REFERENCES

1. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature 2012;488:294-303.

2. Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science 2011;333:712-7.

3. Feng D, Lei T, Lukatskaya MR, et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat Energy 2018;3:30-6.

4. Guo X, Xu H, Li W, et al. Embedding atomically dispersed iron sites in nitrogen-doped carbon frameworks-wrapped silicon suboxide for superior lithium storage. Adv Sci 2023;10:e2206084.

5. Wu Y, Li Y, Gao J, Zhang Q. Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis. SusMat 2021;1:66-87.

6. Xie J, Wang Z, Xu ZJ, Zhang Q. Toward a high-performance all-plastic full battery with a’single organic polymer as both cathode and anode. Adv Energy Mater 2018;8:1703509.

7. Indra A, Song T, Paik U. Metal organic framework derived materials: progress and prospects for the energy conversion and storage. Adv Mater 2018;30:e1705146.

8. Liang HQ, Guo Y, Shi Y, Peng X, Liang B, Chen B. A light-responsive metal-organic framework hybrid membrane with high on/off photoswitchable proton conductivity. Angew Chem Int Ed 2020;59:7732-7.

9. Xu Y, Li Q, Xue H, Pang H. Metal-organic frameworks for direct electrochemical applications. Coord Chem Rev 2018;376:292-318.

10. Yang H, Wang X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv Mater 2019;31:e1800743.

11. Zhang G, Jin L, Zhang R, Bai Y, Zhu R, Pang H. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord Chem Rev 2021;439:213915.

12. Bediako DK, Surendranath Y, Nocera DG. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J Am Chem Soc 2013;135:3662-74.

13. Wei Y, Zheng M, Zhu W, Zhang Y, Hu W, Pang H. Preparation of hierarchical hollow CoFe Prussian blue analogues and its heat-treatment derivatives for the electrocatalyst of oxygen evolution reaction. J Colloid Interface Sci 2023;631:8-16.

14. Hang X, Yang R, Xue Y, et al. The introduction of cobalt element into nickel-organic framework for enhanced supercapacitive performance. Chin Chem Lett 2023;34:107787.

15. Hang X, Zhao J, Xue Y, Yang R, Pang H. Synergistic effect of Co/Ni bimetallic metal-organic nanostructures for enhanced electrochemical energy storage. J Colloid Interface Sci 2022;628:389-96.

16. Wang HF, Chen L, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev 2020;49:1414-48.

17. Hou CC, Zou L, Wang Y, Xu Q. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew Chem Int Ed 2020;59:21360-6.

18. Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat Commun 2014;5:4973.

19. Wu H, Wang J, Yan J, Wu Z, Jin W. MOF-derived two-dimensional N-doped carbon nanosheets coupled with Co-Fe-P-Se as efficient bifunctional OER/ORR catalysts. Nanoscale 2019;11:20144-50.

20. Gong M, Zhou W, Tsai MC, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun 2014;5:4695.

21. Wu X, Jing Q, Sun F, Pang H. The synthesis of zeolitic imidazolate framework/prussian blue analogue heterostructure composites and their application in supercapacitors. Inorg Chem Front 2022;10:78-84.

22. Long X, Li G, Wang Z, et al. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J Am Chem Soc 2015;137:11900-3.

23. Zhong H, Ghorbani-Asl M, Ly KH, et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat Commun 2020;11:1409.

24. Nam DH, Shekhah O, Lee G, et al. Intermediate binding control using metal-organic frameworks enhances electrochemical CO2 reduction. J Am Chem Soc 2020;142:21513-21.

25. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 2008;47:2930-46.

26. Cheng H, Shapter JG, Li Y, Gao G. Recent progress of advanced anode materials of lithium-ion batteries. J Energy Chem 2021;57:451-68.

27. Miao Y, Liu L, Zhang Y, Tan Q, Li J. An overview of global power lithium-ion batteries and associated critical metal recycling. J Hazard Mater 2022;425:127900.

28. Sun S, Xie T, Tao S, et al. Formation of nitrogen-doped carbon-coated CoP nanoparticles embedded within graphene oxide for lithium-ion batteries anode. Energy Technol 2020;8:1901089.

29. Gao Y, Qiu Z, Lu Y, et al. Rational design and general synthesis of high-entropy metallic ammonium phosphate superstructures assembled by nanosheets. Inorg Chem 2023;62:3669-78.

30. Li B, Xue J, Han C, et al. A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries. J Colloid Interface Sci 2021;599:467-75.

31. Sun F, Chen T, Li Q, Pang H. Hierarchical nickel oxalate superstructure assembled from 1D nanorods for aqueous Nickel-Zinc battery. J Colloid Interface Sci 2022;627:483-91.

32. Wang S, Ru Y, Sun Y, Pang H. Fan-like MnV2O6 superstructure for rechargeable aqueous zinc ion batteries. Chin Chem Lett 2023:108143.

33. Wu L, Dong Y. Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Stor Mater 2021;41:715-37.

34. Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv Mater 2011;23:5641-4.

