REFERENCES

1. Scrosati B, Garche J. Lithium batteries: status, prospects and future. J Power Sources 2010;195:2419-30.

2. Armand M, Tarascon JM. Building better batteries. Nature 2008;451:652-7.

3. Passerini S, Scrosati B. Lithium and lithium-ion batteries: challenges and prospects. Electrochem Soc Interface 2016;25:85-7.

4. Kalhoff J, Eshetu GG, Bresser D, Passerini S. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem 2015;8:2154-75.

5. Chen Y, Kang Y, Zhao Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J Energy Chem 2021;59:83-99.

6. Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries. Energy Environ Sci 2014;7:513-37.

7. Wang H, Yu D, Kuang C, et al. Alkali metal anodes for rechargeable batteries. Chem 2019;5:313-38.

8. Adenusi H, Chass GA, Passerini S, Tian KV, Chen G. Lithium batteries and the solid electrolyte interphase (SEI) - progress and outlook. Adv Energy Mater 2023;13:2203307.

9. Jha V, Krishnamurthy B. Modeling the SEI layer formation and its growth in lithium-ion batteries (LiB) during charge-discharge cycling. Ionics 2022;28:3661-70.

10. Lewis JA, Tippens J, Cortes FJQ, Mcdowell MT. Chemo-mechanical challenges in solid-state batteries. Trends Chem 2019;1:845-57.

11. Donato G, Ates T, Adenusi H, Varzi A, Navarra MA, Passerini S. Electrolyte measures to prevent polysulfide shuttle in lithium-sulfur batteries. Batteries Supercaps 2022;5:e202200097-121.

12. Fergus JW. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 2010;195:4554-69.

13. Sashmitha K, Rani MU. A comprehensive review of polymer electrolyte for lithium-ion battery. Polym Bull 2023;80:89-135.

14. Mindemark J, Lacey MJ, Bowden T, Brandell D. Beyond PEO - alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 2018;81:114-43.

15. Alexander GV, Patra S, Sobhan Raj SV, Sugumar MK, Ud Din MM, Murugan R. Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors. J Power Sources 2018;396:764-73.

16. Chen R, Nolan AM, Lu J, et al. The thermal stability of lithium solid electrolytes with metallic lithium. Joule 2020;4:812-21.

17. Schwietert TK, Vasileiadis A, Wagemaker M. First-principles prediction of the electrochemical stability and reaction mechanisms of solid-state electrolytes. JACS Au 2021;1:1488-96.

18. Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2017;2:16103.

19. Wei R, Chen S, Gao T, Liu W. Challenges, fabrications and horizons of oxide solid electrolytes for solid-state lithium batteries. Nano Select 2021;2:2256-74.

20. Zhao Q, Stalin S, Zhao C, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater 2020;5:229-52.

21. Gurung A, Pokharel J, Baniya A, et al. A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries. Sustain Energy Fuels 2019;3:3279-309.

22. Fan L, Wei S, Li S, Li Q, Lu Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater 2018;8:1702657.

23. Lu J, Li Y. Perovskite-type Li-ion solid electrolytes: a review. J Mater Sci Mater Electron 2021;32:9736-54.

24. Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R. Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci 2017;88:325-411.

25. Wang P, Qu W, Song W, Chen H, Chen R, Fang D. Electro-Chemo-Mechanical issues at the interfaces in solid-state lithium metal batteries. Adv Funct Mater 2019;29:1900950-79.

26. Lim H, Park J, Shin H, et al. A review of challenges and issues concerning interfaces for all-solid-state batteries. Energy Stor Mater 2020;25:224-50.

27. Tsurumaki A, Ohno H. Dissolution of oligo(tetrafluoroethylene) and preparation of poly(tetrafluoroethylene)-based composites by using fluorinated ionic liquids. Chem Commun 2018;54:409-12.

28. Kalhoff J, Kim G, Passerini S, Appetecchi GB. Safety assessment of ionic liquid-based lithium-ion battery prototypes. J Energy Power Eng 2016;04:9-18.

