REFERENCES

1. Li J, Kong Z, Liu X, et al. Strategies to anode protection in lithium metal battery: a review. InfoMat 2021;3:1333-63.

2. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334:928-35.

3. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414:359-67.

4. Shu C, Wang J, Long J, Liu HK, Dou SX. Understanding the reaction chemistry during charging in aprotic lithium-oxygen batteries: existing problems and solutions. Adv Mater 2019;31:e1804587.

5. Sun K, Peng Z. Intermetallic interphases in lithium metal and lithium ion batteries. InfoMat 2021;3:1083-109.

6. Han Y, Liu B, Xiao Z, et al. Interface issues of lithium metal anode for high-energy batteries: challenges, strategies, and perspectives. InfoMat 2021;3:155-74.

7. Whittingham MS. Lithium batteries and cathode materials. Chem Rev 2004;104:4271-301.

8. Cheng X, Zhang R, Zhao C, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 2017:117,10403-73.

9. Hu Z, Wang C, Wang C, et al. Uncovering the critical impact of the solid electrolyte interphase structure on the interfacial stability. InfoMat 2022;4:e12249.

10. Liu B, Zhang J, Xu W. Advancing lithium metal batteries. Joule 2018;2:833-45.

11. Yang K, Chen L, Ma J, He Y, Kang F. Progress and perspective of Li1+xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries. InfoMat 2021;3:1195-217.

12. Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model. J Electrochem Soc 1979;126:2047-51.

13. Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 1997;144:L208-10.

14. Aurbach D, Daroux ML, Faguy PW, Yeager E. Identification of surface films formed on lithium in propylene carbonate solutions. J Electrochem Soc 1987;134:1611-20.

15. Aurbach D, Ein-ely Y, Zaban A. The surface chemistry of lithium electrodes in alkyl carbonate solutions. J Electrochem Soc 1994;141:L1-3.

16. Aurbach D, Ein-eli Y, Markovsky B, et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable li batteries: II. Graphite electrodes. J Electrochem Soc 1995;142:2882-90.

17. Ein-eli Y. A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of li-ion cells. Electrochem Solid-State Lett 1999;2:212.

18. Goodenough JB, Kim Y. The lithium-ion battery: state of the art and future perspectives. Chem Mater 2010;22:587-603.

19. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 2004;104:4303-417.

20. Chazalviel J. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A 1990;42:7355-67.

21. Peng H, Huang J, Cheng X, Zhang Q. Lithium-sulfur batteries: review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater 2017;7:1700260.

22. Zhang L, Yang T, Du C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat Nanotechnol 2020;15:94-8.

23. Rosso M, Chassaing E, Chazalviel J, Gobron T. Onset of current-driven concentration instabilities in thin cell electrodeposition with small inter-electrode distance. Electrochim Acta 2002;47:1267-73.

24. Barton JL, Bockris, JOM. The electrolytic growth of dendrites from ionic solutions. Proc R Soc Lond A 1962;268:485-505.

25. Yan Y, Shu C, Zheng R, et al. Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via lithiophilic oxygen vacancy in Vo-TiO2/Ti3C2Tx composite anodes. J Energy Chem 2022;65:654-65.

26. Diggle JW, Despic AR, Bockris JO. The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc 1969;116:1503.

27. Yamaki J, Tobishima S, Hayashi K, Keiichi Saito, Nemoto Y, Arakawa M. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J Power Sources 1998;74:219-27.

28. Witten TA, Sander LM. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 1981;47:1400.

29. Mayers MZ, Kaminski JW, Miller TF. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J Phys Chem C 2012;116:26214-21.

30. Chandrasekar M, Pushpavanam M. Pulse and pulse reverse plating-conceptual, advantages and applications. Electrochim Acta 2008;53:3313-22.

31. Brissot C, Rosso M, Chazalviel J-, Lascaud S. In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells. J Electrochem Soc 1999;146:4393-400.

32. Brissot C, Rosso M, Chazalviel J, Lascaud S. Dendritic growth mechanisms in lithium/polymer cells. J Power Sources 1999;81-82:925-9.

33. Rosso M, Brissot C, Teyssot A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta 2006;51:5334-40.

34. Arakawa M, Tobishima S, Nemoto Y, Ichimura M, Yamaki J. Lithium electrode cycleability and morphology dependence on current density. J Power Sources 1993;43:27-35.

