REFERENCES

1. Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today 2015;18:252-64.

2. Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater 2018;30:e1800561.

3. Qi W, Shapter JG, Wu Q, et al. Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. J Mater Chem A 2017;5:19521-40.

4. Zhang X, Zhao C, Huang J, Zhang Q. Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering 2018;4:831-47.

5. Whittingham MS. Lithium batteries and cathode materials. Chem Rev 2004;104:4271-301.

6. Wu F, Yushin G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ Sci 2017;10:435-59.

7. Song L, Zheng T, Zheng L, et al. Cobalt-doped basic iron phosphate as bifunctional electrocatalyst for long-life and high-power-density rechargeable zinc-air batteries. Appl Catal B 2022;300:120712.

8. Xu J, Ma J, Fan Q, Guo S, Dou S. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv Mater 2017;29:1606454.

9. Cao Z, Zhang Y, Cui Y, Li B, Yang S. Harnessing the unique features of MXenes for sulfur cathodes. Tungsten 2020;2:162-75.

10. Yang CP, Yin YX, Guo YG. Elemental selenium for electrochemical energy storage. J Phys Chem Lett 2015;6:256-66.

11. Abouimrane A, Dambournet D, Chapman KW, et al. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J Am Chem Soc 2012;134:4505-8.

12. Jin J, Tian X, Srikanth N, Kong LB, Zhou K. Advances and challenges of nanostructured electrodes for Li-Se batteries. J Mater Chem A 2017;5:10110-26.

13. Gu X, Tang T, Liu X, Hou Y. Rechargeable metal batteries based on selenium cathodes: progress, challenges and perspectives. J Mater Chem A 2019;7:11566-83.

14. Eftekhari A. The rise of lithium-selenium batteries. Sustain Energy Fuels 2017;1:14-29.

15. Zeng L, Li W, Jiang Y, Yu Y. Recent progress in Li-S and Li-Se batteries. Rare Metals 2017;36:339-64.

16. Tao T, Lu S, Fan Y, et al. Anode improvement in rechargeable lithium-sulfur batteries. Adv Mater 2017;29:1700542.

17. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 2017;12:194-206.

18. Kim H, Jeong G, Kim YU, et al. Metallic anodes for next generation secondary batteries. Chem Soc Rev 2013;42:9011-34.

19. Ye H, Yin Y, Zhang S, Guo Y. Advanced Se-C nanocomposites: a bifunctional electrode material for both Li-Se and Li-ion batteries. J Mater Chem A 2014;2:13293.

20. Kotkata MF, Nouh SA, Farkas L, Radwan MM. Structural studies of glassy and crystalline selenium-sulphur compounds. J Mater Sci 1992;27:1785-94.

21. Saji VS, Lee C. Selenium electrochemistry. RSC Adv 2013;3:10058.

22. Murphy KE, Wunderlich BB, Wunderlich B. Effect of structure on the electrical conductivity of selenium. J Phys Chem 1982;86:2827-35.

23. Itoh S, Nakao K. Electronic states in allotropes of sulphur and selenium-localised orbital approach. J Phys C Solid State Phys 1984;17:3373-89.

24. Sangster J, Pelton AD. The Li-Se (lithium-selenium) system. J Phase Equilibria 1997;18:181-4.

25. Li X, Liang J, Li X, et al. High-performance all-solid-state Li-Se batteries induced by sulfide electrolytes. Energy Environ Sci 2018;11:2828-32.

26. Morachevskii AG. Lithium-selenium and sodium-selenium systems: thermodynamic properties and prospects for use in chemical current sources. Russ J Appl Chem 2016;89:1043-53.

27. Liu F, Wang L, Zhang Z, et al. A mixed lithium-ion conductive Li2S/Li2Se protection layer for stable lithium metal anode. Adv Funct Mater 2020;30:2001607.

28. Cui Y, Abouimrane A, Lu J, et al. (De)lithiation mechanism of Li/SeSx (x = 0-7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. J Am Chem Soc 2013;135:8047-56.