29. Shin J. Ionic liquids to the rescue? overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun 2003;5:1016-20.

30. Tian L, Wang M, Liu Y, et al. Multiple ionic conduction highways and good interfacial stability of ionic liquid-encapsulated cross-linked polymer electrolytes for lithium metal batteries. J Power Sources 2022;543:231848.

31. Eshetu G, Armand M, Scrosati B, Passerini S. Energy storage materials synthesized from ionic liquids. Angew Chem Int Ed 2014;53:13342-59.

32. Osada I, de Vries H, Scrosati B, Passerini S. Ionic-liquid-based polymer electrolytes for battery applications. Angew Chem Int Ed 2016;55:500-13.

33. Ito S, Unemoto A, Ogawa H, Tomai T, Honma I. Application of quasi-solid-state silica nanoparticles-ionic liquid composite electrolytes to all-solid-state lithium secondary battery. J Power Sources 2012;208:271-5.

34. Wen Z, Li Y, Zhao Z, et al. A leaf-like Al2O3-based quasi-solid electrolyte with a fast Li+ conductive interface for stable lithium metal anodes. J Mater Chem A 2020;8:7280-7.

35. Liu S, Liu W, Ba D, et al. Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv Mater 2023;35:e2110423.

36. Huy VP, So S, Hur J. Inorganic fillers in composite gel polymer electrolytes for high-performance lithium and non-lithium polymer batteries. Nanomaterials 2021;11:614.

37. Chen R, Li Q, Yu X, Chen L, Li H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev 2020;120:6820-77.

38. Haven Y. The ionic conductivity of Li-halide crystals. Recl Trav Chim Pays-Bas 1950;69:1471-89.

39. Alpen U. Li3N: a promising Li ionic conductor. J Solid State Chem 1979;29:379-92.

40. Lapp T. Ionic conductivity of pure and doped Li3N. Solid State Ion 1983;11:97-103.

41. Wang C, Fu K, Kammampata SP, et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem Rev 2020;120:4257-300.

42. Goodenough J, Hong H, Kafalas J. Fast Na+-ion transport in skeleton structures. Mater Res Bull 1976;11:203-20.

43. Wells AF. Structural inorganic chemistry, 4th ed. Oxford: Clarendon Press; 1975.

44. Thangadurai V, Weppner W. Li6ALa2Ta2O12 (A = Ca, Sr, Ba): A new class of fast lithium ion conductors with garnet-like structure. J Am Ceram Soc 2005;88:411-8.

45. Thangadurai V, Weppner W. Li6ALa2Ta2O12 (A = Sr, Ba): novel Garnet-like oxides for fast lithium ion conduction. Adv Funct Mater 2005;15:107-12.

46. Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 2014;43:4714-27.

47. Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 2007;46:7778-81.

48. Wang W, Wang X, Gao Y, Fang Q. Lithium-ionic diffusion and electrical conduction in the Li7La3Ta2O13 compounds. Solid State Ion 2009;180:1252-6.

49. Mariappan CR, Gnanasekar KI, Jayaraman V, Gnanasekaran T. Lithium ion conduction in Li5La3Ta2O12 and Li7La3Ta2O13 garnet-type materials. J Electroceram 2013;30:258-65.

50. Cussen EJ. The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. Chem Commun 2006:412-3.

51. Wu JF, Pang WK, Peterson VK, Wei L, Guo X. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl Mater Interfaces 2017;9:12461-8.

52. Xia W, Xu B, Duan H, et al. Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles. ACS Appl Mater Interfaces 2016;8:5335-42.

53. Sharafi A, Yu S, Naguib M, et al. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J Mater Chem A 2017;5:13475-87.

54. Sun Y, Guan P, Liu Y, Xu H, Li S, Chu D. Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery. Crit Rev Solid State 2019;44:265-82.

