REFERENCES

1. Feng G, Guo J, Tian H, et al. Probe the localized electrochemical environment effects and electrode reaction dynamics for metal batteries using in situ 3D microscopy. Adv Energy Mater 2022;12:2103484.

2. Han D, Cui C, Zhang K, et al. A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat Sustain 2022;5:205-13.

3. Cao L, Li D, Pollard T, et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat Nanotechnol 2021;16:902-10.

4. Yang F, Yuwono JA, Hao J, et al. Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv Mater 2022;34:e2206754.

5. Fan W, Sun Z, Yuan Y, et al. High cycle stability of Zn anodes boosted by an artificial electronic-ionic mixed conductor coating layer. J Mater Chem A 2022;10:7645-52.

6. Yang H, Chang Z, Qiao Y, et al. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew Chem Int Ed 2020;59:9377-81.

7. Kang L, Cui M, Jiang F, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv Energy Mater 2018;8:1801090.

8. Zhao K, Wang C, Yu Y, et al. Ultrathin surface coating enables stabilized zinc metal anode. Adv Mater Interfaces 2018;5:1800848.

9. Sun P, Ma L, Zhou W, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew Chem Int Ed 2021;60:18247-55.

10. Cui M, Xiao Y, Kang L, et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl Energy Mater 2019;2:6490-6.

11. Cui J, Li Z, Xu A, Li J, Shao M. Confinement of zinc salt in ultrathin heterogeneous film to stabilize zinc metal anode. Small 2021;17:e2100722.

12. Shen C, Li X, Li N, et al. Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl Mater Interfaces 2018;10:25446-53.

13. Xin W, Miao L, Zhang L, Peng H, Yan Z, Zhu Z. Turning the byproduct Zn4(OH)6SO4xH2O into a uniform solid electrolyte interphase to stabilize aqueous Zn anode. ACS Mater Lett 2021;3:1819-25.

14. Chen P, Yuan X, Xia Y, et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv Sci 2021;8:e2100309.

15. Zhu Y, Cui Y, Alshareef HN. An anode-free Zn-MnO2 battery. Nano Lett 2021;21:1446-53.

16. Wu J, Yuan C, Li T, Yuan Z, Zhang H, Li X. Dendrite-free zinc-based battery with high areal capacity via the region-induced deposition effect of turing membrane. J Am Chem Soc 2021;143:13135-44.

17. Dai Y, Li J, Chen L, et al. Generating H+ in catholyte and OH- in anolyte: an approach to improve the stability of aqueous zinc-ion batteries. ACS Energy Lett 2021;6:684-6.

18. Yang W, Du X, Zhao J, et al. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 2020;4:1557-74.

19. Zeng X, Hao J, Wang Z, Mao J, Guo Z. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Stor Mater 2019;20:410-37.

20. Lv Y, Xiao Y, Ma L, Zhi C, Chen S. Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv Mater 2022;34:e2106409.

21. Geng Y, Pan L, Peng Z, et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Stor Mater 2022;51:733-55.

22. Cheng H, Sun Q, Li L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett 2022;7:490-513.

23. Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater 2018;17:543-9.

24. Xie J, Liang Z, Lu YC. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat Mater 2020;19:1006-11.

25. Cui J, Liu X, Xie Y, et al. Improved electrochemical reversibility of Zn plating/stripping: a promising approach to suppress water-induced issues through the formation of H-bonding. Mater Today Energy 2020;18:100563.

26. Du H, Wang K, Sun T, et al. Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte. Chem Eng J 2022;427:131705.

27. Sun Y, Xu Z, Xu X, et al. Low-cost and long-life Zn/Prussian blue battery using a water-in-ethanol electrolyte with a normal salt concentration. Energy Stor Mater 2022;48:192-204.

28. Su Z, Chen J, Stansby J, et al. Hydrogen-bond disrupting electrolytes for fast and stable proton batteries. Small 2022;18:e2201449.