35. Fang D, Wang Y, Qian C, et al. Synergistic regulation of polysulfides conversion and deposition by MOF-derived hierarchically ordered carbonaceous composite for high-energy lithium-sulfur batteries. Adv Funct Mater 2019;29:1900875.

36. Li Y, Lin S, Wang D, et al. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv Mater 2020;32:e1906722.

37. Liu G, Feng K, Cui H, Li J, Liu Y, Wang M. MOF derived in-situ carbon-encapsulated Fe3O4@C to mediate polysulfides redox for ultrastable Lithium-sulfur batteries. Chem Eng J 2020;381:122652.

38. Luo D, Li C, Zhang Y, et al. Design of quasi-MOF nanospheres as a dynamic electrocatalyst toward accelerated sulfur reduction reaction for high-performance lithium-sulfur batteries. Adv Mater 2022;34:e2105541.

39. Yuan N, Sun W, Yang J, Gong X, Liu R. Multifunctional MOF-based separator materials for advanced lithium-sulfur batteries. Adv Mater Interfaces 2021;8:2001941.

40. Zhang H, Zhao W, Wu Y, Wang Y, Zou M, Cao A. Dense monolithic MOF and carbon nanotube hybrid with enhanced volumetric and areal capacities for lithium-sulfur battery. J Mater Chem A 2019;7:9195-201.

41. Li N, Guo X, Tang X, Xing Y, Pang H. Three-dimensional Co2V2O7·nH2O superstructures assembled by nanosheets for electrochemical energy storage. Chin Chem Lett 2022;33:462-5.

42. Li P, Bai Y, Zhang G, Guo X, Meng X, Pang H. Surface-halogen-introduced 2D NiCo bimetallic MOFs via a modulation method for elevated electrochemical glucose sensing. Inorg Chem Front 2022;9:5853-61.

43. Bi S, Banda H, Chen M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat Mater 2020;19:552-8.

44. Hou S, Lian Y, Bai Y, et al. Hollow dodecahedral Co3S4@NiO derived from ZIF-67 for supercapacitor. Electrochim Acta 2020;341:136053.

45. Liu C, Bai Y, Li W, Yang F, Zhang G, Pang H. In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew Chem Int Ed 2022;61:e202116282.

46. Sun F, Li Q, Bai Y, et al. A controllable preparation of two-dimensional cobalt oxalate-based nanostructured sheets for electrochemical energy storage. Chin Chem Lett 2022;33:3249-54.

47. Lin J, Chenna Krishna Reddy R, Zeng C, Lin X, Zeb A, Su C. Metal-organic frameworks and their derivatives as electrode materials for potassium ion batteries: a review. Coord Chem Rev 2021;446:214118.

48. Zhou W, Tang Y, Zhang X, Zhang S, Xue H, Pang H. MOF derived metal oxide composites and their applications in energy storage. Coord Chem Rev 2023;477:214949.

49. He B, Zhang Q, Pan Z, et al. Freestanding metal-organic frameworks and their derivatives: an emerging platform for electrochemical energy storage and conversion. Chem Rev 2022;122:10087-125.

50. Li Q, Zhang Y, Zhang G, Wang Y, Pang H. Recent advances in the development of perovskite@metal-organic frameworks composites. Nat Sci Open 2023;2:20220065.

51. Carrington EJ, McAnally CA, Fletcher AJ, Thompson SP, Warren M, Brammer L. Solvent-switchable continuous-breathing behaviour in a diamondoid metal-organic framework and its influence on CO2 versus CH4 selectivity. Nat Chem 2017;9:882-9.

52. Islamoglu T, Goswami S, Li Z, Howarth AJ, Farha OK, Hupp JT. Postsynthetic tuning of metal-organic frameworks for targeted applications. ACC Chem Res 2017;50:805-13.

53. Zhou H, Yang H, Yao S, Jiang L, Sun N, Pang H. Synthesis of 3D printing materials and their electrochemical applications. Chin Chem Lett 2022;33:3681-94.

54. Hu Z, Deibert BJ, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 2014;43:5815-40.

55. Kim KJ, Lu P, Culp JT, Ohodnicki PR. Metal-organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform. ACS Sens 2018;3:386-94.

56. Ma WP, Yan B. Lanthanide functionalized MOF thin films as effective luminescent materials and chemical sensors for ammonia. Dalton Trans 2020;49:15663-71.

57. Zhu HL, Huang JR, Liao PQ, Chen XM. Rational design of metal-organic frameworks for electroreduction of CO2 to hydrocarbons and carbon oxygenates. ACS Cent Sci 2022;8:1506-17.

58. Narváez-celada D, Varela AS. CO2 electrochemical reduction on metal-organic framework catalysts: current status and future directions. J Mater Chem A 2022;10:5899-917.

59. Mohan B, Kumar S, Xi H, et al. Fabricated metal-organic frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron 2022;197:113738.

60. Zhang L, Qiao C, Cai X, et al. Microcalorimetry-guided pore-microenvironment optimization to improve sensitivity of Ni-MOF electrochemical biosensor for chiral galantamine. Chem Eng J 2021;426:130730.

