REFERENCES

1. Armand M, Tarascon JM. Building better batteries. Nature 2008;451:652-7.

2. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334:928-35.

3. Service RF. Lithium-ion battery development takes Nobel. Science 2019;366:292.

4. Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater 2018;30:1800561.

5. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2010;22:587-603.

6. Tao Y, Rahn CD, Archer LA, You F. Second life and recycling: energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Sci Adv 2021;7:eabi7633.

7. Eshetu GG, Zhang H, Judez X, et al. Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat Commun 2021;12:5459.

8. Kwak WJ, Rosy, Sharon D, et al. Lithium-oxygen batteries and related systems: potential, status, and future. Chem Rev 2020;120:6626-83.

9. Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev 2016;45:5605-34.

10. Grey CP, Hall DS. Prospects for lithium-ion batteries and beyond-a 2030 vision. Nat Commun 2020;11:6279.

11. Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today 2015;18:252-64.

12. Teng W, Wu J, Liang Q, et al. Designing advanced liquid electrolytes for alkali metal batteries: principles, progress, and perspectives. Energy Environ Mater 2023;6:e12355.

13. Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 2016;1:16071.

14. Rajagopalan R, Tang Y, Ji X, Jia C, Wang H. Advancements and challenges in potassium ion batteries: a comprehensive review. Adv Funct Mater 2020;30:1909486.

15. Wu J, Lin C, Liang Q, et al. Sodium-rich NASICON-structured cathodes for boosting the energy density and lifespan of sodium-free-anode sodium metal batteries. InfoMat 2022;4:e12288.

16. Zhao Y, Adair KR, Sun X. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ Sci 2018;11:2673-95.

17. Eftekhari A. Potassium secondary cell based on prussian blue cathode. J Power Sources 2004;126:221-8.

18. Zhang W, Liu Y, Guo Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv 2019;5:eaav7412.

19. Zhang Q, Wang Z, Zhang S, Zhou T, Mao J, Guo Z. Cathode materials for potassium-ion batteries: current status and perspective. Electrochem Energy Rev 2018;1:625-58.

20. Zhu Y, Yang X, Sun T, et al. Recent progresses and prospects of cathode materials for non-aqueous potassium-ion batteries. Electrochem Energy Rev 2018;1:548-66.

21. Zhong F, Wang Y, Li G, et al. Beyond-carbon materials for potassium ion energy-storage devices. Renew Sustain Energy Rev 2021;146:111161.

22. Tian Y, Li H, Zhang S, et al. Polymer "tape" -assisted ball-milling method fabrication few-atomic-layered bismuth for improving K+ /Na+ storage. Energy Environ Mater 2021;4:421-7.

23. Guo Y, Li H, Zhai T. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater 2017;29:1700007.

24. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 2017;12:194-206.

25. Popovic J. Review-recent advances in understanding potassium metal anodes. J Electrochem Soc 2022;169:030510.

26. Dhir S, Wheeler S, Capone I, Pasta M. Outlook on K-ion batteries. Chem 2020;6:2442-60.

27. Xiang J, Yang L, Yuan L, et al. Alkali-metal anodes: from lab to market. Joule 2019;3:2334-63.

28. Hu L, Deng J, Liang Q, et al. Engineering current collectors for advanced alkali metal anodes: a review and perspective. EcoMat 2023;5:e12269.

29. Liu H, Cheng X, Jin Z, et al. Recent advances in understanding dendrite growth on alkali metal anodes. Energy Chem 2019;1:100003.

30. Zhong Y, Zhou S, He Q, Pan A. Architecture design principles for stable electrodeposition behavior-towards better alkali metal (Li/Na/K) anodes. Energy Stor Mater 2022;45:48-73.