35. Chen L, Fan X, Ji X, Chen J, Hou S, Wang C. High-energy Li metal battery with lithiated host. Joule 2019;3:732-44.

36. Ye H, Zheng ZJ, Yao HR, et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew Chem Int Ed 2019;58:1094-9.

37. Li X, Zheng J, Ren X, et al. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives. Adv Energy Mater 2018;8:1703022.

38. Louli AJ, Eldesoky A, Weber R, et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat Energy 2020;5:693-702.

39. Jungjohann KL, Gannon RN, Goriparti S, et al. Cryogenic laser ablation reveals short-circuit mechanism in lithium metal batteries. ACS Energy Lett 2021;6:2138-44.

40. Chan CK, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 2008;3:31-5.

41. Xu G, Li J, Wang C, et al. The formation/decomposition equilibrium of LiH and its Contribution on anode failure in practical lithium metal batteries. Angew Chem Int Ed 2021;133:7849-55.

42. Lu D, Shao Y, Lozano T, et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv Energy Mater 2015;5:1400993.

43. Li Z, Huang J, Yann Liaw B, Metzler V, Zhang J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J Power Sources 2014;254:168-82.

44. Colclasure AM, Li X, Cao L, Finegan DP, Yang C, Smith K. Significant life extension of lithium-ion batteries using compact metallic lithium reservoir with passive control. Electrochim Acta 2021;370:137777.

45. Yu SH, Huang X, Brock JD, Abruña HD. Regulating key variables and visualizing lithium dendrite growth: an operando X-ray study. J Am Chem Soc 2019;141:8441-9.

46. Conder J, Marino C, Novák P, Villevieille C. Do imaging techniques add real value to the development of better post-Li-ion batteries? J Mater Chem A 2018;6:3304-27.

47. Osaka T, Momma T, Nishimura K, Tajima T. In situ observation and evaluation of electrodeposited lithium by means of optical microscopy with alternating current impedance spectroscopy. J Electrochem Soc 1993;140:2745-8.

48. Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J Power Sources 2014;261:112-9.

49. Steiger J, Kramer D, Mönig R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution. Electrochim Acta 2014;136:529-36.

50. Shen K, Wang Z, Bi X, et al. Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries. Adv Energy Mater 2019;9:1900260.

51. Rulev AA, Sergeev AV, Yashina LV, Jacob T, Itkis DM. Electromigration in lithium whisker formation plays insignificant role during electroplating. ChemElectroChem 2019;6:1324-8.

52. Sagane F, Ikeda K, Okita K, Sano H, Sakaebe H, Iriyama Y. Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface. J Power Sources 2013;233:34-42.

53. Foroozan T, Sharifi-asl S, Shahbazian-yassar R. Mechanistic understanding of Li dendrites growth by in-situ/operando imaging techniques. J Power Sources 2020;461:228135.

54. Krauskopf T, Dippel R, Hartmann H, et al. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes. Joule 2019;3:2030-49.

55. Motoyama M, Ejiri M, Iriyama Y. Modeling the nucleation and growth of Li at metal current collector/LiPON interfaces. J Electrochem Soc 2015;162:A7067-71.

56. Rong G, Zhang X, Zhao W, et al. Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution. Adv Mater 2017;29:1606187.

57. Wang P, Qu W, Song W, Chen H, Chen R, Fang D. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries. Adv Funct Mater 2019;29:1900950.

58. Huang JY, Zhong L, Wang CM, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010;330:1515-20.

59. Kushima A, So KP, Su C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams. Nano Energy 2017;32:271-9.

60. Mehdi BL, Qian J, Nasybulin E, et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett 2015;15:2168-73.

61. Gong C, Pu SD, Gao X, et al. Revealing the role of fluoride-rich battery electrode interphases by operando transmission electron microscopy. Adv Energy Mater 2021;11:2003118.

62. Li Y, Li Y, Pei A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017;358:506-10.

63. Wang X, Pawar G, Li Y, et al. Glassy Li metal anode for high-performance rechargeable Li batteries. Nat Mater 2020;19:1339-45.

64. Aurbach D, Cohen Y. Morphological studies of Li deposition processes in LiAsF6/PC solutions by in situ atomic force microscopy. J Electrochem Soc 1997;144:3355-60.