55. Stramare S, Thangadurai V, Weppner W. Lithium lanthanum titanates:  a review. Chem Mater 2003;15:3974-90.

56. Inaguma Y, Liquan C, Itoh M, et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun 1993;86:689-93.

57. Yan S, Yim C, Pankov V, et al. Perovskite solid-state electrolytes for lithium metal batteries. Batteries 2021;7:75.

58. Chen C. Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate. Solid State Ion 2001;144:51-7.

59. Hong H. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater Res Bull 1978;13:117-24.

60. West AR. Crystal chemistry of some tetrahedral oxides. Z Kristallogr 1975;141:422-36.

61. Shannon R, Taylor B, English A, Berzins T. New Li solid electrolytes. Electrochim Acta 1977;22:783-96.

62. Hu Y, Raistrick ID, Huggins RA. Ionic conductivity of lithium orthosilicate - lithium phosphate solid solutions. J Electrochem Soc 1977;124:1240-2.

63. Lau J, Deblock RH, Butts DM, Ashby DS, Choi CS, Dunn BS. Sulfide solid electrolytes for lithium battery applications. Adv Energy Mater 2018;8:1800933.

64. Yu X, Bates JB, Jellison GE, Hart FX. A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc 1997;144:524-32.

65. Oudenhoven JFM, Baggetto L, Notten PHL. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv Energy Mater 2011;1:10-33.

66. Nowak S, Berkemeier F, Schmitz G. Ultra-thin LiPON films - fundamental properties and application in solid state thin film model batteries. J Power Sources 2015;275:144-50.

67. Bates J, Dudney N, Gruzalski G, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J Power Sources 1993;43:103-10.

68. Cheng D, Wynn TA, Wang X, et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 2020;4:2484-500.

69. López-aranguren P, Reynaud M, Głuchowski P, et al. Crystalline LiPON as a bulk-type solid electrolyte. ACS Energy Lett 2021;6:445-50.

70. Zhang X, Temeche E, Laine RM. Design, synthesis, and characterization of polymer precursors to LixPON and LixSiPON Glasses: materials that enable all-solid-state batteries. Macromolecules 2020;53:2702-12.

71. Lee S, Bae J, Lee H, Baik H, Lee S. Electrical conductivity in Li-Si-P-O-N oxynitride thin-films. J Power Sources 2003;123:61-4.

72. Su Y, Falgenhauer J, Leichtweiß T, et al. Electrochemical properties and optical transmission of high Li+ conducting LiSiPON electrolyte films: electrochemical properties of high Li+ conducting LiSiPON electrolyte films. Phys Status Solidi B 2017;254:1600088.

73. Wang W, Jiang B, Hu L, Jiao S. Nasicon material NaZr2(PO4)3: a novel storage material for sodium-ion batteries. J Mater Chem A 2014;2:1341-5.

74. Zhao D, Xie Z, Hu J, et al. Structure determination, electronic and optical properties of NaGe2P3O12 and Cs2GeP4O13. J Molecular Struct 2009;922:127-34.

75. Ortiz-mosquera JF, Nieto-muñoz AM, Rodrigues AC. Precursor glass stability, microstructure and ionic conductivity of glass-ceramics from the Na1+xAlxGe2-x(PO4)3 NASICON series. J Non-Cryst Solids 2019;513:36-43.

76. Wu M, Ni W, Hu J, Ma J. NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett 2019;11:44.

77. Bachman JC, Muy S, Grimaud A, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 2016;116:140-62.

78. Tan G, Wu F, Li L, Liu Y, Chen R. Magnetron sputtering preparation of nitrogen-incorporated lithium-aluminum-titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries. J Phys Chem C 2012;116:3817-26.

79. Illbeigi M, Fazlali A, Kazazi M, Mohammadi AH. Effect of simultaneous addition of aluminum and chromium on the lithium ionic conductivity of LiGe2(PO4)3 NASICON-type glass-ceramics. Solid State Ion 2016;289:180-7.

80. Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater 2011;10:682-6.

81. Mo Y, Ong SP, Ceder G. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem Mater 2012;24:15-7.

82. Adams S, Prasada Rao R. Structural requirements for fast lithium ion migration in Li10GeP2S12. J Mater Chem 2012;22:7687.