31. Yasin G, Arif M, Mehtab T, et al. Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Stor Mater 2020;25:644-78.

32. Wang H, Yu D, Kuang C, et al. Alkali metal anodes for rechargeable batteries. Chem 2019;5:313-38.

33. Liu B, Zhang J, Xu W. Advancing lithium metal batteries. Joule 2018;2:833-45.

34. Zhang JG, Xu W, Xiao J, Cao X, Liu J. Lithium metal anodes with nonaqueous electrolytes. Chem Rev 2020;120:13312-48.

35. Fan L, Ma R, Zhang Q, Jia X, Lu B. Graphite anode for a potassium-ion battery with unprecedented performance. Angew Chem Int Ed 2019;58:10500-5.

36. Liu S, Mao J, Zhang L, Pang WK, Du A, Guo Z. Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries. Adv Mater 2021;33:2006313.

37. Mao J, Wang C, Lyu Y, et al. Organic electrolyte design for practical potassium-ion batteries. J Mater Chem A 2022;10:19090-106.

38. Liang HJ, Gu ZY, Zhao XX, et al. Advanced flame-retardant electrolyte for highly stabilized K-ion storage in graphite anode. Sci Bull 2022;67:1581-8.

39. Li NW, Yin YX, Yang CP, Guo YG. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater 2016;28:1853-8.

40. Bao C, Wang B, Liu P, et al. Solid electrolyte interphases on sodium metal anodes. Adv Funct Mater 2020;30:2004891.

41. Luo Z, Qiu X, Liu C, et al. Interfacial challenges towards stable Li metal anode. Nano Energy 2021;79:105507.

42. Zhao Y, Ye Y, Wu F, Li Y, Li L, Chen R. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries. Adv Mater 2019;31:1806532.

43. Liu W, Liu P, Mitlin D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv Energy Mater 2020;10:2002297.

44. Park S, Jin HJ, Yun YS. Advances in the design of 3D-structured electrode materials for lithium-metal anodes. Adv Mater 2020;32:2002193.

45. Luo G, Liu D, Zhao J, et al. Negatively charged holey titania nanosheets added electrolyte to realize dendrite-free lithium metal battery. Small 2023;19:2206176.

46. Luo G, Yin X, Liu D, Hussain A, Liu F, Cai X. Electrosynthesis of vertically aligned zinc oxide nanoflakes on 3D porous Cu foam enables dendrite-free Li-metal anode. ACS Appl Mater Interfaces 2022;14:33400-9.

47. Liu D, Wang Y, Tong T, Luo G, Shen J, Cai X. Mesoporous copper-based metal glass as current collector for Li metal anode. Chem Eng J 2023;451:138910.

48. Zheng ZJ, Ye H, Guo ZP. Recent progress in designing stable composite lithium anodes with improved wettability. Adv Sci 2020;7:2002212.

49. Wu J, Chen X, Fan W, Li X, Mai Y, Chen Y. Rationally designed alloy phases for highly reversible alkali metal batteries. Energy Stor Mater 2022;48:223-43.

50. Wu F, Yuan Y, Cheng X, et al. Perspectives for restraining harsh lithium dendrite growth: towards robust lithium metal anodes. Energy Stor Mater 2018;15:148-70.

51. Hussain A, Mehmood A, Saleem A, et al. Polyetherimide membrane with tunable porous morphology for safe lithium metal-based batteries. Chem Eng J 2023;453:139804.

52. Raza W, Hussain A, Mehmood A, et al. Poly(ether imide) porous membrane developed by a scalable method for high-performance lithium-sulfur batteries: combined theoretical and experimental study. ACS Appl Mater Interfaces 2022;14:52794-805.

53. Wei C, Tao Y, An Y, et al. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv Funct Mater 2020;30:2004613.

54. Chen J, Wang Y, Li S, et al. Porous metal current collectors for alkali metal batteries. Adv Sci 2022;10:2205695.

55. Wei C, Tao Y, Fei H, et al. Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Stor Mater 2020;30:206-27.

56. Liu P, Mitlin D. Emerging potassium metal anodes: perspectives on control of the electrochemical interfaces. ACC Chem Res 2020;53:1161-75.

57. Shi P, Zhang X, Shen X, Zhang R, Liu H, Zhang Q. A review of composite lithium metal anode for practical applications. Adv Mater Technol 2020;5:1900806.

