REFERENCES

1. Gogotsi Y, Simon P. Materials science. True performance metrics in electrochemical energy storage. Science 2011;334:917-8.

2. Zu L, Zhang W, Qu L, et al. Mesoporous materials for electrochemical energy storage and conversion. Adv Energy Mater 2020;10:2002152.

3. Jiang B, Li J, Luo B, et al. LiPO2F2 electrolyte additive for high-performance Li-rich cathode material. J Energy Chem 2021;60:564-71.

4. Cheng HM, Li F. Charge delivery goes the distance. Science 2017;356:582-3.

5. Zhang Z, Zhang D, Lin H, Chen Y. Flexible fiber-shaped supercapacitors with high energy density based on self-twisted graphene fibers. J Power Sources 2019;433:226711.

6. Pu X, Wang H, Zhao D, et al. Recent progress in rechargeable sodium-ion batteries: toward high-power applications. Small 2019;15:e1805427.

7. Mishra K, Yadav N, Hashmi SA. Recent progress in electrode and electrolyte materials for flexible sodium-ion batteries. J Mater Chem A 2020;8:22507-43.

8. Xu B, Qian D, Wang Z, Meng YS. Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R Rep 2012;73:51-65.

9. Choi JU, Voronina N, Sun Y, Myung S. Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries: yesterday, today, and tomorrow. Adv Energy Mater 2020;10:2002027.

10. Zhai L, Li G, Yang X, et al. 30 Li + -accommodating covalent organic frameworks as ultralong cyclable high-capacity Li-ion battery electrodes. Adv Funct Materials 2022;32:2108798.

11. Wang L, Światowska J, Dai S, et al. Promises and challenges of alloy-type and conversion-type anode materials for sodium-ion batteries. Mater Today Energy 2019;11:46-60.

12. Zhang H, Hasa I, Passerini S. Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials. Adv Energy Mater 2018;8:1702582.

13. Li X, Wang Y, Lv L, Zhu G, Qu Q, Zheng H. Electroactive organics as promising anode materials for rechargeable lithium ion and sodium ion batteries. Energy Mater 2022;2:200014.

14. Zhao L, Hu Z, Lai W, et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv Energy Mater 2021;11:2002704.

15. Li G, Chen K, Wang Y, et al. Cream roll-inspired advanced MnS/C composite for sodium-ion batteries: encapsulating MnS cream into hollow N,S-co-doped carbon rolls. Nanoscale 2020;12:8493-501.

16. Hou H, Qiu X, Wei W, Zhang Y, Ji X. Carbon anode materials for advanced sodium-ion batteries. Adv Energy Mater 2017;7:1602898.

17. Chang H, Wu Y, Han X, Yi T. Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater 2021; doi: 10.20517/energymater.2021.02.

18. Cao L, Liang X, Ou X, et al. Heterointerface engineering of hierarchical Bi2S3/MoS2 with self-generated rich phase boundaries for superior sodium storage performance. Adv Funct Mater 2020;30:1910732.

19. Xiong X, Yang C, Wang G, et al. SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ Sci 2017;10:1757-63.

20. Yang C, Liang X, Ou X, et al. Heterostructured nanocube-shaped binary sulfide (SnCo)S2 interlaced with S-doped graphene as a high-performance anode for advanced Na+ batteries. Adv Funct Mater 2019;29:1807971.

21. Ou X, Cao L, Liang X, et al. Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability. ACS Nano 2019;13:3666-76.

22. Chen K, Li G, Hu Z, et al. Simple preparation of baroque Mn-based chalcogenide/honeycomb-like carbon composites for sodium-ion batteries from renewable Pleurotus Eryngii. Energy Fules ;35:6265-71.

23. Wu C, Dou SX, Yu Y. The state and challenges of anode materials based on conversion reactions for sodium storage. Small 2018;14:e1703671.

24. Lu Y, Yu L, Lou XW. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 2018;4:972-96.

25. Chae S, Ko M, Kim K, Ahn K, Cho J. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 2017;1:47-60.

26. Yang Z, Song Y, Zhang C, et al. Porous 3D silicon-diamondyne blooms excellent storage and diffusion properties for Li, Na, and K ions. Adv Energy Mater 2021;11:2101197.

27. Ke C, Liu F, Zheng Z, et al. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met 2021;40:1347-56.

28. Cheng X, Shao R, Li D, et al. A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage. Adv Funct Mater 2021;31:2011264.

