REFERENCES

1. Jesper Jacobsson T, Correa-baena J, Pazoki M, et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ Sci 2016;9:1706-24.

2. Park N. Perovskite solar cells: an emerging photovoltaic technology. Mater Today 2015;18:65-72.

3. Tan Q, Li Z, Luo G, et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 2023;620:545-51.

4. Yang Z, Zhang W, Wu S, et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Sci Adv 2021;7:eabg3749.

5. Yang F, Jang D, Dong L, et al. Upscaling solution-processed perovskite photovoltaics. Adv Energy Mater 2021;11:2101973.

6. Gao F, Zhao Y, Zhang X, You J. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv Energy Mater 2020;10:1902650.

7. Ball JM, Petrozza A. Defects in perovskite-halides and their effects in solar cells. Nat Energy 2016;1:16149.

8. You S, Eickemeyer FT, Gao J, et al. Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. Nat Energy 2023;8:515-25.

9. Meng L, You J, Yang Y. Addressing the stability issue of perovskite solar cells for commercial applications. Nat Commun 2018;9:5265.

10. Wang R, Mujahid M, Duan Y, Wang Z, Xue J, Yang Y. A review of perovskites solar cell stability. Adv Funct Mater 2019;29:1808843.

11. Li Z, Li B, Wu X, et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 2022;376:416-20.

12. Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018;555:497-501.

13. Zhan Y, Yang F, Chen W, et al. Elastic lattice and excess charge carrier manipulation in 1D-3D Perovskite solar cells for exceptionally long-term operational stability. Adv Mater 2021;33:e2105170.

14. Luo L, Zeng H, Wang Z, et al. Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat Energy 2023;8:294-303.

15. Li Y, Liu L, Zheng C, et al. Plant-derived l -theanine for ultraviolet/ozone resistant perovskite photovoltaics. Adv Energy Mater 2023;13:2203190.

16. Park J, Kim J, Yun HS, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023;616:724-30.

17. Li M, Sun R, Chang J, et al. Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat Commun 2023;14:573.

18. Zhang Z, Qiao L, Meng K, Long R, Chen G, Gao P. Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem Soc Rev 2023;52:163-95.

19. Xia J, Liang C, Gu H, et al. Surface passivation toward efficient and stable perovskite solar cells. Energy Environ Mater 2023;6:e12296.

20. Azaid A, Kacimi R, Alaqarbeh M, et al. Design of a D-Di-π-A architecture with different auxiliary donors for dye-sensitized solar cells: density functional theory/time-dependent-density functional theory study of the effect of secondary donors. Advcd Theory Sims 2023;6:2300054.

21. Hassan T, Adnan M, Hussain R, Hussain F, Khan MU. Molecular engineering of Pyran-fused acceptor-donor-acceptor-type non-fullerene acceptors for highly efficient organic solar cells - a density functional theory approach. J Phys Org Chem 2023;36:e4507.

22. Kagdada HL, Roondhe B, Roondhe V, et al. Exploring a-site cation variations in dion-jacobson two-dimensional halide perovskites for enhanced solar cell applications: a density functional theory study. Adv Energy Sustain Res 2024;5:2300147.

23. Saloni S, Ranjan P, Chakraborty T. A computational study of CuCrX2 (X = S, Se, Te) for intermediate band solar cell: conceptual density functional theory approach. J Mol Graph Model 2023;124:108534.

24. Setsoafia DDY, Ram KS, Mehdizadeh-rad H, Ompong D, Singh J. Density functional theory simulation of optical and photovoltaic properties of DRTB-T donor-based organic solar cells. Int J Energy Res 2023;2023:1-12.

25. Srivastava A, Lenka TR, Anthoniappen J, Tripathy SK. Investigation on thermodynamic properties of novel Ag2SrSn(S/Se)4 quaternary chalcogenide for solar cell applications: a density functional theory study. In: Lenka TR, Misra D, Fu L, editors. Micro and nanoelectronics devices, circuits and systems. Singapore: Springer Nature; 2023. pp. 103-10.

26. Taouali W, Alimi K, Sindhoo Nangraj A, Casida ME. Density-functional theory (DFT) and time-dependent DFT study of the chemical and physical origins of key photoproperties of end-group derivatives of a nonfullerene acceptor molecule for bulk heterojunction organic solar cells. J Comput Chem 2023;44:2130-48.