58. Yang G, Li Y, Tong Y, et al. Lithium plating and stripping on carbon nanotube sponge. Nano Lett 2019;19:494-9.

59. Zuo TT, Wu XW, Yang CP, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv Mater 2017;29:1700389.

60. Pan L, Luo Z, Zhang Y, et al. Seed-free selective deposition of lithium metal into tough graphene framework for stable lithium metal anode. ACS Appl Mater Interfaces 2019;11:44383-9.

61. Niu C, Pan H, Xu W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat Nanotechnol 2019;14:594-601.

62. Cui J, Yao S, Ihsan-ul-haq M, Wu J, Kim J. Correlation between Li Plating behavior and surface characteristics of carbon matrix toward stable Li metal anodes. Adv Energy Mater 2019;9:1802777.

63. Chen X, Chen XR, Hou TZ, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci Adv 2019;5:eaau7728.

64. Zhang C, Liu S, Li G, Zhang C, Liu X, Luo J. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv Mater 2018;30:1801328.

65. Li S, Liu Q, Zhou J, et al. Hierarchical Co3O4 nanofiber-carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries. Adv Funct Mater 2019;29:1808847.

66. Li Y, Zhang L, Liu S, et al. Original growth mechanism for ultra-stable dendrite-free potassium metal electrode. Nano Energy 2019;62:367-75.

67. Qin L, Lei Y, Wang H, et al. Capillary encapsulation of metallic potassium in aligned carbon nanotubes for use as stable potassium metal anodes. Adv Energy Mater 2019;9:1901427.

68. Ye M, Hwang JY, Sun YK. A 4 V class potassium metal battery with extremely low overpotential. ACS Nano 2019;13:9306-14.

69. Meng J, Zhu H, Xiao Z, et al. Amine-wetting-enabled dendrite-free potassium metal anode. ACS Nano 2022;16:7291-300.

70. Zhang D, Ma X, Wu L, et al. Coupling low-tortuosity carbon matrix with single-atom chemistry enables dendrite-free potassium-metal anode. Adv Energy Mater 2023;13:2203277.

71. Yang Y, Huang C, Zhang Y, et al. Processable potassium-carbon nanotube film with a three-dimensional structure for ultrastable metallic potassium anodes. ACS Appl Mater Interfaces 2022;14:55577-86.

72. Cheng G, Liu S, Wang X, et al. CoZn nanoparticles@hollow carbon tubes enabled high-performance potassium metal batteries. ACS Appl Mater Interfaces 2022;14:45364-72.

73. Zhang J, Li Y, Zhu L, Wang X, Tu J. Potassiophilic skeleton achieving highly stable potassium metal anode. Chem Eng J 2022;449:137659.

74. Wang L, Wang H, Cheng M, et al. Metal-organic framework@polyacrylonitrile-derived potassiophilic nanoporous carbon nanofiber paper enables stable potassium metal anodes. ACS Appl Energy Mater 2021;4:6245-52.

75. Xie Y, Hu J, Han Z, et al. Ultra-stable K metal anode enabled by oxygen-rich carbon cloth. Nano Res 2020;13:3137-41.

76. Zhou M, Qi W, Hu Z, et al. Highly potassiophilic carbon nanofiber paper derived from bacterial cellulose enables ultra-stable dendrite-free potassium metal anodes. ACS Appl Mater Interfaces 2021;13:17629-38.

77. Qiao F, Meng J, Wang J, et al. Building carbon cloth-based dendrite-free potassium metal anodes for potassium metal pouch cells. J Mater Chem A 2021;9:23046-54.

78. Zhao X, Chen F, Liu J, et al. Enhanced surface binding energy regulates uniform potassium deposition for stable potassium metal anodes. J Mater Chem A 2020;8:5671-8.

79. Liu S, Yang Y, Qian Y, et al. MOF-derived potassiophilic CuO nanoparticles on carbon fiber cloth as host for stabilizing potassium metal anode. ChemElectroChem 2022;9:e202101561.