65. Kitta M, Sano H. Real-time observation of Li deposition on a Li electrode with operand atomic force microscopy and surface mechanical imaging. Langmuir 2017;33:1861-6.

66. Yoon I, Jurng S, Abraham DP, Lucht BL, Guduru PR. In situ measurement of the plane-strain modulus of the solid electrolyte interphase on lithium-metal anodes in ionic liquid electrolytes. Nano Lett 2018;18:5752-9.

67. Krueger B, Balboa L, Dohmann JF, Winter M, Bieker P, Wittstock G. Solid electrolyte interphase evolution on lithium metal electrodes followed by scanning slectrochemical microscopy under realistic battery cycling current densities. ChemElectroChem 2020;7:3590-6.

68. Nishikawa K, Mori T, Nishida T, Fukunaka Y, Rosso M, Homma T. In situ observation of dendrite growth of electrodeposited Li metal. J Electrochem Soc 2010;157:A1212.

69. Cheng J, Assegie AA, Huang C, et al. Visualization of lithium plating and stripping via in operando transmission X-ray microscopy. J Phys Chem C 2017;121:7761-6.

70. Ebner M, Marone F, Stampanoni M, Wood V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 2013;342:716-20.

71. Harry KJ, Hallinan DT, Parkinson DY, MacDowell AA, Balsara NP. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat Mater 2014;13:69-73.

72. Lewis JA, Cortes FJQ, Liu Y, et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat Mater 2021;20:503-10.

73. Jung H, Lee B, Lengyel M, et al. Nanoscale in situ detection of nucleation and growth of Li electrodeposition at various current densities. J Mater Chem A 2018;6:4629-35.

74. Ilott AJ, Mohammadi M, Chang HJ, Grey CP, Jerschow A. Real-time 3D imaging of microstructure growth in battery cells using indirect MRI. Proc Natl Acad Sci USA 2016;113:10779-84.

75. Sathiya M, Leriche JB, Salager E, Gourier D, Tarascon JM, Vezin H. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat Commun 2015;6:6276.

76. Wandt J, Marino C, Gasteiger HA, Jakes P, Eichel R, Granwehr J. Operando electron paramagnetic resonance spectroscopy - formation of mossy lithium on lithium anodes during charge-discharge cycling. Energy Environ Sci 2015;8:1358-67.

77. Song B, Dhiman I, Carothers JC, et al. Dynamic lithium distribution upon dendrite growth and shorting revealed by operando neutron imaging. ACS Energy Lett 2019;4:2402-8.

78. Sun F, Zhou D, He X, et al. Morphological reversibility of modified Li-based anodes for next-generation batteries. ACS Energy Lett 2019;4:306-16.

79. Xia M, Liu T, Peng N, et al. Lab-scale in situ X-Ray diffraction technique for different battery systems: designs, applications, and perspectives. Small Methods 2019;3:1900119.

80. Shen X, Li Y, Qian T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat Commun 2019;10:900.

81. Ghanty C, Markovsky B, Erickson EM, et al. Li+-ion extraction/insertion of Ni-rich Li1+x(NiyCozMnz)wO2 (0.005 < x < 0.03; y:z = 8:1, w ≈ 1) electrodes: in situ XRD and raman spectroscopy study. ChemElectroChem 2015;2:1479-86.

82. Qiu F, Zhang X, Qiao Y, et al. An ultra-stable and enhanced reversibility lithium metal anode with a sufficient O2 design for Li-O2 battery. Energy Storage Mater 2018;12:176-82.

83. Chen W, Hu Y, Lv W, et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat Commun 2019;10:4973.

84. Cheng Q, Wei L, Liu Z, et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nat Commun 2018;9:2942.

85. Hu Z, Xian F, Guo Z, et al. Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries. Chem Mater 2020;32:3405-13.

86. Thirumalraj B, Hagos TT, Huang CJ, et al. Nucleation and growth mechanism of lithium metal electroplating. J Am Chem Soc 2019;141:18612-23.

87. Schwöbel A, Hausbrand R, Jaegermann W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Solid State Ionics 2015;273:51-4.

88. Etxebarria A, Yun DJ, Blum M, et al. Revealing in situ Li metal anode surface evolution upon exposure to CO2 using ambient pressure X-ray photoelectron spectroscopy. ACS Appl Mater Interfaces 2020;12:26607-13.

