REFERENCES

1. Armand M, Tarascon JM. Building better batteries. Nature 2008;451:652-7.

2. Janek J, Zeier WG. A solid future for battery development. Nat Energy 2016;1:16141.

3. Zheng H, Li G, Liu J, et al. A rational design of garnet-type Li7La3Zr2O12 with ultrahigh moisture stability. Energy Stor Mater 2022;49:278-90.

4. Zou C, Yang L, Luo K, et al. In situ formed protective layer: toward a more stable interface between the lithium metal anode and Li6PS5Cl solid electrolyte. ACS Appl Energy Mater 2022;5:8428-36.

5. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 2019;5:2326-52.

6. Wright PV. Developments in polymer electrolytes for lithium batteries. MRS Bull 2002;27:597-602.

7. Fenton D, Parker J, Wright P. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973;14:589.

8. Feuillade G, Perche P. Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 1975;5:63-9.

9. Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 2011;40:2525-40.

10. Zou C, Yang L, Zang Z, et al. LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 and chlorine-rich argyrodite enabling high-performance all-solid-state lithium batteries at suitable stack pressure. Ceram Int 2023;49:443-9.

11. Aldissi M. Multi-layered polymer electrolytes towards interfacial stability in lithium ion batteries. J Power Sources 2001;94:219-24.

12. Zhou W, Huang Q, Xie X, et al. Research progress of polymer electrolyte for solid state lithium batteries. Energy Stor Sci Technol 2022;11:1788-805.

13. Wang H, Liu J, He J, et al. Pseudo-concentrated electrolytes for lithium metal batteries. eScience 2022;2:557-65.

14. Ko D, Wook Y, Kyung D, et al. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same; 0. Available from: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2017074116 [Last accessed on 7 Feb 2023].

15. Zheng X, Wu J, Wang X, Yang Z. Cellulose-reinforced poly(cyclocarbonate-ether)-based composite polymer electrolyte and facile gel interfacial modification for solid-state lithium-ion batteries. Chem Eng J 2022;446:137194.

16. Li X, Zheng Y, Fullerton WR, Li CY. Multilayered solid polymer electrolytes with sacrificial coating for suppressing lithium dendrite growth. ACS Appl Mater Interfaces 2022;14:484-91.

17. Tao X, Liu Y, Liu W, et al. Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett 2017;17:2967-72.

18. Zhang Y, Lu W, Cong L, et al. Cross-linking network based on Poly(ethylene oxide): solid polymer electrolyte for room temperature lithium battery. J Power Sources 2019;420:63-72.

19. Yang L, Wang Z, Feng Y, et al. Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li-electrolyte interface for solid state lithium-ion batteries. Adv Energy Mater 2017;7:1701437.

20. Kimura K, Matsumoto H, Hassoun J, Panero S, Scrosati B, Tominaga Y. A quaternaryPoly(ethylene carbonate)-lithium bis(trifluoromethanesulfonyl)imide-Ionic liquid-silica fiber composite polymer electrolyte for lithium batteries. Electrochim Acta 2015;175:134-40.

21. Kimura K, Yajima M, Tominaga Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochem Commun 2016;66:46-8.

22. Chai J, Liu Z, Ma J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv Sci 2017;4:1600377.

23. Mindemark J, Lacey MJ, Bowden T, Brandell D. Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 2018;81:114-43.

24. Arrese-igor M, Martinez-ibañez M, Pavlenko E, et al. Toward high-voltage solid-state Li-metal batteries with double-layer polymer electrolytes. ACS Energy Lett 2022;7:1473-80.

25. Mindemark J, Törmä E, Sun B, Brandell D. Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries. Polymer 2015;63:91-8.

26. Wu S, Zheng H, Tian R, Hei Z, Liu H, Duan H. In-situ preparation of gel polymer electrolyte with glass fiber membrane for lithium batteries. J Power Sources 2020;472:228627.

27. Guo Y, Ouyang Y, Li D, Wei Y, Zhai T, Li H. PMMA-assisted Li deposition towards 3D continuous dendrite-free lithium anode. Energy Stor Mater 2019;16:203-11.

28. Rao M, Liu J, Li W, Liang Y, Zhou D. Preparation and performance analysis of PE-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion battery application. J Membr Sci 2008;322:314-9.

29. Liang Y, Deng S, Xia Y, et al. A superior composite gel polymer electrolyte of Li7La3Zr2O12- poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries. Mater Res Bull 2018;102:412-7.

30. Jie J, Liu Y, Cong L, et al. High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery. J Energy Chem 2020;49:80-8.

