REFERENCES

1. Yan Y, Zeng T, Liu S, Shu C, Zeng Y. Lithium metal stabilization for next-generation lithium-based batteries: from fundamental chemistry to advanced characterization and effective protection. Energy Mater 2023;3:300002.

2. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 2017;117:10403-73.

3. Lin Y, Wen Z, Liu J, Wu D, Zhang P, Zhao J. Constructing a uniform lithium iodide layer for stabilizing lithium metal anode. J Energy Chem 2021;55:129-35.

4. Zhang L, Chen Y. Electrolyte solvation structure as a stabilization mechanism for electrodes. Energy Mater 2022;1:100004.

5. Zou P, Sui Y, Zhan H, et al. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem Rev 2021;121:5986-6056.

6. Chen XR, Zhao BC, Yan C, Zhang Q. Review on Li deposition in working batteries: from nucleation to early growth. Adv Mater 2021;33:e2004128.

7. Ely DR, García RE. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J Electrochem Soc 2013;160:A662-8.

8. Ling C, Banerjee D, Matsui M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim Acta 2012;76:270-4.

9. Jäckle M, Groß A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J Chem Phys 2014;141:174710.

10. Chazalviel J. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A 1990;42:7355-67.

11. Chen XR, Yao YX, Yan C, Zhang R, Cheng XB, Zhang Q. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew Chem Int Ed 2020;59:7743-7.

12. Biswal P, Stalin S, Kludze A, Choudhury S, Archer LA. Nucleation and early stage growth of Li electrodeposits. Nano Lett 2019;19:8191-200.

13. Scharifker B, Mostany J. Three-dimensional nucleation with diffusion controlled growth : part I. number density of active sites and nucleation rates per site. J Electroanal Chem 1984;177:13-23.

14. Pei A, Zheng G, Shi F, Li Y, Cui Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett 2017;17:1132-9.

15. Plieth W. Electrochemistry for materials science. Amsterdam, The Netherlands: Elsevier, 2008.

16. Kashchiev D. On the relation between nucleation work, nucleus size, and nucleation rate. J Chem Phys 1982;76:5098-102.

17. Oxtoby DW, Kashchiev D. A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation. J Chem Phys 1994;100:7665-71.

18. Han Y, Jie Y, Huang F, et al. Enabling stable lithium metal anode through electrochemical kinetics manipulation. Adv Funct Mater 2019;29:1904629.

19. Guo Y, Li D, Xiong R, Li H. Investigation of the temperature-dependent behaviours of Li metal anode. Chem Commun 2019;55:9773-6.

20. Fleury V, Chazalviel JN, Rosso M, Sapoval B. The role of the anions in the growth speed of fractal electrodeposits. J Electroanal Chem 1990;290:249-55.

21. Wen Z, Wu D, Li H, et al. Ag-modified hydrogen titanate nanowire arrays for stable lithium metal anode in a carbonate-based electrolyte. J Energy Chem 2021;54:282-90.

22. Pei N, Liu J, Ma H, Chen Z, Zhang P, Zhao J. Silver copper oxide nanowires by electrodeposition for stable lithium metal anode in carbonate-based electrolytes. ACS Sustain Chem Eng 2022;10:7196-204.

23. Liu Y, Sun C, Lu Y, et al. Lamellar-structured anodes based on lithiophilic gradient enable dendrite-free lithium metal batteries with high capacity loading and fast-charging capability. Chem Eng J 2023;451:138570.

24. Liu J, Ma H, Wen Z, et al. Layered Ag-graphene films synthesized by Gamma ray irradiation for stable lithium metal anodes in carbonate-based electrolytes. J Energy Chem 2022;64:354-63.

25. Chen Q, Wei Y, Zhang X, et al. Vertically aligned MXene nanosheet arrays for high-rate lithium metal anodes. Adv Energy Mater 2022;12:2200072.

26. Yan K, Lu Z, Lee H, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy 2016:1.

27. Feng X, Wu H, Gao B, Świętosławski M, He X, Zhang Q. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res 2022;15:352-60.

28. Jin C, Sheng O, Luo J, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 2017;37:177-86.

29. Shen X, Shi S, Li B, et al. Lithiophilic interphase porous buffer layer toward uniform nucleation in lithium metal anodes. Adv Funct Mater 2022;32:2206388.