29. Miyake T, Rolandi M. Grotthuss mechanisms: from proton transport in proton wires to bioprotonic devices. J Phys Condens Matter 2016;28:023001.

30. Chen X, Li HR, Shen X, Zhang Q. The origin of the reduced reductive stability of ion-solvent complexes on alkali and alkaline earth metal anodes. Angew Chem Int Ed 2018;57:16643-7.

31. Miao L, Wang R, Di S, et al. Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes. ACS Nano 2022;16:9667-78.

32. Yamada Y, Wang J, Ko S, Watanabe E, Yamada A. Advances and issues in developing salt-concentrated battery electrolytes. Nat Energy 2019;4:269-80.

33. Li C, Shyamsunder A, Hoane AG, et al. Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 2022;6:1103-20.

34. Collins KD, Washabaugh MW. The hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys 1985;18:323-422.

35. Kim W, Kim H, Lee KM, et al. Demixing the miscible liquids: toward biphasic battery electrolytes based on the kosmotropic effect. Energy Environ Sci 2022;15:5217-28.

36. Zhang N, Cheng F, Liu Y, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc 2016;138:12894-901.

37. Geng Y, Miao L, Yan Z, et al. Super-zincophilic additive induced interphase modulation enables long-life Zn anodes at high current density and areal capacity. J Mater Chem A 2022;10:10132-8.

38. Gutmann V. Empirical parameters for donor and acceptor properties of solvents. Electrochim Acta 1976;21:661-70.

39. Cao L, Li D, Hu E, et al. Solvation structure design for aqueous Zn metal batteries. J Am Chem Soc 2020;142:21404-9.

40. Hao J, Yuan L, Ye C, et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew Chem Int Ed 2021;60:7366-75.

41. Chang N, Li T, Li R, et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ Sci 2020;13:3527-35.

42. Shang Y, Kumar P, Musso T, et al. Long-life Zn anode enabled by low volume concentration of a benign electrolyte additive. Adv Funct Mater 2022;32:2200606.

43. Ma Q, Gao R, Liu Y, et al. Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv Mater 2022;34:e2207344.

44. Wang N, Zhang Y, Yuan J, et al. A synergistic strategy of organic molecules introduced a high Zn2+ flux solid electrolyte interphase for stable aqueous zinc-ion batteries. ACS Appl Mater Interfaces 2022;14:48081-90.

45. Wu Y, Zhu Z, Shen D, et al. Electrolyte engineering enables stable Zn-ion deposition for long-cycling life aqueous Zn-ion batteries. Energy Stor Mater 2022;45:1084-91.

46. Zhao X, Zhang X, Dong N, et al. Advanced buffering acidic aqueous electrolytes for ultra-long life aqueous zinc-ion batteries. Small 2022;18:e2200742.

47. Meng C, He W, Kong Z, et al. Multifunctional water-organic hybrid electrolyte for rechargeable zinc ions batteries. Chem Eng J 2022;450:138265.

48. Yao M, Pan R, Ren Y, et al. Regulating solvation shells and interfacial chemistry in zinc-ion batteries using glutaronitrile based electrolyte. J Mater Chem A 2022;10:14345-54.

49. Reber D, Borodin O, Becker M, et al. Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries. Adv Funct Mater 2022;32:2112138.

50. Dong Y, Miao L, Ma G, et al. Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem Sci 2021;12:5843-52.

51. Kuhn A, von Eschwege KG, Conradie J. Reduction potentials of para-substituted nitrobenzenes-an infrared, nuclear magnetic resonance, and density functional theory study. J Phys Org Chem 2012;25:58-68.

52. Miao L, Liu L, Shang Z, et al. The structure-electrochemical property relationship of quinone electrodes for lithium-ion batteries. Phys Chem Chem Phys 2018;20:13478-84.