27. Kaiser W, Carignano M, Alothman AA, et al. First-principles molecular dynamics in metal-halide perovskites: contrasting generalized gradient approximation and hybrid functionals. J Phys Chem Lett 2021;12:11886-93.

28. Ohto T, Dodia M, Imoto S, Nagata Y. Structure and dynamics of water at the water-air interface using first-principles molecular dynamics simulations within generalized gradient approximation. J Chem Theory Comput 2019;15:595-602.

29. Pandech N, Kongnok T, Palakawong N, Limpijumnong S, Lambrecht WRL, Jungthawan S. Effects of the van der Waals interactions on structural and electronic properties of CH3NH3(Pb,Sn)(I,Br,Cl)3 halide perovskites. ACS Omega 2020;5:25723-32.

30. Wang Y, de Gironcoli S, Hush NS, Reimers JR. Successful a priori modeling of CO adsorption on Pt(111) using periodic hybrid density functional theory. J Am Chem Soc 2007;129:10402-7.

31. Gusakova J, Wang X, Shiau LL, et al. Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ-2e Method). Physica Status Solidi 2017;214:1700218.

32. Borlido P, Aull T, Huran AW, Tran F, Marques MAL, Botti S. Large-scale benchmark of exchange-correlation functionals for the determination of electronic band gaps of solids. J Chem Theory Comput 2019;15:5069-79.

33. Wang Y, Zhang H, Liu P, Yao X, Zhao H. Engineering the band gap of bare titanium dioxide materials for visible-light activity: a theoretical prediction. RSC Adv 2013;3:8777-82.

34. Zaki NH, Ali AMM, Mohamad Taib MF, Wan Ismail WIN, Sepeai S, Ramli A. Dispersion-correction density functional theory (DFT+D) and spin-orbit coupling (SOC) method into the structural, electronic, optical and mechanical properties of CH3NH3PbI3. Comput Condens Matter 2023;34:e00777.

35. Shi T, Yin W, Hong F, Zhu K, Yan Y. Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Appl Phys Lett 2015;106:103902.

36. Huang Y, Sun QD, Xu W, He Y, Yin WJ. Halide perovskite materials for solar cells: a theoretical review. Acta Phys Sin 2017;33:1730-51.

37. Yin W, Yang J, Kang J, Yan Y, Wei S. Halide perovskite materials for solar cells: a theoretical review. J Mater Chem A 2015;3:8926-42.

38. Amat A, Mosconi E, Ronca E, et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett 2014;14:3608-16.

39. Bhattacharya S, Kanai Y. Spin-orbit-coupling-induced band splitting in two-dimensional hybrid organic-inorganic perovskites: Importance of organic cations. Phys Rev Mater 2023;7:055001.

40. Ronca E, De Angelis F, Fantacci S. Time-dependent density functional theory modeling of spin-orbit coupling in ruthenium and osmium solar cell sensitizers. J Phys Chem C 2014;118:17067-78.

41. Even J, Pedesseau L, Jancu J, Katan C. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J Phys Chem Lett 2013;4:2999-3005.

42. Idrissi S, Labrim H, Bahmad L, Benyoussef A. DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications. Chem Phys Lett 2021;766:138347.

43. Das T, Di Liberto G, Pacchioni G. Density functional theory estimate of halide perovskite band gap: when spin orbit coupling helps. J Phys Chem C 2022;126:2184-98.

44. Alsalamah IM, Shaari A, Alsaif NA, Yamusa SA, Lakshminarayana G, Rekik N. Exploring the structural properties and the optoelectronic features of RbPbX3 (X = Cl, F) perovskite crystals for solar cells solicitations: showcasing the DFT predictions. Chem Phys 2023;573:111978.

45. Borges-martínez M, Saavedra-torres M, Schott E, Zarate X. Computational design and properties elucidation of new (FAPbI3)1-x-y(MAPbBr3)y(CsPbBr3)x photoactive systems for their application in perovskite solar cells. Mater Today Commun 2023;34:105324.