30. Pande V, Viswanathan V. Computational screening of current collectors for enabling anode-free lithium metal batteries. ACS Energy Lett 2019;4:2952-9.

31. Zhang S, Yang G, Liu Z, et al. Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates. ACS Energy Lett 2021;6:4118-26.

32. Jin S, Ye Y, Niu Y, et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J Am Chem Soc 2020;142:8818-26.

33. Liu Y, Sun J, Hu X, et al. Lithiophilic sites dependency of lithium deposition in Li metal host anodes. Nano Energy 2022;94:106883.

34. Wu T, Wang Y, Zhang W, et al. Unveiling the role of lithiophilic sites denseness in regulating lithium ion deposition. J Energy Chem 2022;71:324-32.

35. Zhan Y, Shi P, Ma X, et al. Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions. Adv Energy Mater 2022;12:2103291.

36. Cha E, Yun JH, Ponraj R, Kim DK. A mechanistic review of lithiophilic materials: resolving lithium dendrites and advancing lithium metal-based batteries. Mater Chem Front 2021;5:6294-314.

37. Duan J, Zheng Y, Luo W, et al. Is graphite lithiophobic or lithiophilic? Natl Sci Rev 2020;7:1208-17.

38. Yang C, Yao Y, He S, Xie H, Hitz E, Hu L. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv Mater 2017;29:1702714.

39. Pu J, Li J, Shen Z, et al. Interlayer lithium plating in Au nanoparticles pillared reduced graphene oxide for lithium metal anodes. Adv Funct Mater 2018;28:1804133.

40. Ke X, Liang Y, Ou L, et al. Surface engineering of commercial Ni foams for stable Li metal anodes. Energy Stor Mater 2019;23:547-55.

41. Luan J, Zhang Q, Yuan H, et al. Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chem Eng J 2020;395:124922.

42. Wang H, Hu P, Liu X, et al. Sowing silver seeds within patterned ditches for dendrite-free lithium metal batteries. Adv Sci 2021;8:e2100684.

43. Gao L, Sun C, Zhang D, An Y, Yang Y, Bian X. Lithiophilic Zn-doped CuO/ZnO nanoarrays modified 3D scaffold inducing lithium lateral plating achieving highly stable lithium metal anode. Chem Eng J 2023;451:138410.

44. Huang S, Zhang W, Ming H, Cao G, Fan LZ, Zhang H. Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries. Nano Lett 2019;19:1832-7.

45. Kim JY, Chae OB, Kim G, et al. Spatial control of lithium deposition by controlling the lithiophilicity with copper(I) oxide boundaries. Energy Environ Mater 2022.

46. Nie Y, Dai X, Wang J, et al. Facile and scalable fabrication of lithiophilic CuxO enables stable lithium metal anode. J Energy Chem 2022;75:285-92.

47. Guo C, Guo Y, Tao R, et al. Uniform lithiophilic layers in 3D current collectors enable ultrastable solid electrolyte interphase for high-performance lithium metal batteries. Nano Energy 2022;96:107121.

48. Tang K, Gao H, Xiao J, et al. Hierarchical Oα-rich Co3O4 nanoarray anchored on Ni foam with superior lithiophilicity enabling ultrastable lithium metal batteries. Chem Eng J 2022;436:134698.

49. Ding B, An X, Yu J, Lv W, Kang F, He YB. Metal nitride heterostructures capsulated in carbon nanospheres to accommodate lithium metal for constructing a stable composite anode. Energy Mater 2022;2:200039.

50. Xiong X, Sun R, Yan W, et al. A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes. J Mater Chem A 2022;10:13814-20.

51. Yu W, Liu F, Zhang L, Liu Z, Wang S, Tong H. Lithiophilic ZnO confined in microscale carbon cubes as a stable host for lithium metal anodes. Carbon 2022;196:92-101.

52. Wang W, Yang Z, Zhang Y, et al. Highly stable lithium metal anode enabled by lithiophilic and spatial-confined spherical-covalent organic framework. Energy Stor Mater 2022;46:374-83.

53. Liu Y, Qin X, Zhang S, et al. Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode. Energy Stor Mater 2019;18:320-7.