29. Wu C, Yuan L, Li Z, et al. High-performance lithium-selenium battery with Se/microporous carbon composite cathode and carbonate-based electrolyte. Sci China Mater 2015;58:91-7.

30. Cui Y, Abouimrane A, Sun CJ, Ren Y, Amine K. Li-Se battery: absence of lithium polyselenides in carbonate based electrolyte. Chem Commun 2014;50:5576-9.

31. Luo C, Xu Y, Zhu Y, et al. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 2013;7:8003-10.

32. Yang CP, Xin S, Yin YX, et al. An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew Chem Int Ed 2013;52:8363-7.

33. Xu F, Qiu DR, Yang  PY, et al. Review of chemical and biological speciation analyses for Se. Spectrosc Spect Anal 2002;22:331-40.

34. Zhang J, Wang H, Yan X, Zhang L. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci 2005;76:1099-109.

35. Painter EP. The chemistry and toxicity of selenium compounds, with special reference to the selenium problem. Chem Rev 1941;28:179-213.

36. Zhang J, Wang X, Xu T. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci 2008;101:22-31.

37. Feng S, Liu J, Zhang X, et al. Rationalizing nitrogen-doped secondary carbon particles for practical lithium-sulfur batteries. Nano Energy 2022;103:107794.

38. Li Q, Liu H, Yao Z, et al. Electrochemistry of selenium with sodium and lithium: kinetics and reaction mechanism. ACS Nano 2016;10:8788-95.

39. Peng X, Wang L, Zhang X, et al. Reduced graphene oxide encapsulated selenium nanoparticles for high-power lithium-selenium battery cathode. J Power Sources 2015;288:214-20.

40. Liu L, Hou Y, Wu X, et al. Nanoporous selenium as a cathode material for rechargeable lithium-selenium batteries. Chem Commun 2013;49:11515-7.

41. Zhang J, Xu Y, Fan L, et al. Graphene-encapsulated selenium/polyaniline core-shell nanowires with enhanced electrochemical performance for Li-Se batteries. Nano Energy 2015;13:592-600.

42. Wang C, Hu Q, Wei Y, Fang D, Xu W, Luo Z. Facile fabrication of selenium (Se) nanowires for enhanced lithium storage in Li-Se battery. Ionics 2017;23:3571-9.

43. Bucur CB, Bonnick P, Jones M, Muldoon J. The evolution of selenium cathodes: from infusion melts to particle synthesis. Sustain Energy Fuels 2018;2:759-62.

44. Xu Q, Xue H, Guo S. Status and prospects of SexSy cathodes for lithium/sodium storage. Inorg Chem Front 2019;6:1326-40.

45. Xin S, Gu L, Zhao NH, et al. Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 2012;134:18510-3.

46. Luo C, Zhu Y, Wen Y, Wang J, Wang C. Carbonized polyacrylonitrile-stabilized sesx cathodes for long cycle life and high power density lithium ion batteries. Adv Funct Mater 2014;24:4082-9.

47. Li S, Zhang W, Zeng Z, Cheng S, Xie J. Selenium or tellurium as eutectic accelerators for high-performance lithium/sodium-sulfur batteries. Electrochem Energy Rev 2020;3:613-42.

48. Li Z, Zhang J, Wu HB, Lou XWD. An improved Li-SeS2 Battery with high energy density and long cycle life. Adv Energy Mater 2017;7:1700281.

49. Sun F, Cheng H, Chen J, Zheng N, Li Y, Shi J. Heteroatomic SenS8-n molecules confined in nitrogen-doped mesoporous carbons as reversible cathode materials for high-performance lithium batteries. ACS Nano 2016;10:8289-98.

50. Khatoon R, Guo Y, Attique S, et al. Advanced configuration of n-enriched carbonized tissue paper as a free-standing interlayer for lithium-sulfur batteries at wide-range temperatures. ACS Appl Energy Mater 2021;4:10091-103.

51. Seh ZW, Zhang Q, Li W, et al. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem Sci 2013;4:3673.

52. Wu F, Lee JT, Fan F, et al. A hierarchical particle-shell architecture for long-term cycle stability of Li2S cathodes. Adv Mater 2015;27:5579-86.