29. Lei K, Wang J, Chen C, et al. Recent progresses on alloy-based anodes for potassium-ion batteries. Rare Met 2020;39:989-1004.

30. Imtiaz S, Amiinu IS, Xu Y, Kennedy T, Blackman C, Ryan KM. Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Mater Today 2021;48:241-69.

31. Niu J, Zhang Z, Aurbach D. Alloy anode materials for rechargeable Mg ion batteries. Adv Energy Mater 2020;10:2000697.

32. Wu X, He G, Ding Y. Dealloyed nanoporous materials for rechargeable post-lithium batteries. ChemSusChem 2020;13:3287.

33. Qi S, Deng J, Zhang W, Feng Y, Ma J. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met 2020;39:970-88.

34. Chen Q, Ding Y, Chen M. Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bull 2018;43:43-8.

35. Artymowicz D, Erlebacher J, Newman R. Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold. Philos Mag 2009;89:1663-93.

36. Feng J, Zhang Z, Ci L, Zhai W, Ai Q, Xiong S. Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries. J Power Sources 2015;287:177-83.

37. Zhang H, An W, Song H, et al. Synthesis of micro-sized porous antimony via vapor dealloying for high-performance Na-ion battery anode. Solid State Ionics 2020;352:115365.

38. Sohn M, Lee DG, Park H, Park C, Choi J, Kim H. Microstructure controlled porous silicon particles as a high capacity lithium storage material via dual step pore engineering. Adv Funct Mater 2018;28:1800855.

39. Lin N, Li T, Han Y, Zhang Q, Xu T, Qian Y. Mesoporous hollow Ge microspheres prepared via molten-salt metallothermic reaction for high-performance Li-storage anode. ACS Appl Mater Interfaces 2018;10:8399-404.

40. Yang Y, Liu S, Bian X, Feng J, An Y, Yuan C. Morphology- and porosity-tunable synthesis of 3D nanoporous SiGe alloy as a high-performance lithium-ion battery anode. ACS Nano 2018;12:2900-8.

41. Gao H, Niu J, Zhang C, Peng Z, Zhang Z. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries. ACS Nano 2018;12:3568-77.

42. Yan Y, Shi Y, Wang Z, Qin C, Zhang Y. AlF3 microrods modified nanoporous Ge/Ag anodes fabricated by one-step dealloying strategy for stable lithium storage. Mater Letters 2020;276:128254.

43. Ma W, Yin K, Gao H, Niu J, Peng Z, Zhang Z. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy 2018;54:349-59.

44. Zhang H, Zhang M, Zhang M, et al. Hybrid aerogel-derived Sn-Ni alloy immobilized within porous carbon/graphene dual matrices for high-performance lithium storage. J Colloid Interface Sci 2017;501:267-72.

45. Yin H, Xiao W, Mao X, Zhu H, Wang D. Preparation of a porous nanostructured germanium from GeO2 via a “reduction-alloying-dealloying” approach. J Mater Chem A 2015;3:1427-30.

46. Yuan Y, Xiao W, Wang Z, Fray DJ, Jin X. Efficient nanostructuring of silicon by electrochemical alloying/dealloying in molten salts for improved lithium storage. Angew Chem Int Ed Engl 2018;57:15743-8.

47. Wada T, Ichitsubo T, Yubuta K, Segawa H, Yoshida H, Kato H. Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. Nano Lett 2014;14:4505-10.

48. Wada T, Yamada J, Kato H. Preparation of three-dimensional nanoporous Si using dealloying by metallic melt and application as a lithium-ion rechargeable battery negative electrode. J Power Sources 2016;306:8-16.

49. Chen Y, Yuan Y, Xu C, et al. Multi-step low-cost synthesis of ultrafine silicon porous structures for high-reversible lithium-ion battery anodes. J Mater Sci 2020;55:13938-50.

50. Wang J, Huang W, Kim YS, et al. Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res 2020;13:1558-63.

51. An W, Gao B, Mei S, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat Commun 2019;10:1447.

52. An Y, Tian Y, Wei H, et al. Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode. Adv Funct Mater 2019;30:1908721.

53. Míguez H, Meseguer F, López C, et al. Germanium FCC structure from a colloidal crystal template. Langmuir 2000;16:4405-8.

54. Song T, Jeon Y, Samal M, et al. A Ge inverse opal with porous walls as an anode for lithium ion batteries. Energy Environ Sci 2012;5:9028.