53. Di S, Miao L, Wang Y, et al. Dual-anion-coordinated solvation sheath for stable aqueous zinc batteries. J Power Sources 2022;535:231452.

54. Ji X. A perspective of ZnCl2 electrolytes: the physical and electrochemical properties. eScience 2021;1:99-107.

55. Benayad A, Diddens D, Heuer A, et al. High-throughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface development research. Adv Energy Mater 2022;12:2102678.

56. Chen X, Zhang Q. Atomic insights into the fundamental interactions in lithium battery electrolytes. ACC Chem Res 2020;53:1992-2002.

57. Tian Z, Zou Y, Liu G, et al. Electrolyte solvation structure design for sodium ion batteries. Adv Sci 2022;9:e2201207.

58. Suo L, Borodin O, Wang Y, et al. “Water-in-Salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv Energy Mater 2017;7:1701189.

59. Wang N, Zhai S, Ma Y, et al. Tridentate citrate chelation towards stable fiber zinc-polypyrrole battery with hybrid mechanism. Energy Stor Mater 2021;43:585-94.

60. Zhang Q, Ma Y, Lu Y, et al. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew Chem Int Ed 2021;60:23357-64.

61. Zhang Q, Ma Y, Lu Y, et al. Halogenated Zn2+ solvation structure for reversible Zn metal batteries. J Am Chem Soc 2022;144:18435-43.

62. Guan J, Shao L, Yu L, et al. Two-dimensional Mg0.2V2O5·nH2O nanobelts derived from V4C3 MXenes for highly stable aqueous zinc ion batteries. Chem Eng J 2022;443:136502.

63. Wang D, Li Q, Zhao Y, et al. Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv Energy Mater 2022;12:2102707.

64. Xing Z, Huang C, Hu Z. Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord Chem Rev 2022;452:214299.

65. Li C, Wang L, Zhang J, et al. Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Stor Mater 2022;44:104-35.

66. Zhou M, Chen Y, Fang G, Liang S. Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Stor Mater 2022;45:618-46.

67. Zhang Q, Luan J, Tang Y, Ji X, Wang H. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew Chem Int Ed 2020;59:13180-91.

68. Pei A, Zheng G, Shi F, Li Y, Cui Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett 2017;17:1132-9.

69. Miao L, Wang R, Xin W, et al. Three-functional ether-based co-solvents for suppressing water-induced parasitic reactions in aqueous Zn-ion batteries. Energy Stor Mater 2022;49:445-53.

70. Li R, Li M, Chao Y, et al. Hexaoxacyclooctadecane induced interfacial engineering to achieve dendrite-free Zn ion batteries. Energy Stor Mater 2022;46:605-12.

71. Jin S, Zhang D, Sharma A, et al. Stabilizing zinc electrodeposition in a battery anode by controlling crystal growth. Small 2021;17:e2101798.

72. Abdulla J, Cao J, Zhang D, et al. Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries. ACS Appl Energy Mater 2021;4:4602-9.

73. Sun C, Wu C, Gu X, Wang C, Wang Q. Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett 2021;13:89.

74. Cao J, Zhang D, Yue Y, et al. Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 2022;93:106839.

75. Huang C, Zhao X, Hao Y, et al. Self-healing SeO2 additives enable zinc metal reversibility in aqueous ZnSO4 electrolytes. Adv Funct Mater 2022;32:2112091.

76. Zhang Y, Han X, Liu R, et al. Manipulating the zinc deposition behavior in hexagonal patterns at the preferential Zn (100) crystal plane to construct surficial dendrite-free zinc metal anode. Small 2022;18:e2105978.

77. Zheng J, Deng Y, Yin J, et al. Textured electrodes: manipulating built-in crystallographic heterogeneity of metal electrodes via severe plastic deformation. Adv Mater 2022;34:e2106867.

78. Cao J, Zhang D, Gu C, et al. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv Energy Mater 2021;11:2101299.

79. Guo S, Qin L, Zhang T, et al. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Stor Mater 2021;34:545-62.

80. Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019;366:645-8.