31. Wang Y, Kim D. Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes. Electrochim Acta 2007;52:3181-9.

32. Duan H, Fan M, Chen WP, et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv Mater 2019;31:e1807789.

33. Liu Y, Fu F, Sun C, et al. Enabling stable interphases via in situ two-step synthetic bilayer polymer electrolyte for solid-state lithium metal batteries. Inorganics 2022;10:42.

34. Stoševski I, Krstić J, Vokić N, Radosavljević M, Popović ZK, Miljanić Š. Improved Poly(vinyl alcohol) (PVA) based matrix as a potential solid electrolyte for electrochemical energy conversion devices, obtained by gamma irradiation. Energy 2015;90:595-604.

35. Hirankumar G, Mehta N. Effect of incorporation of different plasticizers on structural and ion transport properties of PVA-LiClO4 based electrolytes. Heliyon 2018;4:e00992.

36. York SS, Buckner M, Frech R. Ion-polymer and Ion-ion interactions in linear poly(ethylenimine) complexed with LiCF3SO3 and LiSbF6. Macromolecules 2004;37:994-9.

37. Zhang J, Zhao N, Zhang M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016;28:447-54.

38. Wan Z, Lei D, Yang W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv Funct Mater 2019;29:1805301.

39. Yue H, Li J, Wang Q, et al. Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries. ACS Sustain Chem Eng 2018;6:268-74.

40. Zhang X, Liu T, Zhang S, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc 2017;139:13779-85.

41. Chowdhury FI, Khandaker MU, Amin YM, Kufian MZ, Woo HJ. Vibrational, electrical, and structural properties of PVDF-LiBOB solid polymer electrolyte with high electrochemical potential window. Ionics 2017;23:275-84.

42. Zhang X, Xu B, Lin Y, Shen Y, Li L, Nan C. Effects of Li6.75La3Zr1.75Ta0.25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes. Solid State Ion 2018;327:32-8.

43. Sadiq M, Khan MA, Hasan Raza MM, Aalam SM, Zulfequar M, Ali J. Enhancement of electrochemical stability window and electrical properties of CNT-based PVA-PEG polymer blend composites. ACS Omega 2022;7:40116-31.

44. Wu G, Lin S, Yang C. Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. J Membr Sci 2006;275:127-33.

45. Pan J, Zhao P, Wang N, Huang F, Dou S. Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ Sci 2022;15:2753-75.

46. Sengwa R, Dhatarwal P. Predominantly chain segmental relaxation dependent ionic conductivity of multiphase semicrystalline PVDF/PEO/LiClO4 solid polymer electrolytes. Electrochim Acta 2020;338:135890.

47. Li J, Lin Y, Yao H, Yuan C, Liu J. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane. ChemSusChem 2014;7:1901-8.

48. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114:11503-618.

49. Hou W. The effect of different lithium salts on conductivity of comb-like polymer electrolyte with chelating functional group. Electrochim Acta 2003;48:679-90.

50. Lee MJ, Han J, Lee K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 2022;601:217-22.

51. Huo H, Zhao N, Sun J, Du F, Li Y, Guo X. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. J Power Sources 2017;372:1-7.

52. Chen L, Li Y, Li S, Fan L, Nan C, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018;46:176-84.

53. Ma J, Liu Z, Chen B, et al. A strategy to make high voltage LiCoO2 compatible with Polyethylene oxide electrolyte in all-solid-state lithium ion batteries. J Electrochem Soc 2017;164:A3454-61.

54. Marchiori CFN, Carvalho RP, Ebadi M, Brandell D, Araujo CM. Understanding the electrochemical stability window of polymer electrolytes in solid-state batteries from atomic-scale modeling: the role of Li-ion salts. Chem Mater 2020;32:7237-46.

55. Zhang X, Guo W, Zhou L, Xu Q, Min Y. Surface-modified boron nitride as a filler to achieve high thermal stability of polymer solid-state lithium-metal batteries. J Mater Chem A 2021;9:20530-43.

56. Pan J, Zhang Y, Wang J, et al. A quasi-double-layer solid electrolyte with adjustable interphases enabling high-voltage solid-state batteries. Adv Mater 2022;34:e2107183.

57. Pan X, Sun H, Wang Z, et al. High voltage stable polyoxalate catholyte with cathode coating for all-solid-state Li-Metal/NMC622 batteries. Adv Energy Mater 2020;10:2002416.

58. Wang P, Chai J, Zhang Z, et al. An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries. J Mater Chem A 2019;7:5295-304.