55. Geier S, Jung R, Peters K, Gasteiger HA, Fattakhova-rohlfing D, Fässler TF. A wet-chemical route for macroporous inverse opal Ge anodes for lithium ion batteries with high capacity retention. Sustainable Energy Fuels 2018;2:85-90.

56. Esmanski A, Ozin GA. Silicon inverse-opal-based macroporous materials as negative electrodes for lithium ion batteries. Adv Funct Mater 2009;19:1999-2010.

57. Jeong J, Kim K, Jung D, Kim K, Lee S, Oh E. High-performance characteristics of silicon inverse opal synthesized by the simple magnesium reduction as anodes for lithium-ion batteries. J Power Sources 2015;300:182-9.

58. Gowda SR, Pushparaj V, Herle S, et al. Three-dimensionally engineered porous silicon electrodes for Li-ion batteries. Nano Lett 2012;12:6060-5.

59. Bao Z, Weatherspoon MR, Shian S, et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 2007;446:172-5.

60. Hwa Y, Kim W, Yu B, Hong S, Sohn H. Mesoporous nano-Si anode for Li-ion batteries produced by magnesio-mechanochemical reduction of amorphous SiO2. Energy Technol 2013;1:327-31.

61. Wang B, Li W, Wu T, Guo J, Wen Z. Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries. Energy Stor Mater 2018;15:139-47.

62. Entwistle J, Rennie A, Patwardhan S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond. J Mater Chem A 2018;6:18344-56.

63. Jia H, Kloepsch R, He X, et al. Reversible storage of lithium in three-dimensional macroporous germanium. Chem Mater 2014;26:5683-8.

64. Lin N, Han Y, Zhou J, et al. A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries. Energy Environ Sci 2015;8:3187-91.

65. Manukyan KV, Schools RS, Mukasyan AS. Size-tunable germanium particles prepared by self-sustaining reduction of germanium oxide. J Solid State Chem 2019;270:92-7.

66. Peterson AK, Morgan DG, Skrabalak SE. Aerosol synthesis of porous particles using simple salts as a pore template. Langmuir 2010;26:8804-9.

67. Dai F, Zai J, Yi R, et al. Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nat Commun 2014;5:3605.

68. Tang D, Yu H, Zhao J, et al. Bottom-up synthesis of mesoporous germanium as anodes for lithium-ion batteries. J Colloid Interface Sci 2020;561:494-500.

69. Ge M, Fang X, Rong J, Zhou C. Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 2013;24:422001.

70. Huang Z, Geyer N, Werner P, de Boor J, Gösele U. Metal-assisted chemical etching of silicon: a review. Adv Mater 2011;23:285-308.

71. Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J. Uniform, Axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew Chem 2005;117:2797-802.

72. Li X, Yan C, Wang J, et al. Stable silicon anodes for lithium-ion batteries using mesoporous metallurgical silicon. Adv Energy Mater 2015;5:1401556.

73. Bai F, Li M, Song D, Yu H, Jiang B, Li Y. One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H2O2 solution at room temperature. J Solid State Chem 2012;196:596-600.

74. Hochbaum AI, Gargas D, Hwang YJ, Yang P. Single crystalline mesoporous silicon nanowires. Nano Lett 2009;9:3550-4.

75. Zhong X, Qu Y, Lin YC, Liao L, Duan X. Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS Appl Mater Interfaces 2011;3:261-70.

76. Zhang Z, Wang Y, Ren W, Tan Q, Zhong Z, Su F. Low-cost synthesis of porous silicon via ferrite-assisted chemical etching and their application as Si-based anodes for Li-ion batteries. Adv Electron Mater 2015;1:1400059.

77. Cao M, Li SY, Deng JX, et al. Preparation of large-area porous silicon through Cu-assisted chemical etching. MSF 2016;847:78-83.

78. Rezvani SJ, Pinto N, Boarino L. Rapid formation of single crystalline Ge nanowires by anodic metal assisted etching. Cryst Eng Comm 2016;18:7843-8.

79. Han X, Zhang Z, Chen H, et al. Bulk boron doping and surface carbon coating enabling fast-charging and stable Si anodes: from thin film to thick Si electrodes. J Mater Chem A 2021;9:3628-36.

80. Uhlir A. Electrolytic shaping of germanium and Silicon. Bell Syst Tech J 1956;35:333-47.

81. Thakur M, Sinsabaugh SL, Isaacson MJ, Wong MS, Biswal SL. Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries. Sci Rep 2012;2:795.