46. Arfaoui Y, Khenfouch M, Habiballah N. A DFT and time-dependent DFT investigation of the structural, electronic and optical properties of lead-free FAMgI3 perovskite for photovoltaic applications. J Electron Mater 2024;53:881-90.

47. Glockzin B, Oakley MS, Karmakar A, et al. Alkali tin halides: exploring the local structure of A2SnX6 (A = K, Rb; X = Cl, Br, I) compounds using solid-state NMR and DFT computations. J Phys Chem C 2023;127:7284-98.

48. Graupner DR, Kilin DS. Size effects on polaron formation in lead chloride perovskite thin films. Mol Phys 2023.

49. Haroon M, Baig MW, Akhtar T, Tahir MN, Ashfaq M. Relativistic two-component time dependent density functional studies and Hirshfeld surface analysis of halogenated arylidenehydrazinylthiazole derivatives. J Mol Structure 2023;1287:135692.

50. Idrissi S, Mounkachi O, Bahmad L, Benyoussef A. Study of the solar perovskites: XZnF3 (X = Ag, Li or Na) by DFT and TDDFT methods. J Korean Ceram Soc 2023;60:424-33.

51. Islam MR, Mazumder AAM, Mojumder MRH, Shifat ASMZ, Hossain MK. Strain-induced tunable optoelectronic properties of inorganic halide perovskites APbCl3 (A = K, Rb, and Cs). Jpn J Appl Phys 2023;62:011002.

52. Javed M, Sattar MA, Benkraouda M, Amrane N, Najar A. Strained induced metallic to semiconductor transitions in 2D Ruddlesden Popper perovskites: a GGA + SOC approach. Appl Surf Sci 2023;627:157244.

53. Kumar D, Chand P. Enhanced optical and thermoelectric properties of Ti doped half - Heusler alloy NbRuP: a first principles study. Solid State Commun 2023;366-7:115179.

54. Kumar G, Ravidas BK, Bhattarai S, Roy MK, Samajdar DP. Exploration of the photovoltaic properties of oxide-based double perovskite Bi2FeCrO6 using an amalgamation of DFT with spin-orbit coupling effect and SCAPS-1D simulation approaches. New J Chem 2023;47:18640-58.

55. Laghzaoui S, Lamrani AF, Laamara RA. Robust half-metallic ferromagnet in doped double perovskite Sr2TiCoO6 by rare-earth elements for photovoltaic and thermoelectric conversion: a DFT method. J Phys Chem Solid 2023;183:111639.

56. Li S, Chen Y, Wang Z, et al. Theoretical studies of new iridium-based terpolymer donors for high-efficiency triplet-material-based organic photovoltaics: Incorporation of different iridium(III) complexes. Mater Chem Phys 2023;302:127780.

57. Moaddeli M, Kanani M, Grünebohm A. Electronic and structural properties of mixed-cation hybrid perovskites studied using an efficient spin-orbit included DFT-1/2 approach. Phys Chem Chem Phys 2023;25:25511-25.

58. Mokkath J. Tailoring the infrared resonances of sulfide perovskites. Mater Today Chem 2023;30:101589.

59. Muthumari M, Manjula M, Veluswamy P, Kuznetsov DV. First principles calculations to investigate structural, electronic, mechanical, thermoelectric and optical properties of Bi- and Se-doped SnTe. J Phys Chem Solid 2023;176:111232.

60. Rahman MF, Rahman MA, Islam MR, et al. Unraveling the strain-induced and spin-orbit coupling effect of novel inorganic halide perovskites of Ca3AsI3 using DFT. AIP Adv 2023;13:085329.

61. Raju N, Tripathi D, Lahiri S, Thangavel R. Heat reflux sonochemical synthesis of Cu3BiS3 quantum dots: experimental and first-principles investigation of spin-orbit coupling on structural, electronic, and optical properties. Solar Energy 2023;259:107-18.

62. Supatutkul C, Sitarachu K, Laosiritaworn Y, Jaroenjittichai AP. Quasiparticle band structures of Cs2B+B3+Br6 lead-free halide double perovskites. Mater Today Commun 2023;36:106751.