61. Cai G, Yan P, Zhang L, Zhou HC, Jiang HL. Metal-organic framework-based hierarchically porous materials: synthesis and applications. Chem Rev 2021;121:12278-326.

62. Chen J, Xiao G, Duan G, Wu Y, Zhao X, Gong X. Structural design of carbon dots/porous materials composites and their applications. Chem Eng J 2021;421:127743.

63. Zhou H, Zheng S, Guo X, Gao Y, Li H, Pang H. Ordered porous and uniform electric-field-strength micro-supercapacitors by 3D printing based on liquid-crystal V2O5 nanowires compositing carbon nanomaterials. J Colloid Interface Sci 2022;628:24-32.

64. Gao Z, Hsu CH, Liu J, et al. Synthesis and characterization of a single-layer conjugated metal-organic structure featuring a non-trivial topological gap. Nanoscale 2019;11:878-81.

65. Mähringer A, Jakowetz AC, Rotter JM, et al. Oriented thin films of electroactive triphenylene catecholate-based two-dimensional metal-organic frameworks. ACS Nano 2019;13:6711-9.

66. Zheng S, Zhou H, Xue H, Braunstein P, Pang H. Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage. J Colloid Interface Sci 2022;614:130-7.

67. Qutaish H, Lee J, Hyeon Y, et al. Design of cobalt catalysed carbon nanotubes in bimetallic zeolitic imidazolate frameworks. Appl Surf Sci 2021;547:149134.

68. Xie LS, Skorupskii G, Dincă M. Electrically conductive metal-organic frameworks. Chem Rev 2020;120:8536-80.

69. Pang Q, Yang L, Li Q. Vacancies in metal-organic frameworks: formation, arrangement, and functions. Small Struct 2022;3:2100203.

70. Batten SR, Robson R. Interpenetrating nets: ordered, periodic entanglement. Angew Chem Int Ed 1998;37:1460-94.

71. Ren J, Ledwaba M, Musyoka NM, et al. Structural defects in metal-organic frameworks (MOFs): formation, detection and control towards practices of interests. Coord Chem Rev 2017;349:169-97.

72. Taddei M. When defects turn into virtues: the curious case of zirconium-based metal-organic frameworks. Coord Chem Rev 2017;343:1-24.

73. Liu L, Chen Z, Wang J, et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat Chem 2019;11:622-8.

74. Fang Z, Bueken B, De Vos DE, Fischer RA. Defect-engineered metal-organic frameworks. Angew Chem Int Ed 2015;54:7234-54.

75. Xiang W, Zhang Y, Chen Y, Liu C, Tu X. Synthesis, characterization and application of defective metal-organic frameworks: current status and perspectives. J Mater Chem A 2020;8:21526-46.

76. Dissegna S, Epp K, Heinz WR, Kieslich G, Fischer RA. Defective metal-organic frameworks. Adv Mater 2018;30:e1704501.

77. Piao Y, Meany B, Powell LR, et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat Chem 2013;5:840-5.

78. Tuller HL, Bishop SR. Point defects in oxides: tailoring materials through defect engineering. Annu Rev Mater Res 2011;41:369-98.

79. Slater B, Wang Z, Jiang S, Hill MR, Ladewig BP. Missing linker defects in a homochiral metal-organic framework: tuning the chiral separation capacity. J Am Chem Soc 2017;139:18322-7.

80. Wu H, Chua YS, Krungleviciute V, et al. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 2013;135:10525-32.

81. Vos A, Hendrickx K, Van Der Voort P, Van Speybroeck V, Lejaeghere K. Missing linkers: an alternative pathway to UiO-66 electronic structure engineering. Chem Mater 2017;29:3006-19.

82. Yuan S, Zou L, Qin JS, et al. Construction of hierarchically porous metal-organic frameworks through linker labilization. Nat Commun 2017;8:15356.

83. Xue Z, Liu K, Liu Q, et al. Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat Commun 2019;10:5048.

84. Liu QQ, Liu SS, Liu XF, et al. Superprotonic conductivity of UiO-66 with missing-linker defects in aqua-ammonia vapor. Inorg Chem 2022;61:3406-11.

85. Basu O, Mukhopadhyay S, Laha S, Das SK. Defect engineering in a metal-organic framework system to achieve super-protonic conductivity. Chem Mater 2022;34:6734-43.

86. Rowsell JL, Yaghi OM. Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 2004;73:3-14.

87. Idrees KB, Chen Z, Zhang X, et al. Tailoring pore aperture and structural defects in zirconium-based metal-organic frameworks for krypton/xenon separation. Chem Mater 2020;32:3776-82.

88. Chammingkwan P, Shangkum GY, Mai LTT, et al. Modulator-free approach towards missing-cluster defect formation in Zr-based UiO-66. RSC Adv 2020;10:28180-5.

89. Ma X, Wang L, Zhang Q, Jiang H. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew Chem Int Ed 2019;131:12303-7.

90. Fei H, Shin J, Meng YS, et al. Reusable oxidation catalysis using metal-monocatecholato species in a robust metal-organic framework. J Am Chem Soc 2014;136:4965-73.