53. Wu F, Lee JT, Xiao Y, Yushin G. Nanostructured Li2Se cathodes for high performance lithium-selenium batteries. Nano Energy 2016;27:238-46.

54. Lu JG, Ye ZZ, Zeng YJ, et al. Structural, optical, and electrical properties of (Zn, Al) O films over a wide range of compositions. J Appl Phys 2006;100:073714.

55. Schneider J, Schröder T, Hoelzel M, et al. Phase transitions to superionic Li2Te and Li2Se- a high-temperature neutron powder diffraction study, atom displacements, probability density functions and atom potentials. Solid State Ion 2018;325:90-101.

56. Zuo J, Gong Y. Applications of transition-metal sulfides in the cathodes of lithium-sulfur batteries. Tungsten 2020;2:134-46.

57. Chen H, Guo Y, Ma P, et al. Hydrothermal synthesis of Cu-doped SnSe2 nanostructure for efficient lithium storage. JEC 2019;847:113205.

58. Lei W, Xiao J, Liu H, Jia Q, Zhang H. Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion. Tungsten 2020;2:217-39.

59. Chen H, Liu R, Wu Y, et al. Interface coupling 2D/2D SnSe2/graphene heterostructure as long-cycle anode for all-climate lithium-ion battery. Chem Eng J 2021;407:126973.

60. Xue M, Fu Z. Pulsed laser deposited Sb2Se3 anode for lithium-ion batteries. J Alloys Compd 2008;458:351-6.

61. Sun C, Zhong Y, Fu W, et al. Tungsten disulfide-based nanomaterials for energy conversion and storage. Tungsten 2020;2:109-33.

62. Xue M, Fu Z. Lithium electrochemistry of NiSe2: a new kind of storage energy material. Electrochem Commun 2006;8:1855-62.

63. Yang J, Gao H, Ma D, et al. High-performance Li-Se battery cathode based on CoSe2-porous carbon composites. Electrochim Acta 2018;264:341-9.

64. Xu GL, Ma T, Sun CJ, et al. Insight into the capacity fading mechanism of amorphous se2S5 confined in micro/mesoporous carbon matrix in ether-based electrolytes. Nano Lett 2016;16:2663-73.

65. Liu L, Hou Y, Yang Y, et al. A Se/C composite as cathode material for rechargeable lithium batteries with good electrochemical performance. RSC Adv 2014;4:9086-91.

66. Mukkabla R, Kuldeep, Killi K, Shivaprasad SM, Deepa M. Metal oxide interlayer for long-lived lithium-selenium batteries. Chemistry 2018;24:17327-38.

67. Luo C, Wang J, Suo L, Mao J, Fan X, Wang C. In situ formed carbon bonded and encapsulated selenium composites for Li-Se and Na-Se batteries. J Mater Chem A 2015;3:555-61.

68. Zhao Z, Xia K, Hou Y, et al. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chem Soc Rev 2021;50:12702-43.

69. Liu L, Wei Y, Zhang C, et al. Enhanced electrochemical performances of mesoporous carbon microsphere/selenium composites by controlling the pore structure and nitrogen doping. Electrochim Acta 2015;153:140-8.

70. Yi Z, Yuan L, Sun D, et al. High-performance lithium-selenium batteries promoted by heteroatom-doped microporous carbon. J Mater Chem A 2015;3:3059-65.

71. Shiraz MHA, Zhu H, Liu Y, Sun X, Liu J. Activation-free synthesis of microporous carbon from polyvinylidene fluoride as host materials for lithium-selenium batteries. J Power Sources 2019;438:227059.

72. Yuan Y, Lu Y, Jia BE, et al. Integrated system of solar cells with hierarchical NiCo2O4 battery-supercapacitor hybrid devices for self-driving light-emitting diodes. Nanomicro Lett 2019;11:42.