83. Hu C, Wang Z, Sun Z, Ouyang C. Insights into structural stability and Li superionic conductivity of Li10GeP2S12 from first-principles calculations. Chem Phys Lett 2014;591:16-20.

84. Chen S, Xie D, Liu G, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application. Energy Stor Mater 2018;14:58-74.

85. Dietrich C, Weber DA, Sedlmaier SJ, et al. Lithium ion conductivity in Li2S-P2S5 glasses - building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J Mater Chem A 2017;5:18111-9.

86. Wang G, Lin C, Gao C, et al. Hydrolysis-resistant and anti-dendritic halide composite Li3PS4-LiI solid electrolyte for all-solid-state lithium batteries. Electrochim Acta 2022;428:140906.

87. Calpa M, Rosero-navarro NC, Miura A, Jalem R, Tateyama Y, Tadanaga K. Chemical stability of Li4PS4I solid electrolyte against hydrolysis. Appl Mater Today 2021;22:100918.

88. Rao RP, Adams S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries: studies of lithium argyrodite solid electrolytes. Phys Status Solidi A 2011;208:1804-7.

89. Boulineau S, Courty M, Tarascon J, Viallet V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ion 2012;221:1-5.

90. Deiseroth H, Maier J, Weichert K, Nickel V, Kong S, Reiner C. Li7PS6 and Li6PS5X (X: Cl, Br, I): possible three-dimensional diffusion pathways for lithium ions and temperature dependence of the ionic conductivity by impedance measurements. Z Anorg Allg Chem 2011;637:1287-94.

91. Deiseroth HJ, Kong ST, Eckert H, et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed 2008;47:755-8.

92. Zhu Y, He X, Mo Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 2016;4:3253-66.

93. Wang S, Wu Y, Ma T, Chen L, Li H, Wu F. Thermal stability between sulfide solid electrolytes and oxide cathode. ACS Nano 2022;16:16158-76.

94. Paul PP, Chen B, Langevin SA, Dufek EJ, Nelson Weker J, Ko JS. Interfaces in all solid state Li-metal batteries: a review on instabilities, stabilization strategies, and scalability. Energy Stor Mater 2022;45:969-1001.

95. Pervez SA, Cambaz MA, Thangadurai V, Fichtner M. Interface in solid-state lithium battery: challenges, progress, and outlook. ACS Appl Mater Interfaces 2019;11:22029-50.

96. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2010;22:587-603.

97. Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev 2020;120:6878-933.

98. Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J. Interphase formation on lithium solid electrolytes - an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion 2015;278:98-105.

99. Zhu Y, He X, Mo Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 2015;7:23685-93.

100. Wenzel S, Weber DA, Leichtweiss T, Busche MR, Sann J, Janek J. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ion 2016;286:24-33.

101. Wenzel S, Randau S, Leichtweiß T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater 2016;28:2400-7.

102. Cheng L, Crumlin EJ, Chen W, et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 2014;16:18294-300.

103. Aatiq A, Ménétrier M, Croguennec L, Suard E, Delmas C. On the structure of Li3Ti2(PO4)3. J Mater Chem 2002;12:2971-8.

104. Ma C, Cheng Y, Yin K, et al. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett 2016;16:7030-6.

105. Zhu Y, Connell JG, Tepavcevic S, et al. Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal. Adv Energy Mater 2019;9:1803440.

106. Hartmann P, Leichtweiss T, Busche MR, et al. Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J Phys Chem C 2013;117:21064-74.

107. Tolganbek N, Serikkazyyeva A, Kalybekkyzy S, et al. Interface modification of NASICON-type Li-ion conducting ceramic electrolytes: a critical evaluation. Mater Adv 2022;3:3055-69.

108. Schwöbel A, Hausbrand R, Jaegermann W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Solid State Ion 2015;273:51-4.

109. Han X, Gong Y, Fu KK, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 2017;16:572-9.

110. Sharafi A, Kazyak E, Davis AL, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem Mater 2017;29:7961-8.

111. Krauskopf T, Hartmann H, Zeier WG, Janek J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries-an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl Mater Interfaces 2019;11:14463-77.