81. Yuan D, Zhao J, Ren H, et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew Chem Int Ed 2021;60:7213-9.

82. Yufit V, Tariq F, Eastwood DS, et al. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 2019;3:485-502.

83. Yan M, Dong N, Zhao X, Sun Y, Pan H. Tailoring the stability and kinetics of Zn anodes through trace organic polymer additives in dilute aqueous electrolyte. ACS Energy Lett 2021;6:3236-43.

84. Yan M, Xu C, Sun Y, Pan H, Li H. Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive. Nano Energy 2021;82:105739.

85. Wan F, Zhang L, Dai X, Wang X, Niu Z, Chen J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat Commun 2018;9:1656.

86. Bayaguud A, Luo X, Fu Y, Zhu C. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett 2020;5:3012-20.

87. Xu W, Zhao K, Huo W, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 2019;62:275-81.

88. Liu X, Yang F, Xu W, Zeng Y, He J, Lu X. Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv Sci 2020;7:2002173.

89. Li D, Cao L, Deng T, Liu S, Wang C. Design of a solid electrolyte interphase for aqueous Zn batteries. Angew Chem Int Ed 2021;60:13035-41.

90. An Y, Tian Y, Zhang K, et al. Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv Funct Mater 2021;31:2101886.

91. Cao L, Li D, Soto FA, et al. Highly reversible aqueous zinc batteries enabled by zincophilic-zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew Chem Int Ed 2021;60:18845-51.

92. Zeng X, Mao J, Hao J, et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv Mater 2021;33:e2007416.

93. Wei C, Xu ZJ. The comprehensive understanding of 10 mA cmgeo-2 as an evaluation parameter for electrochemical water splitting. Small Methods 2018;2:1800168.

94. Huang J, Guo Z, Ma Y, Bin D, Wang Y, Xia Y. Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 2019;3:1800272.

95. Kasiri G, Trócoli R, Bani Hashemi A, La Mantia F. An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim Acta 2016;222:74-83.

96. Wang L, Zhang Y, Hu H, et al. A Zn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries. ACS Appl Mater Interfaces 2019;11:42000-5.

97. Chen Z, Chen H, Che Y, et al. Arginine cations inhibiting charge accumulation of dendrites and boosting Zn metal reversibility in aqueous rechargeable batteries. ACS Sustain Chem Eng 2021;9:6855-63.

98. Li Y, Wu P, Zhong W, et al. A progressive nucleation mechanism enables stable zinc stripping-plating behavior. Energy Environ Sci 2021;14:5563-71.

99. Guan K, Tao L, Yang R, et al. Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv Energy Mater 2022;12:2103557.

100. Nie X, Miao L, Yuan W, et al. Cholinium cations enable highly compact and dendrite-free Zn metal anodes in aqueous electrolytes. Adv Funct Mater 2022;32:2203905.

101. Wang P, Xie X, Xing Z, et al. Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv Energy Mater 2021;11:2101158.

102. Kim M, Shin SJ, Lee J, et al. Cationic additive with a rigid solvation shell for high-performance zinc ion batteries. Angew Chem Int Ed 2022;61:e202211589.

103. Ma L, Pollard TP, Zhang Y, et al. Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes. Angew Chem Int Ed 2021;60:12438-45.

104. Liu S, Shang W, Yang Y, et al. Effects of I3- electrolyte additive on the electrochemical performance of Zn anodes and Zn/MnO2 batteries. Batteries Supercaps 2022;5:e202100221.

105. Chen H, Dai C, Xiao F, et al. Reunderstanding the reaction mechanism of aqueous Zn-Mn batteries with sulfate electrolytes: role of the zinc sulfate hydroxide. Adv Mater 2022;34:e2109092.