82. Turner DR. Electropolishing silicon in hydrofluoric acid solutions. J Electrochem Soc 1958;105:402.

83. Bioud YA, Boucherif A, Belarouci A, et al. Fast growth synthesis of mesoporous germanium films by high frequency bipolar electrochemical etching. Electrochim Acta 2017;232:422-30.

84. Bang BM, Kim H, Lee J, Cho J, Park S. Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography. Energy Environ Sci 2011;4:3395.

85. Jia H, Zheng J, Song J, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 2018;50:589-97.

86. Jeong YK, Huang W, Vilá RA, et al. Microclusters of kinked silicon nanowires synthesized by a recyclable iodide process for high-performance lithium-Ion battery anodes. Adv Energy Mater 2020;10:2002108.

87. Jia H, Li X, Song J, et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat Commun 2020;11:1474.

88. Yao R, Xie L, Wu Y, Meng W, He Y, Zhao D. Controllable self-assembled mesoporous silicon nanocrystals framework as anode material for Li-ion battery. Electrochim Acta 2021;390:138850.

89. Liu X, Giordano C, Antonietti M. .

90. Xiang B, An W, Fu J, et al. Graphene-encapsulated blackberry-like porous silicon nanospheres prepared by modest magnesiothermic reduction for high-performance lithium-ion battery anode. Rare Met 2021;40:383-92.

91. Chevrier VL, Zwanziger JW, Dahn JR. First principles studies of silicon as a negative electrode material for lithium-ion batteries. Can J Phys 2009;87:625-32.

92. Shenoy V, Johari P, Qi Y. Elastic softening of amorphous and crystalline Li-Si Phases with increasing Li concentration: a first-principles study. J Power Sources 2010;195:6825-30.

93. Zuo X, Zhu J, Müller-buschbaum P, Cheng Y. Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 2017;31:113-43.

94. Shen L, Guo X, Fang X, Wang Z, Chen L. Magnesiothermically reduced diatomaceous earth as a porous silicon anode material for lithium ion batteries. J Power Sources 2012;213:229-32.

95. Mu T, Shen B, Lou S, et al. Scalable mesoporous silicon microparticles composed of interconnected nanoplates for superior lithium storage. Chem Eng J 2019;375:121923.

96. He W, Tian H, Xin F, Han W. Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high performance anode for lithium-ion batteries. J Mater Chem A 2015;3:17956-62.

97. Han X, Zhang Z, Zheng G, et al. Scalable engineering of bulk porous Si anodes for high initial efficiency and high-areal-capacity lithium-ion batteries. ACS Appl Mater Interfaces 2019;11:714-21.

98. Jia H, Gao P, Yang J, Wang J, Nuli Y, Yang Z. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv Energy Mater 2011;1:1036-9.

99. Zhou Y, Jiang X, Chen L, et al. Novel mesoporous silicon nanorod as an anode material for lithium ion batteries. Electrochim Acta 2014;127:252-8.

100. Tang J, Yin Q, Wang Q, et al. Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries. Nanoscale 2019;11:10984-91.

101. Bang BM, Lee J, Kim H, Cho J, Park S. High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv Energy Mater 2012;2:878-83.

102. Li X, Gu M, Hu S, et al. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat Commun 2014;5:4105.

103. Zhang Z, Wang Y, Ren W, et al. Scalable synthesis of interconnected porous silicon/carbon composites by the rochow reaction as high-performance anodes of lithium ion batteries. Angew Chem 2014;126:5265-9.

104. Zhong H, Zhan H, Zhou Y. Synthesis of nanosized mesoporous silicon by magnesium-thermal method used as anode material for lithium ion battery. J Power Sources 2014;262:10-4.

105. Choi S, Bok T, Ryu J, Lee J, Cho J, Park S. Revisit of metallothermic reduction for macroporous Si: compromise between capacity and volume expansion for practical Li-ion battery. Nano Energy 2015;12:161-8.

106. Liang J, Li X, Hou Z, Guo C, Zhu Y, Qian Y. Nanoporous silicon prepared through air-oxidation demagnesiation of Mg2Si and properties of its lithium ion batteries. Chem Commun (Camb) 2015;51:7230-3.

107. Jiang T, Zhang R, Yin Q, et al. Morphology, composition and electrochemistry of a nano-porous silicon versus bulk silicon anode for lithium-ion batteries. J Mater Sci 2017;52:3670-7.