91. Nickerl G, Senkovska I, Kaskel S. Tetrazine functionalized zirconium MOF as an optical sensor for oxidizing gases. Chem Commun 2015;51:2280-2.

92. Pullen S, Fei H, Orthaber A, Cohen SM, Ott S. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework. J Am Chem Soc 2013;135:16997-7003.

93. Cliffe MJ, Wan W, Zou X, et al. Correlated defect nanoregions in a metal-organic framework. Nat Commun 2014;5:4176.

94. Taddei M, Wakeham RJ, Koutsianos A, Andreoli E, Barron AR. Post-synthetic ligand exchange in zirconium-based metal-organic frameworks: beware of the defects! Angew Chem Int Ed 2018;57:11706-10.

95. Shearer GC, Chavan S, Bordiga S, Svelle S, Olsbye U, Lillerud KP. Defect engineering: tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis. Chem Mater 2016;28:3749-61.

96. Gao W, Li X, Zhang X, et al. Photocatalytic nitrogen fixation of metal-organic frameworks (MOFs) excited by ultraviolet light: insights into the nitrogen fixation mechanism of missing metal cluster or linker defects. Nanoscale 2021;13:7801-9.

97. Barin G, Krungleviciute V, Gutov O, Hupp JT, Yildirim T, Farha OK. Defect creation by linker fragmentation in metal-organic frameworks and its effects on gas uptake properties. Inorg Chem 2014;53:6914-9.

98. Pang Q, Tu B, Yang L, Li Q. Photochemical cycloaddition and temperature-dependent breathing in pillared-layer metal-organic frameworks. Sci Bull 2019;64:1881-9.

99. Zhang W, Kauer M, Guo P, et al. Impact of synthesis parameters on the formation of defects in HKUST-1. Eur J Inorg Chem 2017;2017:925-31.

100. He S, Chen Y, Zhang Z, Ni B, He W, Wang X. Competitive coordination strategy for the synthesis of hierarchical-pore metal-organic framework nanostructures. Chem Sci 2016;7:7101-5.

101. Koo J, Hwang IC, Yu X, Saha S, Kim Y, Kim K. Hollowing out MOFs: hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching. Chem Sci 2017;8:6799-803.

102. Yang J, Chen X, Li Y, Zhuang Q, Liu P, Gu J. Zr-based MOFs shielded with phospholipid bilayers: improved biostability and cell uptake for biological applications. Chem Mater 2017;29:4580-9.

103. Wang Z, Hu S, Yang J, et al. Nanoscale Zr-based MOFs with tailorable size and introduced mesopore for protein delivery. Adv Funct Mater 2018;28:1707356.

104. Choi KM, Jeon HJ, Kang JK, Yaghi OM. Heterogeneity within order in crystals of a porous metal-organic framework. J Am Chem Soc 2011;133:11920-3.

105. Cai G, Jiang HL. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew Chem Int Ed 2017;56:563-7.

106. Dissegna S, Epp K, Heinz WR, Kieslich G, Fischer RA. Metal-organic frameworks: defective metal-organic frameworks. Adv Mater 2018;30:1870280.

107. Forgan RS. Modulated self-assembly of metal-organic frameworks. Chem Sci 2020;11:4546-62.

108. Liu B, Vellingiri K, Jo S, Kumar P, Ok YS, Kim K. Recent advances in controlled modification of the size and morphology of metal-organic frameworks. Nano Res 2018;11:4441-67.

109. Winarta J, Shan B, Mcintyre SM, et al. A decade of UiO-66 research: a historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal-organic framework. Cryst Growth Des 2020;20:1347-62.

110. Shan B, Mcintyre SM, Armstrong MR, Shen Y, Mu B. Investigation of missing-cluster defects in UiO-66 and ferrocene deposition into defect-induced cavities. Ind Eng Chem Res 2018;57:14233-41.

111. Iacomi P, Formalik F, Marreiros J, et al. Role of structural defects in the adsorption and separation of C3 hydrocarbons in Zr-fumarate-MOF (MOF-801). Chem Mater 2019;31:8413-23.

112. Ye G, Gu Y, Zhou W, Xu W, Sun Y. Synthesis of defect-rich titanium terephthalate with the assistance of acetic acid for room-temperature oxidative desulfurization of fuel oil. ACS Catal 2020;10:2384-94.

113. Zhang H, Shi R, Fan H, et al. Defect creation by benzoic acid in Cu-based metal-organic frameworks for enhancing sulfur capture. Microporous Mesoporous Mater 2020;298:110070.

114. Wang J, Liu L, Chen C, et al. Engineering effective structural defects of metal-organic frameworks to enhance their catalytic performances. J Mater Chem A 2020;8:4464-72.

115. Lázaro I, Wells CJR, Forgan RS. Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angew Chem Int Ed 2020;132:5249-55.

116. Gutov OV, Molina S, Escudero-Adán EC, Shafir A. Modulation by amino acids: toward superior control in the synthesis of zirconium metal-organic frameworks. Chemistry 2016;22:13582-7.