106. Yang M, Driscoll DM, Balasubramanian M, Liao C. Solvation structure and electrochemical properties of a new weakly coordinating aluminate salt as a nonaqueous electrolyte for zinc batteries. J Electrochem Soc 2020;167:160529.

107. Zhao R, Wang H, Du H, et al. Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat Commun 2022;13:3252.

108. Lin C, Yang X, Xiong P, et al. High-rate, large capacity, and long life dendrite-free Zn metal anode enabled by trifunctional electrolyte additive with a wide temperature range. Adv Sci 2022;9:e2201433.

109. Wang S, Li T, Yin Y, Chang N, Zhang H, Li X. High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive. Nano Energy 2022;96:107120.

110. Guo H, Shao Z, Zhang Y, et al. Electrolyte additives inhibit the surface reaction of aqueous sodium/zinc battery. J Colloid Interface Sci 2022;608:1481-8.

111. Zhou W, Chen M, Tian Q, et al. Stabilizing zinc deposition with sodium lignosulfonate as an electrolyte additive to improve the life span of aqueous zinc-ion batteries. J Colloid Interface Sci 2021;601:486-94.

112. Cao H, Huang X, Liu Y, et al. An efficient electrolyte additive of tetramethylammonium sulfate hydrate for dendritic-free zinc anode for aqueous zinc-ion batteries. J Colloid Interface Sci 2022;627:367-74.

113. Han J, Mariani A, Varzi A, Passerini S. Green and low-cost acetate-based electrolytes for the highly reversible zinc anode. J Power Sources 2021;485:229329.

114. Song X, He H, Aboonasr Shiraz MH, Zhu H, Khosrozadeh A, Liu J. Enhanced reversibility and electrochemical window of Zn-ion batteries with an acetonitrile/water-in-salt electrolyte. Chem Commun 2021;57:1246-9.

115. Zhong X, Wang F, Ding Y, Duan L, Shi F, Wang C. Water-in-salt electrolyte Zn/LiFePO4 batteries. J Electroanal Chem 2020;867:114193.

116. Zhu Y, Yin J, Zheng X, et al. Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ Sci 2021;14:4463-73.

117. Clarisza A, Bezabh HK, Jiang SK, et al. Highly concentrated salt electrolyte for a highly stable aqueous dual-ion zinc battery. ACS Appl Mater Interfaces 2022;14:36644-55.

118. Wang W, Yang C, Chi X, Liu J, Wen B, Liu Y. Ultralow-water-activity electrolyte endows vanadium-based zinc-ion batteries with durable lifespan exceeding 30,000 cycles. Energy Stor Mater 2022;53:774-82.

119. Chen S, Nian Q, Zheng L, et al. Highly reversible aqueous zinc metal batteries enabled by fluorinated interphases in localized high concentration electrolytes. J Mater Chem A 2021;9:22347-52.

120. Hou Z, Lu Z, Chen Q, Zhang B. Realizing wide-temperature Zn metal anodes through concurrent interface stability regulation and solvation structure modulation. Energy Stor Mater 2021;42:517-25.

121. Feng R, Chi X, Qiu Q, et al. Cyclic ether-water hybrid electrolyte-guided dendrite-free lamellar zinc deposition by tuning the solvation structure for high-performance aqueous zinc-ion batteries. ACS Appl Mater Interfaces 2021;13:40638-47.

122. Ming F, Zhu Y, Huang G, et al. Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J Am Chem Soc 2022;144:7160-70.

123. Di S, Nie X, Ma G, et al. Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase. Energy Stor Mater 2021;43:375-82.

124. Ma G, Miao L, Yuan W, et al. Non-flammable, dilute, and hydrous organic electrolytes for reversible Zn batteries. Chem Sci 2022;13:11320-9.

125. Ma Y, Zhang Q, Liu L, et al. N,N-dimethylformamide tailors solvent effect to boost Zn anode reversibility in aqueous electrolyte. Natl Sci Rev 2022;9:nwac051.