80. Han M, Jiang J, Lu S, et al. Moderate specific surface areas help three-dimensional frameworks achieve dendrite-free potassium-metal anodes. ACS Appl Mater Interfaces 2022;14:900-9.

81. Yang CP, Yin YX, Zhang SF, Li NW, Guo YG. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun 2015;6:8058.

82. Yun Q, He YB, Lv W, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv Mater 2016;28:6932-9.

83. Li Q, Zhu S, Lu Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv Funct Mater 2017;27:1606422.

84. Wang X, Zeng W, Hong L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat Energy 2018;3:227-35.

85. Lee J, Won ES, Kim DM, et al. Three-dimensional porous frameworks for Li metal batteries: superconformal versus conformal Li growth. ACS Appl Mater Interfaces 2021;13:33056-65.

86. Chen J, Li S, Qiao X, et al. Integrated porous Cu host induced high-stable bidirectional Li plating/stripping behavior for practical Li metal batteries. Small 2022;18:2105999.

87. Wang T, Liu Y, Lu Y, Hu Y, Fan L. Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts. Energy Stor Mater 2018;15:274-81.

88. Chu C, Li R, Cai F, et al. Recent advanced skeletons in sodium metal anodes. Energy Environ Sci 2021;14:4318-40.

89. Yang W, Yang W, Dong L, Shao G, Wang G, Peng X. Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes. Nano Energy 2021;80:105563.

90. Wang C, Wang H, Matios E, Hu X, Li W. A chemically engineered porous copper matrix with cylindrical core-shell skeleton as a stable host for metallic sodium anodes. Adv Funct Mater 2018;28:1802282.

91. Chen Q, Liu B, Zhang L, et al. Sodiophilic Zn/SnO2 porous scaffold to stabilize sodium deposition for sodium metal batteries. Chem Eng J 2021;404:126469.

92. Liu P, Wang Y, Gu Q, Nanda J, Watt J, Mitlin D. Dendrite-free potassium metal anodes in a carbonate electrolyte. Adv Mater 2020;32:1906735.

93. Wang J, Yuan J, Chen C, et al. Cu3Pt alloy-functionalized Cu mesh as current collector for dendritic-free anodes of potassium metal batteries. Nano Energy 2020;75:104914.

94. Wang J, Yan W, Zhang J. High area capacity and dendrite-free anode constructed by highly potassiophilic Pd/Cu current collector for low-temperature potassium metal battery. Nano Energy 2022;96:107131.

95. Li H, Liu Y, Wang J, Yan W, Zhang J. Robust 3D copper foam functionalized with gold nanoparticles as anode for high-performance potassium metal batteries. Chem Asian J 2022;17:e202200430.

96. Liu F, Wang L, Ling F, et al. Homogeneous metallic deposition regulated by porous framework and selenization interphase toward stable sodium/potassium anodes. Adv Funct Mater 2022;32:2210166.

97. Liu P, Wang Y, Hao H, et al. Stable potassium metal anodes with an all-aluminum current collector through improved electrolyte wetting. Adv Mater 2020;32:2002908.

98. Yi Y, Li J, Gao Z, et al. Highly potassiophilic graphdiyne skeletons decorated with Cu quantum dots enable dendrite-free potassium-metal anodes. Adv Mater 2022;34:2202685.

99. Ye S, Wang L, Liu F, Shi P, Yu Y. Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode. eScience 2021;1:75-82.

100. Shi H, Dong Y, Zheng S, Dong C, Wu ZS. Three dimensional Ti3C2 MXene nanoribbon frameworks with uniform potassiophilic sites for the dendrite-free potassium metal anodes. Nanoscale Adv 2020;2:4212-9.

101. Shi H, Yue M, Zhang CJ, et al. 3D Flexible, Conductive, and Recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 2020;14:8678-88.

102. Tang X, Zhou D, Li P, et al. MXene-based dendrite-free potassium metal batteries. Adv Mater 2020;32:1906739.

103. Fang Y, Zhang Y, Zhu K, et al. Lithiophilic three-dimensional porous Ti3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 2019;13:14319-28.

104. Pang J, Mendes RG, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 2019;48:72-133.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/