REFERENCES
1. He G, Ciez R, Moutis P, Kar S, Whitacre JF. The economic end of life of electrochemical energy storage. Appl Energy 2020;273:115151.
2. Paul S. Materials and electrochemistry: present and future battery. J Electrochem Sci Technol 2016;7:115-31.
3. Wagner FT, Lakshmanan B, Mathias MF. Electrochemistry and the future of the automobile. J Phys Chem Lett 2010;1:2204-19.
4. Kwak WJ, Rosy, Sharon D, et al. Lithium-oxygen batteries and related systems: potential, status, and future. Chem Rev 2020;120:6626-83.
5. Li H, Ma L, Han C, et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 2019;62:550-87.
6. Liu Y, Sun Q, Li W, Adair KR, Li J, Sun X. A comprehensive review on recent progress in aluminum-air batteries. Green Energy Environ 2017;2:246-77.
7. Zhang T, Tao Z, Chen J. Magnesium-air batteries: from principle to application. Mater Horiz 2014;1:196-206.
8. Li C, Sun Y, Gebert F, Chou S. Current progress on rechargeable magnesium-air battery. Adv Energy Mater 2017;7:1700869.
9. Rahman MA, Wang X, Wen C. High energy density metal-air batteries: a review. J Electrochem Soc 2013;160:A1759-71.
10. Wang H, Ryu J, Shao Y, et al. Advancing electrolyte solution chemistry and interfacial electrochemistry of divalent metal batteries. ChemElectroChem 2021;8:3013-29.
11. Mu T, Zhang J, Shi R, et al. Ultrahigh rate capability and long cycling stability of dual-ion batteries enabled by TiO2 microspheres with abundant oxygen vacancies. Chem Commun 2020;56:8039-42.
12. Vardar G, Nelson EG, Smith JG, et al. Identifying the discharge product and reaction pathway for a secondary Mg/O2 battery. Chem Mater 2015;27:7564-8.
13. Shiga T, Hase Y, Kato Y, Inoue M, Takechi K. A rechargeable non-aqueous Mg-O2 battery. Chem Commun 2013;49:9152-4.
14. Shiga T, Hase Y, Yagi Y, Takahashi N, Takechi K. Catalytic cycle employing a TEMPO-anion complex to obtain a secondary Mg-O2 battery. J Phys Chem Lett 2014;5:1648-52.
15. Dong Q, Yao X, Luo J, Zhang X, Hwang H, Wang D. Enabling rechargeable non-aqueous Mg-O2 battery operations with dual redox mediators. Chem Commun 2016;52:13753-6.
16. Smith JG, Naruse J, Hiramatsu H, Siegel DJ. Theoretical limiting potentials in Mg/O2 Batteries. Chem Mater 2016;28:1390-401.
17. Smith JG, Naruse J, Hiramatsu H, Siegel DJ. Intrinsic conductivity in magnesium-oxygen battery discharge products: MgO and MgO2. Chem Mater 2017;29:3152-63.
18. Chen X, Liu X, Le Q, Zhang M, Liu M, Atrens A. A comprehensive review of the development of magnesium anodes for primary batteries. J Mater Chem A 2021;9:12367-99.
19. Li W, Li C, Zhou C, Ma H, Chen J. Metallic magnesium nano/mesoscale structures: their shape-controlled preparation and mg/air battery applications. Angew Chem Int Ed 2006;45:6009-12.
20. Xin G, Wang X, Wang C, Zheng J, Li X. Porous Mg thin films for Mg-air batteries. Dalton Trans 2013;42:16693-6.
21. Zhao Y, Du A, Dong S, et al. A bismuth-based protective layer for magnesium metal anode in noncorrosive electrolytes. ACS Energy Lett 2021;6:2594-601.
22. Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009;30:484-98.
23. Deng M, Höche D, Lamaka SV, Snihirova D, Zheludkevich ML. Mg-Ca binary alloys as anodes for primary Mg-air batteries. J Power Sources 2018;396:109-18.
24. Ma J, Wang G, Li Y, Qin C, Ren F. Electrochemical investigations on AZ series magnesium alloys as anode materials in a sodium chloride solution. J Materi Eng Perform 2019;28:2873-80.
25. Ma J, Wang G, Li Y, Ren F, Volinsky AA. Electrochemical performance of Mg-air batteries based on AZ series magnesium alloys. Ionics 2019;25:2201-9.
26. Wang N, Mu Y, Xiong W, Zhang J, Li Q, Shi Z. Effect of crystallographic orientation on the discharge and corrosion behaviour of AP65 magnesium alloy anodes. Corrosion Science 2018;144:107-26.