54. Gao C, Li J, Sun K, et al. Controllable lithium deposition behavior hollow of N, O co-doped carbon nanospheres for practical lithium metal batteries. Chem Eng J 2021;412:128721.

55. Chen X, Chen XR, Hou TZ, Li BQ, Cheng XB, Zhang R, Zhang Q. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci Adv 2019;5:eaau7728.

56. Xie Y, Zhang H, Yu J, et al. A novel dendrite-free lithium metal anode via oxygen and boron codoped honeycomb carbon skeleton. Small 2022;18:e2104876.

57. Zhang R, Chen XR, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed 2017;56:7764-8.

58. Liu L, Yin YX, Li JY, Wang SH, Guo YG, Wan LJ. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv Mater 2018;30:1706216.

59. Wen Z, Li H, Liu J, Yang Y, Zhao J. Self-standing N-doped carbonized cellulose fiber as a dual-functional host for lithium metal anodes. ACS Sustain Chem Eng 2021;9:2326-37.

60. Li BQ, Chen XR, Chen X, et al. Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes. Research 2019;2019:4608940.

61. Zhai P, Wang T, Yang W, et al. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv Energy Mater 2019;9:1804019.

62. Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-atom catalysts across the periodic table. Chem Rev 2020;120:11703-809.

63. Yang Z, Dang Y, Zhai P, et al. Single-atom reversible lithiophilic sites toward stable lithium anodes. Adv Energy Mater 2022;12:2103368.

64. Huang W, Liu S, Yu R, Zhou L, Liu Z, Mai L. Single-atom lithiophilic sites confined within ordered porous carbon for ultrastable lithium metal anodes. Energy Environ Mater 2022:e12466.

65. Li Y, Pei A, Yan K, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017;358:506-10.

66. Gu Y, Xu HY, Zhang XG, et al. Lithiophilic faceted Cu(100) surfaces: high utilization of host surface and cavities for lithium metal anodes. Angew Chem Int Ed 2019;58:3092-6.

67. Wang D, Zhang W, Zheng W, Cui X, Rojo T, Zhang Q. Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv Sci 2017;4:1600168.

68. Røe IT, Schnell SK. Slow surface diffusion on Cu substrates in Li metal batteries. J Mater Chem A 2021;9:11042-8.

69. Obretenov W, Schmidt U, Lorenz WJ, et al. Underpotential deposition and electrocrystallization of metals an atomic view by scanning tunneling microscopy. J Electrochem Soc 1993;140:692-703.

70. Vitos L, Ruban A, Skriver H, Kollár J. The surface energy of metals. Surf Sci 1998;411:186-202.

71. Bao W, Wang R, Sun K, Qian C, Zhang Y, Li J. Interface crystallographic optimization of crystal plane for stable metallic lithium anode. ACS Appl Mater Interfaces 2022;14:38696-705.

72. Kim JY, Chae OB, Wu M, et al. Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy 2021;82:105736.

73. Mukherjee R, Thomas AV, Datta D, et al. Defect-induced plating of lithium metal within porous graphene networks. Nat Commun 2014;5:3710.

74. Chae S, Yi S, Yoon J, et al. Highly defective Ti3CNT-MXene-based fiber membrane anode for lithium metal batteries. Energy Stor Mater 2022;52:76-84.

75. Liu W, Xia Y, Wang W, et al. Pristine or highly defective? Adv Energy Mater 2019;9:1802918.

76. Zhang H, Huang M, Song J, et al. Effect of the defect densities of reduced graphene oxide network on the stability of lithium-metal anodes. Mater Today Commun 2021;27:102276.

77. Zhou B, Bonakdarpour A, Stoševski I, Fang B, Wilkinson DP. Modification of Cu current collectors for lithium metal batteries - a review. Prog Mater Sci 2022;130:100996.

78. Li C, Zhang X, Zhu Y, et al. Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries. Energy Mater 2022;1:100017.

79. Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci 2016;3:1500213.

80. Kang J, Deng N, Liu Y, et al. Recent advances of anode protection in solid-state lithium metal batteries. Energy Stor Mater 2022;52:130-60.

81. Kim S, Lee TK, Kwak SK, Choi N. Solid electrolyte interphase layers by using lithiophilic and electrochemically active ionic additives for lithium metal anodes. ACS Energy Lett 2022;7:67-9.