89. Yan C, Cheng XB, Tian Y, et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv Mater 2018;30:e1707629.

90. Chang HJ, Ilott AJ, Trease NM, Mohammadi M, Jerschow A, Grey CP. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI. J Am Chem Soc 2015;137:15209-16.

91. Bayley PM, Trease NM, Grey CP. Insights into electrochemical sodium metal deposition as probed with in situ 23Na NMR. J Am Chem Soc 2016;138:1955-61.

92. Gunnarsdóttir AB, Amanchukwu CV, Menkin S, Grey CP. Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries. J Am Chem Soc 2020;142:20814-27.

93. Chandrashekar S, Trease NM, Chang HJ, Du L-S, Grey CP, Jerschow A. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat Mater 2012;11:311-5.

94. Chang HJ, Trease NM, Ilott AJ, et al. Investigating Li microstructure formation on Li anodes for lithium batteries by in situ 6Li/7Li NMR and SEM. J Phys Chem C 2015;119:16443-51.

95. Romanenko K, Jin L, Howlett P, Forsyth M. In situ MRI of operating solid-state lithium metal cells based on ionic plastic crystal electrolytes. Chem Mater 2016;28:2844-51.

96. Li Q, Yi T, Wang X, et al. In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy 2019;63:103895.

97. Lv S, Verhallen T, Vasileiadis A, et al. Operando monitoring the lithium spatial distribution of lithium metal anodes. Nat Commun 2018;9:2152.

98. Fang C, Li J, Zhang M, et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019;572:511-5.

99. Hsieh Y, Leißing M, Nowak S, Hwang B, Winter M, Brunklaus G. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy. Cell Rep Phys Sci 2020;1:100139.

100. Ota M, Izuo S, Nishikawa K, et al. Measurement of concentration boundary layer thickness development during lithium electrodeposition onto a lithium metal cathode in propylene carbonate. J Electroanal Chem 2003;559:175.

101. Bommier C, Chang W, Lu Y, et al. In operando acoustic detection of lithium metal plating in commercial LiCoO2/graphite pouch cells. Cell Rep Phys Sci 2020;1:100035.

102. Krause LJ, Jensen LD, Dahn JR. Measurement of parasitic reactions in Li ion cells by electrochemical calorimetry. J Electrochem Soc 2012;159:A937-43.

103. Downie LE, Krause LJ, Burns JC, Jensen LD, Chevrier VL, Dahn JR. In situ detection of lithium plating on graphite electrodes by electrochemical calorimetry. J Electrochem Soc 2013;160:A588-94.

104. Sun Y, Yang T, Ji H, et al. Boosting the optimization of lithium metal batteries by molecular dynamics simulations: a perspective. Adv Energy Mater 2020;10:2002373.

105. Liu X, Zhang X, Chen X, et al. A generalizable, data-driven online approach to forecast capacity degradation trajectory of lithium batteries. J Energy Chem 2022;68:548-55.

106. Zhang R, Shen X, Cheng X, Zhang Q. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? Energy Storage Mater 2019;23:556.

107. Yang M, Liu Y, Nolan AM, Mo Y. Interfacial atomistic mechanisms of lithium metal stripping and plating in solid-state batteries. Adv Mater 2021;33:e2008081.

108. Karimi N, Zarrabeitia M, Mariani A, Gatti D, Varzi A, Passerini S. Nonfluorinated ionic liquid electrolytes for lithium metal batteries: ionic conduction, electrochemistry, and interphase formation. Adv Energy Mater 2021;11:2003521.

109. Ling C, Banerjee D, Matsui M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim Acta 2012;76:270-4.

110. Wang SH, Yin YX, Zuo TT, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv Mater 2017;29:1703729.

111. Yan K, Lu Z, Lee H, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy 2016:1.

112. Zuo TT, Wu XW, Yang CP, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv Mater 2017;29:1700389.

113. Jin C, Liu T, Sheng O, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat Energy 2021;6:378-87.

114. Chen X, Chen XR, Hou TZ, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci Adv 2019;5:eaau7728.

115. Kwon H, Lee JH, Roh Y, et al. An electron-deficient carbon current collector for anode-free Li-metal batteries. Nat Commun 2021;12:5537.

116. Wang Q, Liu B, Shen Y, et al. Confronting the challenges in lithium anodes for lithium metal batteries. Adv Sci 2021;8:e2101111.