73. Park GD, Kim JH, Lee J, Chan Kang Y. Carbon microspheres with well-developed micro- and mesopores as excellent selenium host materials for lithium-selenium batteries with superior performances. J Mater Chem A 2018;6:21410-8.

74. Chen C, Zhao C, Hu Z, Liu K. Synthesis of Se/chitosan-derived hierarchical porous carbon composite as Li-Se battery cathode. Funct Mater Lett 2017;10:1650074.

75. Qu Y, Zhang Z, Jiang S, et al. Confining selenium in nitrogen-containing hierarchical porous carbon for high-rate rechargeable lithium-selenium batteries. J Mater Chem A 2014;2:12255.

76. Guo Y, Khatoon R, Lu J, et al. Regulating adsorption ability toward polysulfides in a porous carbon/Cu3P hybrid for an ultrastable high-temperature lithium-sulfur battery. Carbon Energy 2021;3:841-55.

77. Pongilat R, Nallathamby K. Size-Dependent charge storage behavior of mesoporous hollow carbon spheres for high-performance Li-Se batteries. J Phys Chem C 2019;123:5881-9.

78. Gryglewicz G, Machnikowski J, Lorenc-grabowska E, Lota G, Frackowiak E. Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochim Acta 2005;50:1197-206.

79. Babu D, Ramesha K. Constraining polyselenide formation in ether based electrolytes through confinement of Se in microporous carbon matrix for Li-Se batteries. Electrochim Acta 2016;219:295-304.

80. Zhao C, Hu Z, Luo J. Porous carbon nanoplate/Se composite derived from potassium citrate as high-performance Li-Se battery cathode: a study on structure-function relation. Colloids Surf A Physicochem Eng Asp 2019;560:69-77.

81. Lee JT, Kim H, Oschatz M, et al. Micro- and mesoporous carbide-derived carbon-selenium cathodes for high-performance lithium selenium batteries. Adv Energy Mater 2015;5:1400981.

82. Li Z, Yuan L, Yi Z, Liu Y, Huang Y. Confined selenium within porous carbon nanospheres as cathode for advanced Li-Se batteries. Nano Energy 2014;9:229-36.

83. Kalimuthu B, Nallathamby K. Optimization of structure and porosity of nitrogen containing mesoporous carbon spheres for effective selenium confinement in futuristic lithium-selenium batteries. ACS Sustain Chem Eng 2018;6:7064-77.

84. Guo J, Wang Q, Qi C, et al. One-step microwave synthesized core-shell structured selenium@carbon spheres as cathode materials for rechargeable lithium batteries. Chem Commun 2016;52:5613-6.

85. Zhang J, Fan L, Zhu Y, et al. Selenium/interconnected porous hollow carbon bubbles composites as the cathodes of Li-Se batteries with high performance. Nanoscale 2014;6:12952-7.

86. Lai Y, Yang F, Zhang Z, Jiang S, Li J. Encapsulation of selenium in porous hollow carbon spheres for advanced lithium-selenium batteries. RSC Adv 2014;4:39312-5.

87. Li J, Zhao X, Zhang Z, Lai Y. Facile synthesis of hollow carbonized polyaniline spheres to encapsulate selenium for advanced rechargeable lithium-selenium batteries. J Alloys Compd 2015;619:794-9.

88. Zhang Z, Yang X, Guo Z, et al. Selenium/carbon-rich core-shell composites as cathode materials for rechargeable lithium-selenium batteries. J Power Sources 2015;279:88-93.

89. Kalimuthu B, Nallathamby K. Designed Formulation of Se-impregnated N-containing hollow core mesoporous shell carbon spheres: multifunctional potential cathode for Li-Se and Na-se batteries. ACS Appl Mater Interfaces 2017;9:26756-70.

90. Zheng Z, Su Q, Xu H, Zhang Q, Ye H, Wang Z. A pomegranate-like porous carbon nanomaterial as selenium host for stable lithium-selenium batteries. Mater Lett 2019;244:134-7.

91. Park S, Park J, Kang YC. Selenium-infiltrated metal-organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li-Se batteries with high capacity and rate performance. J Mater Chem A 2018;6:1028-36.