117. Assaad N, Sabeh G, Hmadeh M. Defect control in Zr-based metal-organic framework nanoparticles for arsenic removal from water. ACS Appl Nano Mater 2020;3:8997-9008.

118. Jiang J, Lu Z, Zhang M, et al. Higher symmetry multinuclear clusters of metal-organic frameworks for highly selective CO2 capture. J Am Chem Soc 2018;140:17825-9.

119. Muldoon PF, Liu C, Miller CC, et al. Programmable topology in new families of heterobimetallic metal-organic frameworks. J Am Chem Soc 2018;140:6194-8.

120. Kang X, Lyu K, Li L, et al. Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis. Nat Commun 2019;10:4466.

121. Kim S, Kim A, Yoon JW, Kim H, Bae Y. Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake. Chem Eng J 2018;335:94-100.

122. Liu X, Qi W, Wang Y, Su R, He Z. A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks. Nanoscale 2017;9:17561-70.

123. Xu R, Ji Q, Zhao P, et al. Hierarchically porous UiO-66 with tunable mesopores and oxygen vacancies for enhanced arsenic removal. J Mater Chem A 2020;8:7870-9.

124. Xu W, Thapa KB, Ju Q, Fang Z, Huang W. Heterogeneous catalysts based on mesoporous metal-organic frameworks. Coord Chem Rev 2018;373:199-232.

125. Bunck DN, Dichtel WR. Mixed linker strategies for organic framework functionalization. Chemistry 2013;19:818-27.

126. Kozachuk O, Luz I, Llabrés i Xamena FX, et al. Multifunctional, defect-engineered metal-organic frameworks with ruthenium centers: sorption and catalytic properties. Angew Chem Int Ed 2014;53:7058-62.

127. Yuan S, Qin JS, Zou L, et al. Thermodynamically guided synthesis of mixed-linker Zr-MOFs with enhanced tunability. J Am Chem Soc 2016;138:6636-42.

128. Bueken B, Van Velthoven N, Krajnc A, et al. Tackling the defect conundrum in UiO-66: a mixed-linker approach to engineering missing linker defects. Chem Mater 2017;29:10478-86.

129. Deng H, Doonan CJ, Furukawa H, et al. Multiple functional groups of varying ratios in metal-organic frameworks. Science 2010;327:846-50.

130. Jrad A, Hmadeh M, Awada G, Chakleh R, Ahmad M. Efficient biofuel production by MTV-UiO-66 based catalysts. Chem Eng J 2021;410:128237.

131. Chaemchuen S, Luo Z, Zhou K, et al. Defect formation in metal-organic frameworks initiated by the crystal growth-rate and effect on catalytic performance. J Catal 2017;354:84-91.

132. Chu L, Guo J, Wang L, et al. Synthesis of defected UIO-66 with boosting the catalytic performance via rapid crystallization. Appl Organomet Chem 2021;36:e6559.

133. Feng X, Hajek J, Jena HS, et al. Engineering a highly defective stable UiO-66 with tunable lewis- brønsted acidity: the role of the hemilabile linker. J Am Chem Soc 2020;142:3174-83.

134. Yang P, Mao F, Li Y, Zhuang Q, Gu J. Hierarchical porous Zr-based MOFs synthesized by a facile monocarboxylic acid etching strategy. Chemistry 2018;24:2962-70.

135. Gadipelli S, Guo Z. Postsynthesis annealing of MOF-5 remarkably enhances the framework structural stability and CO2 uptake. Chem Mater 2014;26:6333-8.

136. Pan T, Shen Y, Wu P, et al. Thermal shrinkage behavior of metal-organic frameworks. Adv Funct Mater 2020;30:2001389.

137. Shearier E, Cheng P, Bao J, Hu YH, Zhao F. Surface defection reduces cytotoxicity of Zn(2-methylimidazole)2 (ZIF-8) without compromising its drug delivery capacity. RSC Adv 2016;6:4128-35.

138. Steenhaut T, Grégoire N, Barozzino-Consiglio G, Filinchuk Y, Hermans S. Mechanochemical defect engineering of HKUST-1 and impact of the resulting defects on carbon dioxide sorption and catalytic cyclopropanation. RSC Adv 2020;10:19822-31.

139. Avci C, Ariñez-soriano J, Carné-sánchez A, et al. Post-synthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals. Angew Chem Int Ed 2015;127:14625-9.

140. Liang Y, Li C, Chen L, et al. Microwave-assisted acid-induced formation of linker vacancies within Zr-based metal organic frameworks with enhanced heterogeneous catalysis. Chin Chem Lett 2021;32:787-90.

141. Doan HV, Sartbaeva A, Eloi JC, Davis SA, Ting VP. Defective hierarchical porous copper-based metal-organic frameworks synthesised via facile acid etching strategy. Sci Rep 2019;9:10887.

142. Albolkany MK, Liu C, Wang Y, et al. Molecular surgery at microporous MOF for mesopore generation and renovation. Angew Chem Int Ed 2021;60:14601-8.