108. Liu X, Miao R, Yang J, et al. Scalable and cost-effective preparation of hierarchical porous silicon with a high conversion yield for superior lithium-ion storage. Energy Technol 2016;4:593-9.

109. Jia H, Gao P, Yang J, Wang J, Nuli Y, Yang Z. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv Energy Mater 2011;1:1036-9.

110. Xu Z, Gang Y, Garakani MA, Abouali S, Huang J, Kim J. Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion. J Mater Chem A 2016;4:6098-106.

111. Kim Y, Lee J, Kim H. Nanoporous silicon flakes as anode active material for lithium-ion batteries. Physica E Low Dimens Syst Nanostruct 2017;85:223-6.

112. Kim N, Park H, Yoon N, Lee JK. Zeolite-templated mesoporous silicon particles for advanced lithium-ion battery anodes. ACS Nano 2018;12:3853-64.

113. Wang F, Zhao B, Zi W, Du H. Ionothermal synthesis of crystalline nanoporous silicon and its use as anode materials in lithium-ion batteries. Nanoscale Res Lett 2019;14:196.

114. Yang Z, Du Y, Hou G, Ouyang Y, Ding F, Yuan F. Nanoporous silicon spheres preparation via a controllable magnesiothermic reduction as anode for Li-ion batteries. Electrochim Acta 2020;329:135141.

115. Sun X, Huang H, Chu K, Zhuang Y. Anodized macroporous silicon anode for integration of lithium-ion batteries on chips. J Elec Mater 2012;41:2369-75.

116. Wang F, Sun L, Zi W, Zhao B, Du H. Solution synthesis of porous silicon particles as an anode material for lithium ion batteries. Chemistry 2019;25:9071-7.

117. Wada T, Kato H. Preparation of nanoporous Si by dealloying in metallic melt and its application for negative electrode of lithium ion battery. Mater Today: Proc 2017;4:11465-9.

118. Ge M, Lu Y, Ercius P, et al. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett 2014;14:261-8.

119. Gao P, Tang H, Xing A, Bao Z. Porous silicon from the magnesiothermic reaction as a high-performance anode material for lithium ion battery applications. Electrochim Acta 2017;228:545-52.

120. Chen X, Bi Q, Sajjad M, et al. One-dimensional porous silicon nanowires with large surface area for fast charge-discharge lithium-ion batteries. Nanomaterials (Basel) 2018;8:285.

121. Guo R, Zhang S, Ying H, Yang W, Wang J, Han WQ. New, Effective, and low-cost dual-functional binder for porous silicon anodes in lithium-ion batteries. ACS Appl Mater Interfaces 2019;11:14051-8.

122. Wang W, Favors Z, Ionescu R, et al. Monodisperse porous silicon spheres as anode materials for lithium ion batteries. Sci Rep 2015;5:8781.

123. Pathak AD, Chanda UK, Samanta K, Mandal A, Sahu KK, Pati S. Selective leaching of Al from hypereutectic Al-Si alloy to produce nano-porous silicon (NPS) anodes for lithium ion batteries. Electrochim Acta 2019;317:654-62.

124. Entwistle JE, Patwardhan SV. Enabling scale-up of mesoporous silicon for lithium-ion batteries: a systematic study of a thermal moderator. RSC Adv 2021;11:3801-7.

125. Zeng Y, Huang Y, Liu N, et al. N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries. J Energy Chem 2021;54:727-35.

126. Shen C, Ge M, Luo L, et al. In situ and ex situ TEM study of lithiation behaviours of porous silicon nanostructures. Sci Rep 2016;6:31334.

127. Liu N, Lu Z, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 2014;9:187-92.

128. Shi J, Zu L, Gao H, Hu G, Zhang Q. Silicon-based self-assemblies for high volumetric capacity Li-ion batteries via effective stress management. Adv Funct Mater 2020;30:2002980.

129. Choi JH, Kim HK, Jin EM, et al. Facile and scalable synthesis of silicon nanowires from waste rice husk silica by the molten salt process. J Hazard Mater 2020;399:122949.

130. Kim H, Han B, Choo J, Cho J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew Chem 2008;120:10305-8.

131. Tao Y, Zeng G, Xiao C, Liu Y, Qian Y, Feng J. Porosity controlled synthesis of nanoporous silicon by chemical dealloying as anode for high energy lithium-ion batteries. J Colloid Interface Sci 2019;554:674-81.