63. Yami NFNA, Ramli A, Nawawi WI, et al. Structural, electronic, and optical properties of lower-dimensional hybrid perovskite lead-iodide frameworks + SOC via density functional theory. Emergent Mater 2023;6:999-1007.

64. Liu J, Kang J, Chen S, et al. Effects of compositional engineering and surface passivation on the properties of halide perovskites: a theoretical understanding. Phys Chem Chem Phys 2020;22:19718-24.

65. Heyd J, Scuseria GE, Ernzerhof M. Erratum: “Hybrid functionals based on a screened Coulomb potential”. J Chem Phys 2006;124:219906.

66. West AR. Solid state chemistry and its applications. 2nd ed. Hoboken: John Wiley & Sons; 2022.

67. Zhilyakov LA, Kostanovskii AV, Pokhil GP. Condition of formation of 2D coulomb crystal on the surface of dielectric. High Temp 2008;46:721-4.

68. Umari P, Mosconi E, De Angelis F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci Rep 2014;4:4467.

69. Li H, Shi J, Deng J, et al. Intermolecular π-π conjugation self-assembly to stabilize surface passivation of highly efficient perovskite solar cells. Adv Mater 2020;32:e1907396.

70. Zheng Y, Zhang S, Ma J, et al. Codependent failure mechanisms between cathode and anode in solid state lithium metal batteries: mediated by uneven ion flux. Sci Bull 2024;69:317-9.

71. Zhao H, Kordas K, Ojala S. Recent advances in synthesis of water-stable metal halide perovskites and photocatalytic applications. J Mater Chem A 2023;11:22656-87.

72. Goyal A, Singh PP, Mondal T. Investigating the role of Co and Fe in bimetallic perovskite catalysts (LaNiO3) for steam reforming of Bio-Oil model oxygenates: a DFT study. Carbon 2023;2:2.606. Available from: https://oxford-abstracts.s3.amazonaws.com/f0e3a240-bf65-43be-8a7c-c42d93fa4e3e.pdf [Last accessed on 22 Apr 2024].

73. Bayendang NP, Kahn MT, Balyan V. Thermoelectric generators (TEGs) modules-optimum electrical configurations and performance determination. AIMS Energy 2022;10:102-30.

74. Imai Y, Nishizawa S, Ito K. Reduction of LSI maximum power consumption with standard cell library of stack structured cells. IEICE Trans Fund 2022;E105.A:487-96.

75. Keller J, Aboulfadl H, Stolt L, Donzel-gargand O, Edoff M. Rubidium fluoride absorber treatment for wide-gap (Ag,Cu)(In,Ga)Se2 solar cells. Solar RRL 2022;6:2200044.

76. Kulkarni V, Ghaisas G, Krishnan S. Performance analysis of an integrated battery electric vehicle thermal management. J Energy Stor 2022;55:105334.

77. Okedu KE, Al Ghaithi ASS. Comparative study of the internal dynamic failures of grid-connected solar PVs: the case of the oman power network. Front Energy Res 2022;10:858803.

78. Mozaffari S, Kiamehr Z. A theoretical study on internal losses of heat generation in inorganic metal oxide charge transporting layers-based inverted PSC. Opt Quant Electron 2023;55:826.

79. Li H, Shi P, Wang L, et al. Cooperative catalysis of polysulfides in lithium-sulfur batteries through adsorption competition by tuning cationic geometric configuration of dual-active sites in spinel oxides. Angew Chem Int Ed 2023;62:e202216286.

80. Xia J, Sohail M, Nazeeruddin MK. Efficient and stable perovskite solar cells by tailoring of interfaces. Adv Mater 2023;35:e2211324.

81. Pratheek M, Abhinav T, Bhattacharya S, Chandra GK, Predeep P. Recent progress on defect passivation in perovskites for solar cell application. Mater Sci Energy Technol 2021;4:282-9.

82. Zhu R, Guan N, Wang D, Bao Y, Wu Z, Song L. Review of defect passivation for NiOx-based inverted perovskite solar cells. ACS Appl Energy Mater 2023;6:2098-121.

83. Zhang Y, Liu Y, Liu S. Composition engineering of perovskite single crystals for high-performance optoelectronics. Adv Funct Mater 2023;33:2210335.

