhang Y, Wang S, et al. Activating three-dimensional networks of Fe@Ni nanofibers via fast surface modification for efficient overall water splitting. ACS Appl Mater Interfaces 2019;11:18342-8.
63. Zhang X, Wang J, Wang J, Wang J, Wang C, Lu C. Freestanding surface disordered NiCu solid solution as ultrastable high current density hydrogen evolution reaction electrode. J Phys Chem Lett 2021;12:11135-42.
64. Li G, Wang J, Yu J, et al. Ni-Ni3P nanoparticles embedded into N, P-doped carbon on 3D graphene frameworks via in situ phosphatization of saccharomycetes with multifunctional electrodes for electrocatalytic hydrogen production and anodic degradation. Appl Catal B Environ 2020;261:118147.
65. Jia D, Han L, Li Y, et al. Optimizing electron density of nickel sulfide electrocatalysts through sulfur vacancy engineering for alkaline hydrogen evolution. J Mater Chem A 2020;8:18207-14.
66. Li YK, Zhang G, Lu WT, Cao FF. Amorphous Ni-Fe-Mo suboxides coupled with Ni network as porous nanoplate array on nickel foam: a highly efficient and durable bifunctional electrode for overall water splitting. Adv Sci 2020;7:1902034.
67. Liang W, Zhou M, Li X, et al. Oxygen-vacancy-rich MoO2 supported nickel as electrocatalysts to promote alkaline hydrogen evolution and oxidation reactions. Chem Eng J 2023;464:142671.
68. Mao B, Sun P, Jiang Y, et al. Identifying the transfer kinetics of adsorbed hydroxyl as a descriptor of alkaline hydrogen evolution reaction. Angew Chem Int Ed 2020;59:15232-7.
69. Zhong W, Wang Z, Gao N, et al. Coupled vacancy pairs in Ni-doped CoSe for improved electrocatalytic hydrogen production through topochemical deintercalation. Angew Chem Int Ed 2020;59:22743-8.
70. Jiao Y, Hong W, Li P, Wang L, Chen G. Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor. Appl Catal B Environ 2019;244:732-9.
71. Tang Y, Liu Q, Dong L, Wu HB, Yu X. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl Catal B Environ 2020;266:118627.
72. Huang J, Han J, Wu T, et al. Boosting hydrogen transfer during volmer reaction at oxides/metal nanocomposites for efficient alkaline hydrogen evolution. ACS Energy Lett 2019;4:3002-10.
73. Gu Y, Xi B, Wei R, Fu Q, Qain Y, Xiong S. Sponge assembled by graphene nanocages with double active sites to accelerate alkaline HER kinetics. Nano Lett 2020;20:8375-83.
74. Xue S, Haid RW, Kluge RM, et al. Enhancing the hydrogen evolution reaction activity of platinum electrodes in alkaline media using nickel-iron clusters. Angew Chem Int Ed 2020;59:10934-8.
75. Tian Y, Huang A, Wang Z, et al. Two-dimensional hetero-nanostructured electrocatalyst of Ni/NiFe-layered double oxide for highly efficient hydrogen evolution reaction in alkaline medium. Chem Eng J 2021;426:131827.
76. Suryanto BHR, Wang Y, Hocking RK, Adamson W, Zhao C. Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nat Commun 2019;10:5599.
77. Sun H, Yan Z, Tian C, et al. Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution. Nat Commun 2022;13:3857.
78. Dastafkan K, Shen X, Hocking RK, Meyer Q, Zhao C. Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes. Nat Commun 2023;14:547.
79. Yang J, Shen Y, Sun Y, Xian J, Long Y, Li G. Ir nanoparticles anchored on metal-organic frameworks for efficient overall water splitting under pH-universal conditions. Angew Chem Int Ed 2023;62:e202302220.
80. Bao J, Zhou Y, Zhang Y, et al. Engineering water splitting sites in three-dimensional flower-like Co-Ni-P/MoS2 heterostructural hybrid spheres for accelerating electrocatalytic oxygen and hydrogen evolution. J Mater Chem A 2020;8:22181-90.
81. Dai L, Chen ZN, Li L, Yin P, Liu Z, Zhang H. Ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting. Adv Mater 2020;32:e1906915.
82. Zhong W, Li W, Yang C, et al. Interfacial electron rearrangement: Ni activated Ni(OH)2 for efficient hydrogen evolution. J Energy Chem 2021;61:236-42.