117. Zhang H, Liao X, Guan Y, et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat Commun 2018;9:3729.

118. Yang C, Zhang L, Liu B, et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc Natl Acad Sci USA 2018;115:3770-5.

119. Hitz GT, Mcowen DW, Zhang L, et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater Today 2019;22:50-7.

120. Zhang Y, Luo W, Wang C, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc Natl Acad Sci USA 2017;114:3584-9.

121. Guo W, Liu S, Guan X, Zhang X, Liu X, Luo J. Mixed ion and electron-conducting scaffolds for high-rate lithium metal anodes. Adv Energy Mater 2019;9:1900193.

122. Zhang X, Lv R, Wang A, Guo W, Liu X, Luo J. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew Chem Int Ed 2018;130:15248-53.

123. Zhang C, Liu S, Li G, Zhang C, Liu X, Luo J. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv Mater 2018:e1801328.

124. Li G, Liu Z, Huang Q, et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat Energy 2018;3:1076-83.

125. Huo H, Gao J, Zhao N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat Commun 2021;12:176.

126. Zhao Q, Stalin S, Archer LA. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021;5:1119-42.

127. Chai J, Chen B, Xian F, et al. Dendrite-free lithium deposition via flexible-rigid coupling composite network for LiNi0.5Mn1.5O4/Li metal batteries. Small 2018;14:1802244.

128. Khurana R, Schaefer JL, Archer LA, Coates GW. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc 2014;136:7395-402.

129. Cao X, Ren X, Zou L, et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat Energy 2019;4:796-805.

130. Dey A. Lithium anode film and organic and inorganic electrolyte batteries. Thin Solid Films 1977;43:131-71.

131. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013;135:1167-76.

132. Huang Z, Choudhury S, Gong H, Cui Y, Bao Z. A cation-tethered flowable polymeric interface for enabling stable deposition of metallic lithium. J Am Chem Soc 2020;142:21393-403.

133. Gao S, Sun F, Liu N, Yang H, Cao P. Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries - a review. Mater Today 2020;40:140-59.

134. Hao F, Verma A, Mukherjee PP. Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes. J Mater Chem A 2018;6:19664-71.

135. Tamwattana O, Park H, Kim J, et al. High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett 2021;6:4416-25.

136. Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 2005;152:A396.

137. Chen K, Pathak R, Gurung A, et al. Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes. Energy Storage Mater 2019;18:389-96.

138. Yuan Y, Wu F, Chen G, Bai Y, Wu C. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. J Energy Chem 2019;37:197-203.

139. Chen H, Pei A, Lin D, et al. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv Energy Mater 2019;9:1900858.

140. Li NW, Yin YX, Yang CP, Guo YG. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater 2016;28:1853-8.

141. Tian R, Feng X, Duan H, et al. Low-weight 3D Al2O3 network as an artificial layer to stabilize lithium deposition. ChemSusChem 2018;11:3243-52.

142. Liu Y, Tzeng Y, Lin D, et al. An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes. Joule 2018;2:1595-609.

143. Shi F, Pei A, Boyle DT, et al. Lithium metal stripping beneath the solid electrolyte interphase. Proc Natl Acad Sci USA 2018;115:8529-34.

144. Tewari D, Mukherjee PP. Mechanistic understanding of electrochemical plating and stripping of metal electrodes. J Mater Chem A 2019;7:4668-88.

145. Song J, Lee H, Choo MJ, Park JK, Kim HT. Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci Rep 2015;5:14458.

146. Tu Z, Choudhury S, Zachman MJ, et al. Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries. Joule 2017;1:394-406.

147. Yu Z, Mackanic DG, Michaels W, et al. A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule 2019;3:2761-76.

148. Xu Y, Gao L, Shen L, et al. Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 2020;3:1685-700.

149. Kim MS, Deepika, Lee SH, et al. Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as lithium metal anodes. Sci Adv 2019;5:eaax5587.

150. Gao Y, Rojas T, Wang K, et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat Energy 2020;5:534-42.

151. Lin D, Liu Y, Chen W, et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett 2017;17:3731-7.

152. Chen X, Zhang Q. Atomic insights into the fundamental interactions in lithium battery electrolytes. ACC Chem Res 2020;53:1992-2002.

153. Chen X, Shen X, Li B, et al. Ion-solvent complexes promote gas evolution from electrolytes on a sodium metal anode. Angew Chem Int Ed 2018;57:734-7.