84. Che Y, Liu Z, Duan Y, et al. Hydrazide derivatives for defect passivation in pure CsPbI3 Perovskite Solar Cells. Angew Chem Int Ed 2022;61:e202205012.

85. Zhang Z, Jiang J, Xiao Liu X, et al. Surface-anchored acetylcholine regulates band-edge states and suppresses ion migration in a 21%-efficient quadruple-cation perovskite solar cell. Small 2022;18:e2105184.

86. Dong Y, Shen W, Dong W, et al. Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells. Adv Energy Mater 2022;12:2200417.

87. Batmunkh M, Macdonald TJ, Shearer CJ, et al. Carbon nanotubes in TiO2 nanofiber photoelectrodes for high-performance perovskite solar Cells. Adv Sci 2017;4:1600504.

88. Chavan RD, Parikh N, Tavakoli MM, et al. Band alignment and carrier recombination roles on the open circuit voltage of ETL-passivated perovskite photovoltaics. Intl J Energy Res 2022;46:6022-30.

89. Jiang Q, Tong J, Xian Y, et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 2022;611:278-83.

90. Bati AS, Sutanto AA, Hao M, et al. Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells. Cell Rep Phys Sci 2021;2:100598.

91. Zhang H, Tian Q, Xiang W, et al. Tailored cysteine-derived molecular structures toward efficient and stable inorganic perovskite solar cells. Adv Mater 2023;35:e2301140.

92. Zhang H, Xiang W, Zuo X, et al. Fluorine-containing passivation layer via surface chelation for inorganic perovskite solar cells. Angew Chem Int Ed 2023;62:e202216634.

93. Batmunkh M, Vimalanathan K, Wu C, et al. Efficient production of phosphorene nanosheets via shear stress mediated exfoliation for low-temperature perovskite solar cells. Small Method 2019;3:1800521.

94. Macdonald TJ, Clancy AJ, Xu W, et al. Phosphorene nanoribbon-augmented optoelectronics for enhanced hole extraction. J Am Chem Soc 2021;143:21549-59.

95. Allen OJ, Kang J, Wang Y. First-principles study of group VA monolayer passivators for perovskite solar cells. ACS Appl Nano Mater 2023;6:4279-87.

96. Cheng L, Zhang C, Liu Y. The Optimal electronic structure for high-mobility 2D semiconductors: exceptionally high hole mobility in 2D antimony. J Am Chem Soc 2019;141:16296-302.

97. Li T, Xu J, Lin R, et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat Energy 2023;8:610-20.

98. Xu T, Xiang W, Yang J, et al. Interface modification for efficient and stable inverted inorganic perovskite solar cells. Adv Mater 2023;35:e2303346.

99. Qiao HW, Yang S, Wang Y, et al. A gradient heterostructure based on tolerance factor in high-performance perovskite solar cells with 0.84 fill factor. Adv Mater 2019;31:e1804217.

100. Zhang B, Oh J, Sun Z, et al. Buried guanidinium passivator with favorable binding energy for perovskite solar cells. ACS Energy Lett 2023;8:1848-56.

101. Liu Q, Wu Y, Li D, et al. Dilute alloying to implant activation centers in nitride electrocatalysts for lithium-sulfur batteries. Adv Mater 2023;35:e2209233.

102. Fei C, Li N, Wang M, et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 2023;380:823-9.

103. Xie P, Xiao H, Qiao Y, et al. Radical reinforced defect passivation strategy for efficient and stable MAPbI3 perovskite solar cells fabricated in air using a green anti-solvent process. Chem Eng J 2023;462:142328.

104. Tan S, Huang T, Yavuz I, et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 2022;605:268-73.

105. Yang S, Wang Y, Liu P, Cheng Y, Zhao HJ, Yang HG. Functionalization of perovskite thin films with moisture-tolerant molecules. Nat Energy 2016;1:15016.

106. He J, Liu J, Hou Y, Wang Y, Yang S, Yang HG. Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. Nat Commun 2020;11:4237.

107. Zhang L, Lin S, Wu B, Li Q, Li J. Understanding structures and properties of phosphorene/perovskite heterojunction toward perovskite solar cell applications. J Mol Graph Model 2019;89:96-101.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/