126. Wu F, Chen Y, Chen Y, et al. Achieving highly reversible zinc anodes via N, N-dimethylacetamide enabled Zn-ion solvation regulation. Small 2022;18:e2202363.

127. Geng L, Meng J, Wang X, et al. Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew Chem Int Ed 2022;61:e202206717.

128. Qiu H, Du X, Zhao J, et al. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat Commun 2019;10:5374.

129. Thorat GM, Ho VC, Mun J. Zn-based deep eutectic solvent as the stabilizing electrolyte for Zn metal anode in rechargeable aqueous batteries. Front Chem 2021;9:825807.

130. Han M, Huang J, Xie X, et al. Hydrated eutectic electrolyte with ligand-oriented solvation shell to boost the stability of zinc battery. Adv Funct Mater 2022;32:2110957.

131. Lin X, Zhou G, Robson MJ, Yu J, Kwok SCT, Ciucci F. Hydrated deep eutectic electrolytes for high-performance Zn-ion batteries capable of low-temperature operation. Adv Funct Mater 2022;32:2109322.

132. Shi J, Sun T, Bao J, et al. “Water-in-deep eutectic solvent” electrolytes for high-performance aqueous Zn-ion batteries. Adv Funct Mater 2021;31:2102035.

133. Su K, Chen J, Zhang X, et al. Inhibition of zinc dendrites by dopamine modified hexagonal boron nitride electrolyte additive for zinc-ion batteries. J Power Sources 2022;548:232074.

134. Zhou T, Mu Y, Chen L, et al. Toward stable zinc aqueous rechargeable batteries by anode morphology modulation via polyaspartic acid additive. Energy Stor Mater 2022;45:777-85.

135. Zhang L, Miao L, Xin W, Peng H, Yan Z, Zhu Z. Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode. Energy Stor Mater 2022;44:408-15.

136. Qiu M, Sun P, Qin A, Cui G, Mai W. Metal-coordination chemistry guiding preferred crystallographic orientation for reversible zinc anode. Energy Stor Mater 2022;49:463-70.

137. Luo M, Wang C, Lu H, et al. Dendrite-free zinc anode enabled by zinc-chelating chemistry. Energy Stor Mater 2021;41:515-21.

138. Lin Y, Hu Y, Zhang S, et al. Highly reversible aqueous zinc-ion battery using the chelating agent triethanolamine as an electrolyte additive. CrystEngComm 2022;24:7950-61.

139. Han D, Sun T, Du H, et al. Controlling horizontal growth of zinc platelet by OP-10 additive for dendrite-free aqueous zinc-ion batteries. Batteries Supercaps 2022;5:e202200219.

140. Qiu M, Sun P, Wang Y, Ma L, Zhi C, Mai W. Anion-trap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn Ion batteries. Angew Chem Int Ed 2022;61:e202210979.

141. Yang J, Zhang Y, Li Z, et al. Three birds with one stone: tetramethylurea as electrolyte additive for highly reversible Zn-metal anode. Adv Funct Mater 2022;32:2209642.

142. Qian L, Yao W, Yao R, et al. Cations coordination-regulated reversibility enhancement for aqueous Zn-ion battery. Adv Funct Mater 2021;31:2105736.

143. Huang H, Xie D, Zhao J, et al. Boosting reversibility and stability of Zn anodes via manipulation of electrolyte structure and interface with addition of trace organic molecules. Adv Energy Mater 2022;12:2202419.

144. Zhao K, Liu F, Fan G, et al. Stabilizing zinc electrodes with a vanillin additive in mild aqueous electrolytes. ACS Appl Mater Interfaces 2021;13:47650-8.

145. Meng Q, Zhao R, Cao P, et al. Stabilization of Zn anode via a multifunctional cysteine additive. Chem Eng J 2022;447:137471.

146. Wang H, Li H, Tang Y, et al. Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution. Adv Funct Mater 2022;32:2207898.