143. Chang GG, Ma XC, Zhang YX, et al. Construction of hierarchical metal-organic frameworks by competitive coordination strategy for highly efficient CO2 conversion. Adv Mater 2019;31:e1904969.

144. Zhang B, Qi Z, Wu Z, et al. Defect-rich 2D material networks for advanced oxygen evolution catalysts. ACS Energy Lett 2019;4:328-36.

145. Meng F, Zhang S, Ma L, et al. Construction of hierarchically porous nanoparticles@metal-organic frameworks composites by inherent defects for the enhancement of catalytic efficiency. Adv Mater 2018;30:e1803263.

146. Jia M, Mai L, Li Z, Li W. Air-thermal processing of hierarchically porous metal-organic frameworks. Nanoscale 2020;12:14171-9.

147. Bennett TD, Todorova TK, Baxter EF, et al. Connecting defects and amorphization in UiO-66 and MIL-140 metal-organic frameworks: a combined experimental and computational study. Phys Chem Chem Phys 2016;18:2192-201.

148. Cheng P, Hu YH. Acetylene adsorption on defected MIL-53. Int J Energy Res 2016;40:846-52.

149. Geng P, Wang L, Du M, et al. MIL-96-Al for Li-S batteries: shape or size? Adv Mater 2022;34:e2107836.

150. Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H. Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design. Angew Chem Int Ed 2019;131:15330-47.

151. Peng Y, Bai Y, Liu C, Cao S, Kong Q, Pang H. Applications of metal-organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. Coord Chem Rev 2022;466:214602.

152. Wang Y, Zhao L, Ma J, Zhang J. Confined interface transformation of metal-organic frameworks for highly efficient oxygen evolution reactions. Energy Environ Sci 2022;15:3830-41.

153. Svane KL, Bristow JK, Gale JD, Walsh A. Vacancy defect configurations in the metal-organic framework UiO-66: energetics and electronic structure. J Mater Chem A 2018;6:8507-13.

154. Zhao X, Pattengale B, Fan D, et al. Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. ACS Energy Lett 2018;3:2520-6.

155. Cao Y, Li P, Wu T, Liu M, Zhang Y. Electrocatalysis of N2 to NH3 by HKUST-1 with High NH3 Yield. Chem Asian J 2020;15:1272-6.

156. Li J, Zhang W, Zhang X, et al. Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors. J Mater Chem A 2020;8:2463-71.

157. Lázaro IA, Szalad H, Valiente P, Albero J, García H, Martí-Gastaldo C. Tuning the photocatalytic activity of Ti-based metal-organic frameworks through modulator defect-engineered functionalization. ACS Appl Mater Interfaces 2022;14:21007-17.

158. Li S, Wang H, Wulan B, Zhang X, Yan J, Jiang Q. Complete dehydrogenation of N2H4BH3 over noble-metal-free Ni0.5Fe0.5-CeOx/MIL-101 with high activity and 100% H2 selectivity. Adv Energy Mater 2018;8:1800625.

159. Yang R, Peng S, Lan B, et al. Oxygen defect engineering of β-MnO2 catalysts via phase transformation for selective catalytic reduction of NO. Small 2021;17:e2102408.

160. Dhakshinamoorthy A, Li Z, Garcia H. Catalysis and photocatalysis by metal organic frameworks. Chem Soc Rev 2018;47:8134-72.

161. Liu S, Teng Z, Liu H, et al. A Ce-UiO-66 metal-organic framework-based graphene-embedded photocatalyst with controllable activation for solar ammonia fertilizer production. Angew Chem Int Ed 2022;61:e202207026.

162. Wang S, Wang X, Cheng X, Ma J, Sun W. Tailoring defect-type and ligand-vacancies in Zr(iv) frameworks for CO2 photoreduction. J Mater Chem A 2022;10:16396-402.

163. Li G, Blake GR, Palstra TT. Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection. Chem Soc Rev 2017;46:1693-706.

164. Jiang D, Zhu Y, Chen M, et al. Modified crystal structure and improved photocatalytic activity of MIL-53 via inorganic acid modulator. Appl Catal B Environ 2019;255:117746.

165. Hao YC, Chen LW, Li J, et al. Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nat Commun 2021;12:2682.

166. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017;355:eaad4998.

167. Zhao S, Wang Y, Dong J, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 2016;1:16184.

168. Tahir M, Pan L, Idrees F, et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 2017;37:136-57.

169. Zhang L, Jia Y, Gao G, et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 2018;4:285-97.

170. Hod I, Deria P, Bury W, et al. A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nat Commun 2015;6:8304.

171. Su X, Wang Y, Zhou J, Gu S, Li J, Zhang S. Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction. J Am Chem Soc 2018;140:11286-92.

172. Xu H, Cao J, Shan C, et al. MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew Chem Int Ed 2018;130:8790-4.

173. Zou Z, Wang J, Pan H, et al. Enhanced oxygen evolution reaction of defective CoP/MOF-integrated electrocatalyst by partial phosphating. J Mater Chem A 2020;8:14099-105.