112. Liu T, Zhang Y, Chen R, et al. Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact. Electrochem Commun 2017;79:1-4.

113. Zhu J, Zhao J, Xiang Y, et al. Chemomechanical failure mechanism study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid-state lithium batteries. Chem Mater 2020;32:4998-5008.

114. Lee C, Han SY, Lewis JA, et al. Stack pressure measurements to probe the evolution of the lithium-solid-state electrolyte interface. ACS Energy Lett 2021;6:3261-9.

115. Tippens J, Miers JC, Afshar A, et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Energy Lett 2019;4:1475-83.

116. Yuan C, Lu W, Xu J. Unlocking the electrochemical-mechanical coupling behaviors of dendrite growth and crack propagation in all-solid-state batteries. Adv Energy Mater 2021;11:2101807.

117. Xu X, Liu Y, Kapitanova OO, Song Z, Sun J, Xiong S. Electro-Chemo-Mechanical failure of solid electrolytes induced by growth of internal lithium filaments. Adv Mater 2022;34:e2207232.

118. Cao D, Sun X, Li Q, Natan A, Xiang P, Zhu H. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 2020;3:57-94.

119. Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 2005;152:A396.

120. Tsai CL, Roddatis V, Chandran CV, et al. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces 2016;8:10617-26.

121. Xu B, Li W, Duan H, et al. Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression. J Power Sources 2017;354:68-73.

122. Porz L, Swamy T, Sheldon BW, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater 2017;7:1701003.

123. Shen F, Dixit MB, Xiao X, Hatzell KB. Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography. ACS Energy Lett 2018;3:1056-61.

124. Cheng EJ, Sharafi A, Sakamoto J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta 2017;223:85-91.

125. Zheng C, Ruan Y, Su J, et al. Grain boundary modification in garnet electrolyte to suppress lithium dendrite growth. Chem Eng J 2021;411:128508.

126. Han F, Westover AS, Yue J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy 2019;4:187-96.

127. Ping W, Wang C, Lin Z, et al. Reversible short-circuit behaviors in garnet-based solid-state batteries. Adv Energy Mater 2020;10:2000702.

128. Biao J, Han B, Cao Y, et al. Inhibiting formation and reduction of Li2CO3 to LiCx at grain boundaries in garnet electrolytes to prevent Li penetration. Adv Mater 2023;35:e2208951.

129. Huang X, Lu Y, Guo H, et al. None-mother-powder method to prepare dense Li-garnet solid electrolytes with high critical current density. ACS Appl Energy Mater 2018;1:5355-65.

130. Kazyak E, Garcia-mendez R, Lepage WS, et al. Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter 2020;2:1025-48.

131. Westover AS, Dudney NJ, Sacci RL, Kalnaus S. Deposition and confinement of Li metal along an artificial lipon-lipon interface. ACS Energy Lett 2019;4:651-5.

132. Lu Y, Tu Z, Archer LA. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater 2014;13:961-9.

133. Lv Y, Xiao Y, Ma L, Zhi C, Chen S. Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv Mater 2022;34:e2106409.

134. Judez X, Martinez-ibañez M, Santiago A, Armand M, Zhang H, Li C. Quasi-solid-state electrolytes for lithium sulfur batteries: advances and perspectives. J Power Sources 2019;438:226985.

135. Busche MR, Drossel T, Leichtweiss T, et al. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat Chem 2016;8:426-34.

136. Wang Q, Jin J, Wu X, Ma G, Yang J, Wen Z. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte. Phys Chem Chem Phys 2014;16:21225-9.

137. Xu B, Duan H, Liu H, Wang CA, Zhong S. Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries. ACS Appl Mater Interfaces 2017;9:21077-82.

138. Zhou H, Liu H, Li Y, et al. In situ formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features. J Mater Chem A 2019;7:16984-91.

139. Wang C, Sun Q, Liu Y, et al. Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: interfacial properties and effects of liquid electrolytes. Nano Energy 2018;48:35-43.