59. Zheng H, Li G, Ouyang R, et al. Origin of lithiophilicity of lithium garnets: compositing or cleaning? Adv Funct Mater 2022;32:2205778.

60. Duan H, Yin YX, Shi Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J Am Chem Soc 2018;140:82-5.

61. Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 2005;152:A396.

62. Zhang X, Wang A, Liu X, Luo J. Dendrites in lithium metal anodes: suppression, regulation, and elimination. ACC Chem Res 2019;52:3223-32.

63. Zhou W, Wang Z, Pu Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv Mater 2019;31:e1805574.

64. Stone GM, Mullin SA, Teran AA, et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J Electrochem Soc 2012;159:A222-7.

65. Sångeland C, Tjessem T, Mindemark J, Brandell D. Overcoming the obstacle of polymer-polymer resistances in double layer solid polymer electrolytes. J Phys Chem Lett 2021;12:2809-14.

66. Deng C, Chen N, Hou C, Liu H, Zhou Z, Chen R. Enhancing interfacial contact in solid-state batteries with a gradient composite solid electrolyte. Small 2021;17:e2006578.

67. Yao Z, Zhu K, Li X, et al. Double-layered multifunctional composite electrolytes for high-voltage solid-state lithium-metal batteries. ACS Appl Mater Interfaces 2021;13:11958-67.

68. Arrese-igor M, Martinez-ibañez M, López del Amo JM, et al. Enabling double layer polymer electrolyte batteries: Overcoming the Li-salt interdiffusion. Energy Stor Mater 2022;45:578-85.

69. Li F, Liu J, He J, et al. Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis. Angew Chem Int Ed 2022;61:e202205091.

70. Wang C, Wang T, Wang L, et al. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv Sci 2019;6:1901036.

71. Li L, Wang J, Zhang L, Duan H, Deng Y, Chen G. Rational design of a heterogeneous double-layered composite solid electrolyte via synergistic strategies of asymmetric polymer matrices and functional additives to enable 4.5 V all-solid-state lithium batteries with superior performance. Energy Stor Mater 2022;45:1062-73.

72. Wang C, Yang Y, Liu X, et al. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl Mater Interfaces 2017;9:13694-702.

73. Bi Z, Mu S, Zhao N, Sun W, Huang W, Guo X. Cathode supported solid lithium batteries enabling high energy density and stable cyclability. Energy Stor Mater 2021;35:512-9.

74. Yang S, Zhang Z, Shen L, et al. Gravity-driven Poly(ethylene glycol)@Li1.5Al0.5Ge1.5(PO4)3 asymmetric solid polymer electrolytes for all-solid-state lithium batteries. J Power Sources 2022;518:230756.

75. Gai J, Ma F, Zhang Z, et al. Flexible organic-inorganic composite solid electrolyte with asymmetric structure for room temperature solid-state li-ion batteries. ACS Sustain Chem Eng 2019;7:15896-903.

76. Wang Q, Wang H, Liu Y, Wu K, Liu W, Zhou H. An asymmetric quasi-solid electrolyte for high-performance Li metal batteries. Chem Commun 2020;56:7195-8.

77. Cai D, Qi X, Xiang J, et al. A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery. Chem Eng J 2022;435:135030.

78. Zhao C, Zhao B, Yan C, et al. Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: a review. Energy Stor Mater 2020;24:75-84.

79. Wu N, Li Y, Dolocan A, et al. In situ formation of Li3P layer enables fast Li+ conduction across Li/solid polymer electrolyte interface. Adv Funct Mater 2020;30:2000831.

80. Luo Y, Li X, Zhang Y, Ge L, Chen H, Guo L. Electrochemical properties and structural stability of Ga- and Y- co-doping in Li7La3Zr2O12 ceramic electrolytes for lithium-ion batteries. Electrochim Acta 2019;294:217-25.

81. Yuan C, Sheldon BW, Xu J. Heterogeneous reinforcements to mitigate Li penetration through solid electrolytes in all-solid-state batteries. Adv Energy Mater 2022;12:2201804.

82. Doan Tran H, Kim C, Chen L, et al. Machine-learning predictions of polymer properties with Polymer Genome. J Appl Phys 2020;128:171104.

83. Liu M, Clement C, Liu K, Wang X, Sparks TD. A data science approach for advanced solid polymer electrolyte design. Comput Mater Sci 2021;187:110108.

84. Li Z, Ying X, Liu G. Group contribution method for estimation internal pressure and new solubility parameter for polymers. J Chem Ind Eng 2002;53:6.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/