92. Mukkabla R, Deshagani S, Meduri P, Deepa M, Ghosal P. Selenium/graphite platelet nanofiber composite for durable Li-Se batteries. ACS Energy Lett 2017;2:1288-95.

93. Liu Y, Si L, Du Y, et al. Strongly bonded selenium/microporous carbon nanofibers composite as a high-performance cathode for lithium-selenium batteries. J Phys Chem C 2015;119:27316-21.

94. Zeng L, Wei X, Wang J, et al. Flexible one-dimensional carbon-selenium composite nanofibers with superior electrochemical performance for Li-Se/Na-Se batteries. J Power Sources 2015;281:461-9.

95. Zhang J, Zhang Z, Li Q, Qu Y, Jiang S. Selenium Encapsulated into interconnected polymer-derived porous carbon nanofiber webs as cathode materials for lithium-selenium batteries. J Electrochem Soc 2014;161:A2093-8.

96. Feng N, Xiang K, Xiao L, et al. Se/CNTs microspheres as improved performance for cathodes in Li-Se batteries. J Alloys Compd 2019;786:537-43.

97. Cui Y, Zhou X, Guo W, et al. Selenium nanocomposite cathode with long cycle life for rechargeable lithium-selenium batteries. Batteries Supercaps 2019;2:784-91.

98. He J, Chen Y, Lv W, et al. Three-dimensional hierarchical graphene-CNT@Se: a highly efficient freestanding cathode for Li-Se batteries. ACS Energy Lett 2016;1:16-20.

99. Hong YJ, Roh KC, Chan Kang Y. Mesoporous graphitic carbon microspheres with a controlled amount of amorphous carbon as an efficient Se host material for Li-Se batteries. J Mater Chem A 2018;6:4152-60.

100. Lv H, Chen R, Wang X, et al. High-performance Li-Se batteries enabled by selenium storage in bottom-up synthesized nitrogen-doped carbon scaffolds. ACS Appl Mater Interfaces 2017;9:25232-8.

101. Wang B, Zhang J, Xia Z, et al. Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-Se batteries. Nano Res 2018;11:2460-9.

102. Zeng L, Chen X, Liu R, et al. Green synthesis of a Se/HPCF-rGO composite for Li-Se batteries with excellent long-term cycling performance. J Mater Chem A 2017;5:22997-3005.

103. Han K, Liu Z, Shen J, Lin Y, Dai F, Ye H. A free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture. Adv Funct Mater 2015;25:455-63.

104. Li J, Zhang C, Wu C, Yang Q. Improved performance of Li-Se battery based on a novel dual functional CNTs@graphene/CNTs cathode construction. Rare Metals 2017;36:425-33.

105. Ge J, Zhang Q, Liu Z, Yang H, Lu B. Solvothermal synthesis of graphene encapsulated selenium/carboxylated carbon nanotubes electrode for lithium-selenium battery. J Alloys Compd 2019;810:151894.

106. Han K, Liu Z, Ye H, Dai F. Flexible self-standing graphene-Se@CNT composite film as a binder-free cathode for rechargeable Li-Se batteries. J Power Sources 2014;263:85-9.

107. Fan S, Zhang Y, Li S, Lan T, Xu J. Hollow selenium encapsulated into 3D graphene hydrogels for lithium-selenium batteries with high rate performance and cycling stability. RSC Adv 2017;7:21281-6.

108. Plaza-rivera CO, Viggiano RP, Dornbusch DA, Wu JJ, Connell JW, Lin Y. Holey graphene-enabled solvent-free preparation of ultrahigh mass loading selenium cathodes for high areal capacity lithium-selenium batteries. Front Energy Res 2021;9:703676.

109. Palaniselvam T, Valappil MO, Illathvalappil R, Kurungot S. Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping. Energy Environ Sci 2014;7:1059.

110. Cai Q, Li Y, wang L, et al. Freestanding hollow double-shell Se@CNx nanobelts as large-capacity and high-rate cathodes for Li-Se batteries. Nano Energy 2017;32:1-9.