140. Nikodimos Y, Su W, Taklu BW, et al. Resolving anodic and cathodic interface-incompatibility in solid-state lithium metal battery via interface infiltration of designed liquid electrolytes. J Power Sources 2022;535:231425.

141. Yan S, Abouali S, Yim C, et al. Revealing the role of liquid electrolytes in cycling of garnet-based solid-state lithium-metal batteries. J Phys Chem C 2022;126:14027-35.

142. Tang J, Wang L, You L, et al. Effect of organic electrolyte on the performance of solid electrolyte for solid-liquid hybrid lithium batteries. ACS Appl Mater Interfaces 2021;13:2685-93.

143. Li J, Li F, Zhang L, Zhang H, Lassi U, Ji X. Recent applications of ionic liquids in quasi-solid-state lithium metal batteries. Green Chem Eng 2021;2:253-65.

144. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 2009;8:621-9.

145. Kim HW, Manikandan P, Lim YJ, Kim JH, Nam SC, Kim Y. Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J Mater Chem A 2016;4:17025-32.

146. Tsurumaki A, Rettaroli R, Mazzapioda L, Navarra MA. Inorganic-organic hybrid electrolytes based on Al-doped Li7La3Zr2O12 and ionic liquids. Appl Sci 2022;12:7318.

147. Zhang Z, Zhang L, Liu Y, et al. Interface-engineered Li7La3Zr2O12-based garnet solid electrolytes with suppressed Li-dendrite formation and enhanced electrochemical performance. ChemSusChem 2018;11:3774-82.

148. Xiong S, Liu Y, Jankowski P, et al. Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries. Adv Funct Mater 2020;30:2001444.

149. Basile A, Bhatt AI, O’Mullane AP. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat Commun 2016;7:ncomms11794.

150. Pervez SA, Kim G, Vinayan BP, et al. Overcoming the interfacial limitations imposed by the solid-solid interface in solid-state batteries using ionic liquid-based interlayers. Small 2020;16:e2000279.

151. Cao Y, Zuo P, Lou S, et al. A quasi-solid-state Li-S battery with high energy density, superior stability and safety. J Mater Chem A 2019;7:6533-42.

152. Zheng B, Zhu J, Wang H, et al. Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer. ACS Appl Mater Interfaces 2018;10:25473-82.

153. Fuchs T, Mogwitz B, Otto S, Passerini S, Richter FH, Janek J. Working Principle of an ionic liquid interlayer during pressureless lithium stripping on Li6.25Al0.25La3Zr2O12 (LLZO) garnet-type solid electrolyte. Batteries Supercaps 2021;4:1145-55.

154. Liu B, Gong Y, Fu K, et al. Garnet solid electrolyte protected Li-metal batteries. ACS Appl Mater Interfaces 2017;9:18809-15.

155. Yang G, Song Y, Wang Q, Zhang L, Deng L. Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater Des 2020;190:108563.

156. Fei H, Han J, Passerini S, Varzi A. Hybrid organic/inorganic interphase for stabilizing a zinc metal anode in a mild aqueous electrolyte. ACS Appl Mater Interfaces 2022;14:48675-81.

157. Huo H, Zhao N, Sun J, Du F, Li Y, Guo X. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. J Power Sources 2017;372:1-7.

158. Wu F, Fang S, Kuenzel M, et al. Bilayer solid electrolyte enabling quasi-solid-state lithium-metal batteries. J Power Sources 2023;557:232514.

159. Zheng J, Hu YY. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Appl Mater Interfaces 2018;10:4113-20.

160. Chen Z, Stepien D, Wu F, et al. Stabilizing the Li1.3Al0.3Ti1.7(PO4)3|Li interface for high efficiency and long lifespan quasi-solid-state lithium metal batteries. ChemSusChem 2022;15:e202200038.

161. Chen Z, Kim G, Kim J, et al. Highly stable quasi-solid-state lithium metal batteries: reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer. Adv Energy Mater 2021;11:2101339.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/