154. Zhang X, Cheng X, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater 2017;27:1605989.

155. Shim Y. Computer simulation study of the solvation of lithium ions in ternary mixed carbonate electrolytes: free energetics, dynamics, and ion transport. Phys Chem Chem Phys 2018;20:28649-57.

156. Zhang W, Zhang S, Fan L, et al. Tuning the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy Lett 2019;4:644-50.

157. Yan C, Yao Y, Chen X, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew Chem Int Ed 2018;57:14055-9.

158. Liu Y, Lin D, Li Y, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat Commun 2018;9:3656.

159. Shi Q, Zhong Y, Wu M, Wang H, Wang H. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc Natl Acad Sci USA 2018;115:5676-80.

160. Li W, Yao H, Yan K, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat Commun 2015;6:1-8.

161. Suo L, Borodin O, Gao T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015;350:938-43.

162. Xu R, Yan C, Xiao Y, Zhao M, Yuan H, Huang J. In situ regulated solid electrolyte interphase via reactive separators for highly efficient lithium metal batteries. Energy Storage Mater 2020;28:401-6.

163. Liu W, Li J, Li W, Xu H, Zhang C, Qiu X. Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nat Commun 2020;11:3629.

164. Ding JF, Xu R, Yao N, et al. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew Chem Int Ed 2021;60:11442-7.

165. von Wald Cresce A, Gobet M, Borodin O, et al. Anion solvation in carbonate-based electrolytes. J Phys Chem C 2015;119:27255-64.

166. Chen L, Li Y, Li S, Fan L, Nan C, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018;46:176-84.

167. Freitag A, Langklotz U, Rost A, Stamm M, Ionov L. Ionically conductive polymer/ceramic separator for lithium-sulfur batteries. Energy Storage Mater 2017;9:105-11.

168. Yang L, Wang Z, Feng Y, et al. Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li-electrolyte interface for solid state lithium-ion batteries. Adv Energy Mater 2017;7:1701437.

169. Xu X, Hou G, Nie X, et al. Li7P3S11/poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-solid-state batteries. J Power Sources 2018;400:212-7.

170. Zhu P, Yan C, Dirican M, et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J Mater Chem A 2018;6:4279-85.

171. Zha W, Chen F, Yang D, Shen Q, Zhang L. High-performance Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries. J Power Sources 2018;397:87-94.

172. Wu H, Zhuo D, Kong D, Cui Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat Commun 2014;5:5193.

173. Liang J, Chen Q, Liao X, et al. A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew Chem Int Ed 2020;132:6623-8.

174. Wang Q, Yang J, Wang Z, Shi L, Zhao Y, Yuan S. Dual-scale Al2O3 particles coating for high-performance separator and lithium metal anode. Energy Technol 2020;8:1901429.

175. Kim PJH, Pol VG. Surface functionalization of a conventional polypropylene separator with an aluminum nitride layer toward ultrastable and high-rate lithium metal anodes. ACS Appl Mater Interfaces 2019;11:3917-24.

176. Hao X, Zhu J, Jiang X, et al. Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett 2016;16:2981-7.

177. Wang Y, Shi L, Zhou H, et al. Polyethylene separators modified by ultrathin hybrid films enhancing lithium ion transport performance and Li-metal anode stability. Electrochim Acta 2018;259:386-94.

178. Han X, Gong Y, Fu KK, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 2017;16:572-9.

179. Ma L, Chen R, Hu Y, et al. Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth. Energy Storage Mater 2018;14:258-66.

180. Zhao CZ, Chen PY, Zhang R, et al. An ion redistributor for dendrite-free lithium metal anodes. Sci Adv 2018;4:3446.

181. Liu Y, Xiong S, Wang J, et al. Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Mater 2019;19:24-30.

182. Hao Z, Wu Y, Zhao Q, et al. Advanced metal-organic framework-based membranes with ion selectivity for boosting electrochemical energy storage and conversion. J Mater Chem 2021;9:25325-40.

183. Sheng L, Wang Q, Liu X, et al. Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nat Commun 2022;13:172.

184. Li C, Liu S, Shi C, et al. Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nat Commun 2019;10:1363.

185. Liu Y, Liu Q, Xin L, et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat Energy 2017:2.

186. Liu K, Zhuo D, Lee HW, et al. Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator. Adv Mater 2017;29:1603987.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/