147. Wang B, Zheng R, Yang W, et al. Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries. Adv Funct Mater 2022;32:2112693.

148. Ren H, Li S, Wang B, et al. Molecular-crowding effect mimicking cold-resistant plants to stabilize the zinc anode with wider service temperature range. Adv Mater 2023;35:e2208237.

149. Wang K, Qiu T, Lin L, Liu X, Sun X. A low fraction electrolyte additive as interface stabilizer for Zn electrode in aqueous batteries. Energy Stor Mater 2023;54:366-73.

150. Xie K, Ren K, Sun C, et al. Toward stable zinc-ion batteries: use of a chelate electrolyte additive for uniform zinc deposition. ACS Appl Energy Mater 2022;5:4170-8.

151. Zhang Y, Peng C, Zeng Z, et al. Sustainable phytic acid-zinc anticorrosion interface for highly reversible zinc metal anodes. ACS Appl Mater Interfaces 2022;14:10419-27.

152. Zhao F, Jing Z, Guo X, et al. Trace amounts of fluorinated surfactant additives enable high performance zinc-ion batteries. Energy Stor Mater 2022;53:638-45.

153. Liu B, Wei C, Zhu Z, et al. Regulating surface reaction kinetics through ligand field effects for fast and reversible aqueous zinc batteries. Angew Chem Int Ed 2022;61:e202212780.

154. Lu H, Zhang X, Luo M, et al. Amino acid-induced interface charge engineering enables highly reversible Zn anode. Adv Funct Mater 2021;31:2103514.

155. Huang C, Zhao X, Liu S, et al. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv Mater 2021;33:e2100445.

156. Qiu M, Ma L, Sun P, Wang Z, Cui G, Mai W. Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode. Nanomicro Lett 2021;14:31.

157. Hashemi A, Kasiri G, La Mantia F. The effect of polyethyleneimine as an electrolyte additive on zinc electrodeposition mechanism in aqueous zinc-ion batteries. Electrochim Acta 2017;258:703-8.

158. Zhang Y, Zheng X, Wu K, et al. Nonionic surfactant-assisted in situ generation of stable passivation protective layer for highly stable aqueous Zn metal anodes. Nano Lett 2022;22:8574-83.

159. Yuan W, Ma G, Nie X, et al. In-situ construction of a hydroxide-based solid electrolyte interphase for robust zinc anodes. Chem Eng J 2022;431:134076.

160. Yang M, Zhu J, Bi S, Wang R, Niu Z. A binary hydrate-melt electrolyte with acetate-oriented cross-linking solvation shells for stable zinc anodes. Adv Mater 2022;34:e2201744.

161. Wang C, Sun L, Li M, et al. Aqueous Zn2+/Na+ dual-salt batteries with stable discharge voltage and high columbic efficiency by systematic electrolyte regulation. Sci China Chem 2022;65:399-407.

162. Guo X, Zhang Z, Li J, et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett 2021;6:395-403.

163. Li H, Firby CJ, Elezzabi AY. Rechargeable aqueous hybrid Zn2+/Al3+ electrochromic batteries. Joule 2019;3:2268-78.

164. Cao J, Zhang D, Chanajaree R, et al. Stabilizing zinc anode via a chelation and desolvation electrolyte additive. Adv Powder Mater 2022;1:100007.

165. Zhang S, Hao J, Luo D, et al. Dual-function electrolyte additive for highly reversible Zn anode. Adv Energy Mater 2021;11:2102010.

166. Xi M, Liu Z, Ding J, Cheng W, Jia D, Lin H. Saccharin anion acts as a “traffic assistant” of Zn2+ to achieve a long-life and dendritic-free zinc plate anode. ACS Appl Mater Interfaces 2021;13:29631-40.

167. Hao J, Long J, Li B, et al. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv Funct Mater 2019;29:1903605.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/