83. Tang Y, Dong L, Wu HB, Yu X. Tungstate-modulated Ni/Ni(OH)2 interface for efficient hydrogen evolution reaction in neutral media. J Mater Chem A 2021;9:1456-62.
84. Li J, Zhang Q, Zhang J, et al. Optimizing electronic structure of porous Ni/MoO2 heterostructure to boost alkaline hydrogen evolution reaction. J Colloid Interface Sci 2022;627:862-71.
85. Wu L, Zhang F, Song S, et al. Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics. Adv Mater 2022;34:e2201774.
86. Zhang B, Du Z, Sun R, et al. Tremella-like Ni-NiO with O-vacancy heterostructure nanosheets grown in situ on MXenes for highly efficient hydrogen and oxygen evolution. ACS Appl Mater Interfaces 2022;14:47529-41.
87. Zhou P, Tao L, Tao S, et al. Construction of nickel-based dual heterointerfaces towards accelerated alkaline hydrogen evolution via boosting multi-step elementary reaction. Adv Funct Mater 2021;31:2104827.
88. Liu M, Sun Z, Zhang C, et al. Multi-interfacial engineering of a coil-like NiS-Ni2P/Ni hybrid to efficiently boost electrocatalytic hydrogen generation in alkaline and neutral electrolyte. J Mater Chem A 2022;10:13410-7.
89. Liu M, Zou W, Cong J, Su N, Qiu S, Hou L. Identifying and unveiling the role of multivalent metal states for bidirectional UOR and HER over Ni, Mo-trithiocyanuric based coordination polymer. Small 2023;19:e2302698.
90. Zhang J, Cui F, Ma Q, Cui T. Ni3+-rich Ni/NiOx@C nanocapsules below 4 nm constructed by low-temperature graphitization of self-assembled few-layer coordination polymers toward efficient alkaline hydrogen evolution electrocatalysis. Small 2024:e2311057.
91. Kim J, Jung SM, Lee N, Kim KS, Kim YT, Kim JK. Efficient alkaline hydrogen evolution reaction using superaerophobic Ni nanoarrays with accelerated H2 bubble release. Adv Mater 2023;35:e2305844.
92. Xu X, Fu G, Wang Y, et al. Highly efficient all-3D-printed electrolyzer toward ultrastable water electrolysis. Nano Lett 2023;23:629-36.
93. Fujimura T, Hikima W, Fukunaka Y, Homma T. Analysis of the effect of surface wettability on hydrogen evolution reaction in water electrolysis using micro-patterned electrodes. Electrochem Commun 2019;101:43-6.
94. Shang L, Zhao Y, Kong X, et al. Underwater superaerophobic Ni nanoparticle-decorated nickel-molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy 2020;78:105375.
95. Li Y, Li J, Qian Q, et al. Superhydrophilic Ni-based multicomponent nanorod-confined-nanoflake array electrode achieves waste-battery-driven hydrogen evolution and hydrazine oxidation. Small 2021;17:e2008148.
96. Gugtapeh HS, Rezaei M. Facile electrochemical synthesis of Ni-Sb nanostructure supported on graphite as an affordable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. J Electroanal Chem 2022;922:116726.
97. Yu W, Chen Z, Fu Y, et al. Superb all-pH hydrogen evolution performances powered by ultralow Pt-decorated hierarchical Ni-Mo porous microcolumns. Adv Funct Mater 2023;33:2210855.
98. Jiang Y, Huang J, Mao B, An T, Wang J, Cao M. Inside solid-liquid interfaces: understanding the influence of the electrical double layer on alkaline hydrogen evolution reaction. Appl Catal B Environ 2021;293:120220.
99. Zhang B, Zhang L, Tan Q, et al. Simultaneous interfacial chemistry and inner helmholtz plane regulation for superior alkaline hydrogen evolution. Energy Environ Sci 2020;13:3007-13.
100. Gao L, Bao F, Tan X, et al. Engineering a local potassium cation concentrated microenvironment toward the ampere-level current density hydrogen evolution reaction. Energy Environ Sci 2023;16:285-94.
101. Tan H, Tang B, Lu Y, et al. Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction. Nat Commun 2022;13:2024.
102. Amaral L, Minkiewicz J, Šljukić B, et al. Toward tailoring of electrolyte additives for efficient alkaline water electrolysis: salicylate-based ionic liquids. ACS Appl Energy Mater 2018;1:4731-42.