174. Zhao S, Tan C, He C, et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat Energy 2020;5:881-90.

175. Kang T, Kim J. Optimal cobalt-based catalyst containing high-ratio of oxygen vacancy synthesized from metal-organic-framework (MOF) for oxygen evolution reaction (OER) enhancement. Appl Surf Sci 2021;560:150035.

176. Chen X, Wang Z, Wei Y, et al. High phase-purity 1T-MoS2 ultrathin nanosheets by a spatially confined template. Angew Chem Int Ed 2019;58:17621-4.

177. Han A, Zhou X, Wang X, et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat Commun 2021;12:709.

178. Sokolikova MS, Sherrell PC, Palczynski P, Bemmer VL, Mattevi C. Direct solution-phase synthesis of 1T’ WSe2 nanosheets. Nat Commun 2019;10:712.

179. Rui K, Zhao G, Lao M, et al. Direct hybridization of noble metal nanostructures on 2D metal-organic framework nanosheets to catalyze hydrogen evolution. Nano Lett 2019;19:8447-53.

180. Wang D, Li Q, Han C, Lu Q, Xing Z, Yang X. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat Commun 2019;10:3899.

181. Sun H, Chen L, Lian Y, et al. Topotactically transformed polygonal mesopores on ternary layered double hydroxides exposing under-coordinated metal centers for accelerated water dissociation. Adv Mater 2020;32:e2006784.

182. Gopi S, Panda A, Ramu A, Theerthagiri J, Kim H, Yun K. Bifunctional electrocatalysts for water splitting from a bimetallic (V doped-NixFey) metal-organic framework MOF@Graphene oxide composite. Int J Hydrog Energy 2022;47:42122-35.

183. Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z. Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives. Adv Mater 2017;29:1604685.

184. Stamenkovic VR, Strmcnik D, Lopes PP, Markovic NM. Energy and fuels from electrochemical interfaces. Nat Mater 2016;16:57-69.

185. Wang XX, Swihart MT, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat Catal 2019;2:578-89.

186. Lin L, Zhou W, Gao R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017;544:80-3.

187. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011;3:634-41.

188. Yuan S, Zhang J, Hu L, et al. Decarboxylation-induced defects in MOF-derived single cobalt Atom@Carbon electrocatalysts for efficient oxygen reduction. Angew Chem Int Ed 2021;60:21685-90.

189. Wu Q, Jia Y, Liu Q, et al. Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem 2022;8:2715-33.

190. Chen X, Pu J, Hu X, An L, Jiang J, Li Y. Confinement synthesis of bimetallic MOF-derived defect-rich nanofiber electrocatalysts for rechargeable Zn-air battery. Nano Res 2022;15:9000-9.

191. Li J, Xia W, Tang J, et al. Metal-organic framework-derived graphene mesh: a robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J Am Chem Soc 2022;144:9280-91.

192. Ling LL, Jiao L, Liu X, et al. Potassium-assisted fabrication of intrinsic defects in porous carbons for electrocatalytic CO2 reduction. Adv Mater 2022;34:e2205933.

193. Hu C, Wang Y, Chen J, et al. Main-Group metal single-atomic regulators in dual-metal catalysts for enhanced electrochemical CO2 reduction. Small 2022;18:e2201391.

194. Kang X, Li L, Sheveleva A, et al. Electro-reduction of carbon dioxide at low over-potential at a metal-organic framework decorated cathode. Nat Commun 2020;11:5464.

195. Albo J, Perfecto-Irigaray M, Beobide G, Irabien A. Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols. J CO2 Util 2019;33:157-65.

196. Albo J, Vallejo D, Beobide G, Castillo O, Castaño P, Irabien A. Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem 2017;10:1100-9.

197. Ye G, Zhang D, Li X, et al. Boosting catalytic performance of metal-organic framework by increasing the defects via a facile and green approach. ACS Appl Mater Interfaces 2017;9:34937-43.

198. Xu W, Zhang Y, Wang J, et al. Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass. Nat Commun 2022;13:2068.

199. Feng L, Day GS, Wang K, Yuan S, Zhou H. Strategies for pore engineering in zirconium metal-organic frameworks. Chem 2020;6:2902-23.

200. Li J, Bhatt PM, Li J, Eddaoudi M, Liu Y. Recent progress on microfine design of metal-organic frameworks: structure regulation and gas sorption and separation. Adv Mater 2020;32:e2002563.

201. Yilmaz G, Peh SB, Zhao D, Ho GW. Atomic- and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications. Adv Sci 2019;6:1901129.

202. Feng Y, Cao X, Zhang L, et al. Defect engineering of enzyme-embedded metal-organic frameworks for smart cargo release. Chem Eng J 2022;439:135736.

203. Sun D, Wong LW, Wong HY, et al. Direct visualization of atomic structure in multivariate metal-organic frameworks (MOFs) for guiding electrocatalysts design. Angew Chem Int Ed 2023;135:e202216008.

204. Huang Y, Jiao Y, Chen T, et al. Tuning the wettability of metal-organic frameworks via defect engineering for efficient oil/water separation. ACS Appl Mater Interfaces 2020;12:34413-22.