111. Yangdan L, Yichuan G, Yang T, Haichao T, Zhizhen Y, Jianguo L. Porous carbon derived from corncob as cathode host for Li-Se battery. Ionics 2022;28:2593-601.

112. Yan Z, Yang Q, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett 2020;31:583-8.

113. Sun S, Han F, Wu X, Fan Z. One-step synthesis of biomass derived O, N-codoped hierarchical porous carbon with high surface area for supercapacitors. Chin Chem Lett 2020;31:2235-8.

114. Jia M, Niu Y, Mao C, et al. Porous carbon derived from sunflower as a host matrix for ultra-stable lithium-selenium battery. J Colloid Interface Sci 2017;490:747-53.

115. Ping G, Miao L, Awati A, et al. Porous carbon globules with moss-like surfaces from semi-biomass interpenetrating polymer network for efficient charge storage. Chin Chem Lett 2021;32:3811-6.

116. Sun K, Zhao H, Zhang S, Yao J, Xu J. Selenium/pomelo peel-derived carbon nanocomposite as advanced cathode for lithium-selenium batteries. Ionics 2015;21:2477-84.

117. Jia M, Lu S, Chen Y, et al. Three-dimensional hierarchical porous tubular carbon as a host matrix for long-term lithium-selenium batteries. J Power Sources 2017;367:17-23.

118. Kundu D, Krumeich F, Nesper R. Investigation of nano-fibrous selenium and its polypyrrole and graphene composite as cathode material for rechargeable Li-batteries. J Power Sources 2013;236:112-7.

119. Zhang Z, Yang X, Wang X, Li Q, Zhang Z. TiO2-Se composites as cathode material for rechargeable lithium-selenium batteries. Solid State Ion 2014;260:101-6.

120. Song JP, Wu L, Dong WD, et al. MOF-derived nitrogen-doped core-shell hierarchical porous carbon confining selenium for advanced lithium-selenium batteries. Nanoscale 2019;11:6970-81.

121. Ye W, Wang K, Yin W, et al. A novel Zr-MOF-based and polyaniline-coated UIO-67@Se@PANI composite cathode for lithium-selenium batteries. Dalton Trans 2019;48:10191-8.

122. Tang H, Xia K, Lu J, et al. NiTe2-based electrochemical capacitors with high-capacitance AC line filtering for regulating TENGs to steadily drive LEDs. Nano Energy 2021;84:105931.

123. Tian Y, Lu J, Tang H, et al. An ultra-stable anode material for high/low-temperature workable super-fast charging sodium-ion batteries. Chem Eng J 2021;422:130054.

124. Zhao X, Yin L, Zhang T, et al. Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li-Se and Na-Se batteries. Nano Energy 2018;49:137-46.

125. Scrosati B, Hassoun J, Sun Y. Lithium-ion batteries. a look into the future. Energy Environ Sci 2011;4:3287.

126. Du Y, Gao X, Li S, Wang L, Wang B. Recent advances in metal-organic frameworks for lithium metal anode protection. Chin Chem Lett 2020;31:609-16.

127. Byeon A, Zhao MQ, Ren CE, et al. Two-dimensional titanium carbide mxene as a cathode material for hybrid magnesium/lithium-ion batteries. ACS Appl Mater Interfaces 2017;9:4296-300.

128. Li D, Chen X, Xiang P, Du H, Xiao B. Chalcogenated-Ti3C2X2 MXene (X = O, S, Se and Te) as a high-performance anode material for Li-ion batteries. Appl Surf Sci 2020;501:144221.

129. ang C, Wang X, Zhang S. Research on metallic chalcogen-functionalized monolayer-puckered V2CX2 (X = S, Se, and Te) as promising Li-ion battery anode materials. Mater Chem Front 2021;5:4672-81.

130. Eom K, Lee JT, Oschatz M, et al. A stable lithiated silicon-chalcogen battery via synergetic chemical coupling between silicon and selenium. Nat Commun 2017;8:13888.