132. Wang J, Liao L, Lee HR, et al. Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy 2019;61:404-10.

133. Morito H, Yamada T, Ikeda T, Yamane H. Na-Si binary phase diagram and solution growth of silicon crystals. JAlloys and Compd 2009;480:723-6.

134. Xu Y, Swaans E, Basak S, Zandbergen HW, Borsa DM, Mulder FM. Reversible Na-ion uptake in Si nanoparticles. Adv Energy Mater 2016;6:1501436.

135. Han Y, Lin N, Xu T, et al. An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries. Nanoscale 2018;10:3153-8.

136. Lim C, Huang T, Shao P, et al. Experimental study on sodiation of amorphous silicon for use as sodium-ion battery anode. Electrochim Acta 2016;211:265-72.

137. Qiu DF, Ma X, Zhang JD, Lin ZX, Zhao B. Mesoporous silicon microspheres produced from in situ magnesiothermic reduction of silicon oxide for high-performance anode material in sodium-ion batteries. Nanoscale Res Lett 2018;13:275.

138. Du FH, Li B, Fu W, Xiong YJ, Wang KX, Chen JS. Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability. Adv Mater 2014;26:6145-50.

139. Yi Z, Lin N, Zhao Y, et al. A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes. Energy Stor Mater 2019;17:93-100.

140. Son Y, Kim N, Lee T, et al. Calendering-compatible macroporous architecture for silicon-graphite composite toward high-energy lithium-ion batteries. Adv Mater 2020;32:e2003286.

141. Park MH, Kim K, Kim J, Cho J. Flexible dimensional control of high-capacity Li-ion-battery anodes: from 0D hollow to 3D porous germanium nanoparticle assemblies. Adv Mater 2010;22:415-8.

142. Yang L, Gao Q, Li L, Tang Y, Wu Y. Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochem Commun 2010;12:418-21.

143. Ke FS, Mishra K, Jamison L, et al. Tailoring nanostructures in micrometer size germanium particles to improve their performance as an anode for lithium ion batteries. Chem Commun (Camb) 2014;50:3713-5.

144. Liang J, Li X, Hou Z, et al. Honeycomb-like macro-germanium as high-capacity anodes for lithium-ion batteries with good cycling and rate performance. Chem Mater 2015;27:4156-64.

145. Yoon T, Song G, Harzandi A, et al. Intramolecular deformation of zeotype-borogermanate toward a three-dimensional porous germanium anode for high-rate lithium storage. J Mater Chem A 2018;6:15961-7.

146. Kwon D, Ryu J, Shin M, et al. Synthesis of dual porous structured germanium anodes with exceptional lithium-ion storage performance. J Power Sources 2018;374:217-24.

147. Choi S, Kim J, Choi NS, Kim MG, Park S. Cost-effective scalable synthesis of mesoporous germanium particles via a redox-transmetalation reaction for high-performance energy storage devices. ACS Nano 2015;9:2203-12.

148. Zhang C, Lin Z, Yang Z, et al. Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage. Chem Mater 2015;27:2189-94.

149. Liu X, Lin N, Cai W, et al. Mesoporous germanium nanoparticles synthesized in molten zinc chloride at low temperature as a high-performance anode for lithium-ion batteries. Dalton Trans 2018;47:7402-6.

150. Choi S, Cho YG, Kim J, et al. Mesoporous germanium anode materials for lithium-ion battery with exceptional cycling stability in wide temperature range. Small 2017;13:1603045.

151. Mishra K, Liu X, Ke F, Zhou X. Porous germanium enabled high areal capacity anode for lithium-ion batteries. Compos B Eng 2019;163:158-64.

152. Sosa AN, González I, Trejo A, Miranda Á, Salazar F, Cruz-Irisson M. Effects of lithium on the electronic properties of porous Ge as anode material for batteries. J Comput Chem 2020;41:2653-62.

153. Kohandehghan A, Cui K, Kupsta M, et al. Activation with Li enables facile sodium storage in germanium. Nano Lett 2014;14:5873-82.

154. Lu X, Adkins ER, He Y, et al. Germanium as a sodium ion battery material: in situ TEM reveals fast sodiation kinetics with high capacity. Chem Mater 2016;28:1236-42.