205. Li Y, Zhang J, Chen Q, Xia X, Chen M. Emerging of heterostructure materials in energy storage: a review. Adv Mater 2021;33:e2100855.

206. Liu J, Song X, Zhang T, Liu S, Wen H, Chen L. 2D conductive metal-organic frameworks: an emerging platform for electrochemical energy storage. Angew Chem Int Ed 2021;133:5672-84.

207. Li Q, Li S, Sha J, et al. NiMo6/ZIF-67 nanostructures on graphitic carbon nitride for colorimetric sensing of hydrogen peroxide and ascorbic acid. ACS Appl Nano Mater 2021;4:12197-203.

208. Li Q, Xu M, Wang T, Wang H, Sun J, Sha J. Nanohybridization of CoS2/MoS2 heterostructure with polyoxometalate on functionalized reduced graphene oxide for high-performance LIBs. Chemistry 2022;28:e202200207.

209. Liu J, Kopold P, van Aken PA, Maier J, Yu Y. Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew Chem Int Ed 2015;127:9768-72.

210. Maier J. Thermodynamics of electrochemical lithium storage. Angew Chem Int Ed 2013;52:4998-5026.

211. Cheng F, Liang J, Tao Z, Chen J. Functional materials for rechargeable batteries. Adv Mater 2011;23:1695-715.

212. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334:928-35.

213. Dou S, Tao L, Wang R, El Hankari S, Chen R, Wang S. Plasma-assisted synthesis and surface modification of electrode materials for renewable energy. Adv Mater 2018;30:e1705850.

214. Sun S, Chen D, Shen M, et al. Plasma modulated MOF-derived TiO2/C for enhanced lithium storage. Chem Eng J 2021;417:128003.

215. Lin J, Huang T, Lu M, Lin X, Reddy RCK, Xu X. Modulating electronic structure of metal-organic frameworks derived zinc manganates by oxygen vacancies for superior lithium storage. Chem Eng J 2022;433:133770.

216. Lv T, Zhu G, Dong S, et al. Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries. Angew Chem Int Ed 2023;62:e202216089.

217. Nian Q, Zhang X, Feng Y, et al. Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries. ACS Energy Lett 2021;6:2174-80.

218. Sun T, Zhang W, Nian Q, Tao Z. Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery. Chem Eng J 2023;452:139324.

219. Li P, Ren J, Li C, et al. MOF-derived defect-rich CeO2 as ion-selective smart artificial SEI for dendrite-free Zn-ion battery. Chem Eng J 2023;451:138769.

220. Leng W, Cui L, Liu Y, Gong Y. MOF-derived MnV2O4/C microparticles with graphene coating anchored on graphite sheets: oxygen defect engaged high performance aqueous zinc-ion battery. Adv Mater Interfaces 2022;9:2101705.

221. Sun K, Pang J, Zheng Y, et al. Oxygen vacancies enriched MOF-derived MnO/C hybrids for high-performance aqueous zinc ion battery. J Alloys Compd 2022;923:166470.

222. Du M, Geng P, Pei C, et al. High-entropy prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew Chem Int Ed 2022;61:e202209350.

223. Wang N, Zhang X, Ju Z, et al. Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat Commun 2021;12:4519.

224. Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes. Chem Soc Rev 2013;42:3018-32.

225. Manthiram A, Fu Y, Chung SH, Zu C, Su YS. Rechargeable lithium-sulfur batteries. Chem Rev 2014;114:11751-87.

226. Wei Seh Z, Li W, Cha JJ, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat Commun 2013;4:1331.

227. Liu M, Zhang C, Su J, et al. Propelling polysulfide conversion by defect-rich MoS2 nanosheets for high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces 2019;11:20788-95.

228. Wang Y, Zhang R, Chen J, et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv Energy Mater 2019;9:1900953.

229. He Q, Yu B, Wang H, Rana M, Liao X, Zhao Y. Oxygen defects boost polysulfides immobilization and catalytic conversion: first-principles computational characterization and experimental design. Nano Res 2020;13:2299-307.

230. Li S, Lin J, Ding Y, et al. Defects engineering of lightweight metal-organic frameworks-based electrocatalytic membrane for high-loading lithium-sulfur batteries. ACS Nano 2021;15:13803-13.

231. Zhang X, Li G, Zhang Y, et al. Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy 2021;86:106094.

232. Wang X, Zhao C, Liu B, et al. Creating edge sites within the 2D metal-organic framework boosts redox kinetics in lithium-sulfur batteries. Adv Energy Mater 2022;12:2201960.

233. Jiang Y, Deng YP, Liang R, et al. D-orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nat Commun 2020;11:5858.

234. Liu R, Xu S, Shao X, et al. Defect-engineered NiCo-S composite as a bifunctional electrode for high-performance supercapacitor and electrocatalysis. ACS Appl Mater Interfaces 2021;13:47717-27.

235. Wang H, Yin F, Liu N, Yu H, Fan T, Chen B. Engineering mesopores and unsaturated coordination in metal-organic frameworks for enhanced oxygen reduction and oxygen evolution activity and Li-air battery capacity. ACS Sustain Chem Eng 2021;9:4509-19.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/