82. Guo F, Wu C, Chen H, et al. Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode. Energy Stor Mater 2020;24:635-43.

83. Li C, Li Y, Yu Y, et al. One-pot preparation of lithium compensation layer, lithiophilic layer, and artificial solid electrolyte interphase for lean-lithium metal anode. ACS Appl Mater Interfaces 2022;14:19437-47.

84. Qian Y, Wei C, Tian Y, et al. Constructing ultrafine lithiophilic layer on MXene paper by sputtering for stable and flexible 3D lithium metal anode. Chem Eng J 2021;421:129685.

85. Jin S, Jiang Y, Ji H, Yu Y. Advanced 3D current collectors for lithium-based batteries. Adv Mater 2018;30:e1802014.

86. Liu J, Pei N, Hua H, et al. From mosaic-type to heterojunction-type SEI films on the Li anode: decoupling chemical and electrochemical degradation of the electrolyte. ACS Sustain Chem Eng 2022;10:9232-41.

87. Lin Y, Wen Z, Yang C, Zhang P, Zhao J. Strengthening dendrite suppression in lithium metal anode by in-situ construction of Li-Zn alloy layer. Electrochem Commun 2019;108:106565.

88. Lin L, Liu F, Zhang Y, et al. Adjustable mixed conductive interphase for dendrite-free lithium metal batteries. ACS Nano 2022;16:13101-10.

89. Tang F, Zhang X, Osenberg M, et al. High-performance 3D Li-B-C-Al alloy anode and its twofold Li electrostripping and plating mechanism revealed by synchrotron X-ray tomography. Energy Environ Mater 2022:12387.

90. Ma C, Liu C, Zhang Y, et al. A dual lithiated alloy interphase layer for high-energy-density lithium metal batteries. Chem Eng J 2022;434:134637.

91. Zhong B, Wu J, Ren L, et al. Constructing a lithiophilic and mixed conductive interphase layer in electrolyte with dual-anion solvation sheath for stable lithium metal anode. Energy Stor Mater 2022;50:792-801.

92. Du J, Wang W, Wan M, et al. Doctor-blade casting fabrication of ultrathin Li metal electrode for high-energy-density batteries. Adv Energy Mater 2021;11:2102259.

93. He X, Ji X, Zhang B, et al. Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett 2022;7:131-9.

94. Chen T, Meng F, Zhang Z, et al. Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film. Nano Energy 2020;76:105068.

95. Wan J, Song YX, Chen WP, et al. Micromechanism in all-solid-state alloy-metal batteries: regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution. J Am Chem Soc 2021;143:839-48.

96. Zheng G, Lee SW, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 2014;9:618-23.

97. Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun 2016;7:10992.

98. Wang JP, Lan DN, Chen GY, Hu XT, Lin C, Li Q. Built-in stable lithiophilic sites in 3D current collectors for dendrite free Li metal electrode. Small 2022;18:e2106718.

99. Liu H, Di J, Wang P, et al. A novel design of 3D carbon host for stable lithium metal anode. Carbon Energy 2022;4:654-64.

100. Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 2016;11:626-32.

101. Dong L, Nie L, Liu W. Water-stable lithium metal anodes with ultrahigh-rate capability enabled by a hydrophobic graphene architecture. Adv Mater 2020;32:e1908494.

102. Wang ZY, Lu ZX, Guo W, et al. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries. Adv Mater 2021;33:e2006702.

103. Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater 2011;10:682-6.

104. Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 2014;7:627-31.

105. Choi HJ, Kang DW, Park JW, et al. In situ formed Ag-Li intermetallic layer for stable cycling of all-solid-state lithium batteries. Adv Sci 2022;9:e2103826.

106. Lu Y, Huang X, Ruan Y, et al. An in situ element permeation constructed high endurance Li-LLZO interface at high current densities. J Mater Chem A 2018;6:18853-8.

107. Wen J, Huang Y, Duan J, et al. Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-state Li metal batteries. ACS Nano 2019;13:14549-56.

108. Wang C, Gong Y, Liu B, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett 2017;17:565-71.

109. Duan J, Huang L, Wang T, et al. Shaping the contact between Li metal anode and solid-state electrolytes. Adv Funct Mater 2020;30:1908701.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/