155. Li M, Wang Z, Fu J, Ma K, Detsi E. In situ electrochemical dilatometry study of capacity fading in nanoporous Ge-based Na-ion battery anodes. Scr Mater 2019;164:52-6.

156. Yi Z, Lin N, Li T, Han Y, Li Y, Qian Y. Meso-porous amorphous Ge: synthesis and mechanism of an anode material for Na and K storage. Nano Res 2019;12:1824-30.

157. Song T, Yan M, Qian M. A dealloying approach to synthesizing micro-sized porous tin (Sn) from immiscible alloy systems for potential lithium-ion battery anode applications. J Porous Mater 2015;22:713-9.

158. Ryu S, Shim HC, Song JT, et al. High-pressure evaporation-based nanoporous black Sn for enhanced performance of lithium-ion battery anodes. Part Part Syst Charact 2019;36:1800331.

159. Cook JB, Detsi E, Liu Y, et al. Nanoporous tin with a granular hierarchical ligament morphology as a highly stable Li-ion battery anode. ACS Appl Mater Interfaces 2017;9:293-303.

160. Wang JW, Liu XH, Mao SX, Huang JY. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett 2012;12:5897-902.

161. Kim C, Lee K, Kim I, et al. Long-term cycling stability of porous Sn anode for sodium-ion batteries. J Power Sources 2016;317:153-8.

162. Wang L, Ni Y, Lei K, Dong H, Tian S, Li F. 3D porous tin created by tuning the redox potential acts as an advanced electrode for sodium-ion batteries. Chem Sus Chem 2018;11:3376-81.

163. Kim IT, Allcorn E, Manthiram A. Cu6Sn5-TiC-C nanocomposite anodes for high-performance sodium-ion batteries. J Power Sources 2015;281:11-7.

164. Zhang B, Rousse G, Foix D, Dugas R, Corte DA, Tarascon JM. Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries. Adv Mater 2016;28:9824-30.

165. Liang S, Cheng Y, Zhu J, Xia Y, Müller-buschbaum P. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes. Small Methods 2020;4:2000218.

166. Detsi E, Petrissans X, Yan Y, et al. Tuning ligament shape in dealloyed nanoporous tin and the impact of nanoscale morphology on its applications in Na-ion alloy battery anodes. Phys Rev Materials 2018:2.

167. Guo M, Meng W, Zhang X, et al. Electrochemical behavior and self-organization of porous Sn nanocrystals@acetylene black microspheres in lithium-ion half cells. Appl Surf Sci 2019;470:36-43.

168. Cheng Y, Huang J, Li R, et al. Enhanced cycling performances of hollow Sn compared to solid Sn in Na-ion battery. Electrochim Acta 2015;180:227-33.

169. Shi L, Wang W. Synthesis and sodium storage performance of Sb porous nanostructure. J Alloys Compd 2020;846:156369.

170. Li M, Qiu T, Foucher AC, et al. Impact of hierarchical nanoporous architectures on sodium storage in antimony-based sodium-ion battery anodes. ACS Appl Energy Mater 2020;3:11231-41.

171. Yuan Y, Jan S, Wang Z, Jin X. A simple synthesis of nanoporous Sb/C with high Sb content and dispersity as an advanced anode for sodium ion batteries. J Mater Chem A 2018;6:5555-9.

172. Ma W, Wang J, Gao H, et al. A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy Stor Mater 2018;13:247-56.

173. Liu S, Feng J, Bian X, Liu J, Xu H. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ Sci 2016;9:1229-36.

174. Hou H, Jing M, Yang Y, et al. Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries. J Mater Chem A 2015;3:2971-7.

175. Hou H, Jing M, Yang Y, Zhu Y, Fang L, Song W, Pan C, Yang X, Ji X. Sodium/lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. ACS Appl Mater Interfaces 2014;6:16189-96.

176. Rodriguez JR, Hamann HJ, Mitchell GM, Ortalan V, Pol VG, Ramachandran PV. Three-Dimensional Antimony Nanochains for Lithium-Ion Storage. ACS Appl Nano Mater 2019;2:5351-5.

177. Meng W, Guo M, Chen J, Li D, Wang Z, Yang F. Porous Sb with three-dimensional Sb nanodendrites as electrode material for high-performance Li/Na-ion batteries. Nanotechnology 2020;31:175401.

178. Li H, Wang K, Zhou M, et al. Facile Tailoring of Multidimensional Nanostructured Sb for Sodium Storage Applications. ACS Nano 2019;13:9533-40.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/