131. Si L, Wang J, Li G, et al. High energy density lithium-selenium batteries enabled by a covalent organic framework-coated separator. Mater Lett 2019;246:144-8.

132. Fang R, Zhou G, Pei S, Li F, Cheng HM. Localized polyselenides in a graphene-coated polymer separator for high rate and ultralong life lithium-selenium batteries. Chem Commun 2015;51:3667-70.

133. Mukkabla R, Kuldeep, Deepa M. Poly(carbazole)-coated selenium@conical carbon nanofibers hybrid for lithium-selenium batteries with enhanced lifespan. ACS Appl Energy Mater 2018;1:6964-76.

134. Gu X, Xin L, Li Y, et al. Highly reversible Li-Se batteries with ultra-lightweight N,S-codoped graphene blocking layer. Nanomicro Lett 2018;10:59.

135. Yang Z, Zhu K, Dong Z, Jia D, Jiao L. Stabilization of Li-Se batteries by wearing pan protective clothing. ACS Appl Mater Interfaces 2019;11:40069-77.

136. Zhang Z, Zhang Z, Zhang K, Yang X, Li Q. Improvement of electrochemical performance of rechargeable lithium-selenium batteries by inserting a free-standing carbon interlayer. RSC Adv 2014;4:15489-92.

137. Zhang Z, Cao H, Yang M, et al. High performance room temperature all-solid-state Na-Se S battery with Na3SbS4-coated cathode via aqueous solution. J Energy Chem 2020;48:250-8.

138. Li X, Liang J, Kim JT, et al. Highly stable halide-electrolyte-based all-solid-state li-Se batteries. Adv Mater 2022;34:e2200856.

139. Huang D, Li S, Luo Y, et al. Graphene oxide-protected three dimensional Se as a binder-free cathode for Li-Se battery. Electrochim Acta 2016;190:258-63.

140. Xia Y, Lu C, Fang R, et al. Freestanding layer-structure selenium cathodes with ultrahigh Se loading for high areal capacity Li-Se batteries. Electrochem Commun 2019;99:16-21.

141. Zhou X, Gao P, Sun S, et al. Amorphous, crystalline and crystalline/amorphous selenium nanowires and their different (de)lithiation mechanisms. Chem Mater 2015;27:6730-6.

142. Xue M, Fu Z. Electrochemical reactivity mechanism of CuInSe2 with lithium. Thin Solid Films 2008;516:8386-92.

143. Jiang S, Zhang Z, Lai Y, et al. Selenium encapsulated into 3D interconnected hierarchical porous carbon aerogels for lithium-selenium batteries with high rate performance and cycling stability. J Power Sources 2014;267:394-404.

144. Lai Y, Gan Y, Zhang Z, Chen W, Li J. Metal-organic frameworks-derived mesoporous carbon for high performance lithium-selenium battery. Electrochim Acta 2014;146:134-41.

145. Qu Y, Zhang Z, Lai Y, Liu Y, Li J. A bimodal porous carbon with high surface area supported selenium cathode for advanced Li-Se batteries. Solid State Ion 2015;274:71-6.

146. Zhou J, Yang J, Xu Z, Zhang T, Chen Z, Wang J. A high performance lithium-selenium battery using a microporous carbon confined selenium cathode and a compatible electrolyte. J Mater Chem A 2017;5:9350-7.

147. Lian J, Wu Y, Guo Y, et al. Design of hierarchical and mesoporous FeF3/rGO hybrids as cathodes for superior lithium-ion batteries. Chin Chem Lett 2022;33:3931-5.

148. Tang H, Tian Y, Wu Z, et al. AC line filter electrochemical capacitors: materials, morphology, and configuration. Energy Environ Mater 2022;5:1060-83.

149. Chen D, Zhao Z, Chen G, et al. Metal selenides for energy storage and conversion: a comprehensive review. Coord Chem Rev 2023;479:214984.

150. Khatoon R, Attique S, Liu R, et al. Carbonized waste milk powders as cathodes for stable lithium-sulfur batteries with ultra-large capacity and high initial coulombic efficiency. Green Energy Environment 2022;7:1071-83.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/