27. Zhao J, Yu K, Hu Y, et al. Discharge behavior of Mg-4wt%Ga-2wt%Hg alloy as anode for seawater activated battery. Electrochim Acta 2011;56:8224-31.
28. Yuasa M, Huang X, Suzuki K, Mabuchi M, Chino Y. Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries. J Power Sources 2015;297:449-56.
29. Wang N, Wang R, Peng C, Feng Y, Zhang X. Influence of aluminium and lead on activation of magnesium as anode. T Nonferr Metal Soc 2010;20:1403-11.
30. Liu X, Xue J, Liu S. Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities. Mater Des 2018;160:138-46.
31. Sivashanmugam A, Prem kumar T, Renganathan NG, Gopukumar S. Performance of a magnesium-lithium alloy as an anode for magnesium batteries. J Appl Electrochem 2004;34:1135-9.
32. Gusieva K, Davies CHJ, Scully JR, Birbilis N. Corrosion of magnesium alloys: the role of alloying. Int Mater Rev 2014;60:169-94.
33. Ma Y, Li N, Li D, Zhang M, Huang X. Performance of Mg-14Li-1Al-0.1Ce as anode for Mg-air battery. J Power Sources 2011;196:2346-50.
34. Wang N, Wang R, Peng C, Peng B, Feng Y, Hu C. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery. Electrochim Acta 2014;149:193-205.
35. Liu X, Liu S, Xue J. Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries. J Power Sources 2018;396:667-74.
36. Zheng T, Hu Y, Zhang Y, Yang S, Pan F. Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries. Mater Des 2018;137:245-55.
37. Xiong H, Yu K, Yin X, Dai Y, Yan Y, Zhu H. Effects of microstructure on the electrochemical discharge behavior of Mg-6wt%Al-1wt%Sn alloy as anode for Mg-air primary battery. J Alloys Compd 2017;708:652-61.
38. Yuasa M, Huang X, Suzuki K, Mabuchi M, Chino Y. Effects of microstructure on discharge behavior of AZ91 alloy as anode for Mg–air battery. Mater Trans 2014;55:1202-7.
39. Hoey GR, Cohen M. Corrosion of anodically and cathodically polarized magnesium in aqueous media. J Electrochem Soc 1958;105:245.
40. Song G, Atrens A, Stjohn D, Nairn J, Li Y. The electrochemical corrosion of pure magnesium in 1 N NaCl. Corros Sci 1997;39:855-75.
41. Birbilis N, King A, Thomas S, Frankel G, Scully J. Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution. Electrochim Acta 2014;132:277-83.
42. Lebouil S, Duboin A, Monti F, Tabeling P, Volovitch P, Ogle K. A novel approach to on-line measurement of gas evolution kinetics: application to the negative difference effect of Mg in chloride solution. Electrochim Acta 2014;124:176-82.
43. Song G, Atrens A. Understanding magnesium corrosion-a framework for improved alloy performance. Adv Eng Mater 2003;5:837-58.
44. Richey FW, Mccloskey BD, Luntz AC. Mg anode corrosion in aqueous electrolytes and implications for Mg-air batteries. J Electrochem Soc 2016;163:A958-63.
45. Shrestha N, Raja KS, Utgikar V. Mg-RE alloy anode materials for Mg-air battery application. J Electrochem Soc 2019;166:A3139-53.
46. Sathyanarayana S, Munichandraiah N. A new magnesium - air cell for long-life applications. J Appl Electrochem 1981;11:33-9.
47. Deyab M. Decyl glucoside as a corrosion inhibitor for magnesium-air battery. J Power Sources 2016;325:98-103.
48. Vaghefinazari B, Höche D, Lamaka SV, Snihirova D, Zheludkevich ML. Tailoring the Mg-air primary battery performance using strong complexing agents as electrolyte additives. J Power Sources 2020;453:227880.
49. Dinesh M, Saminathan K, Selvam M, Srither S, Rajendran V, Kaler KV. Water soluble graphene as electrolyte additive in magnesium-air battery system. J Power Sources 2015;276:32-8.
50. Liu J, Xu C, Chen Z, Ni S, Shen ZX. Progress in aqueous rechargeable batteries. Green Energy Environ 2018;3:20-41.
51. Lu Z, Schechter A, Moshkovich M, Aurbach D. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J Electroanal Chem 1999;466:203-17.
52. Vardar G, Smith JG, Thompson T, et al. Mg/O2 Battery based on the magnesium–aluminum chloride complex (MACC) electrolyte. Chem Mater 2016;28:7629-37.
53. Yi J, Liu X, Guo S, Zhu K, Xue H, Zhou H. Novel stable gel polymer electrolyte: toward a high safety and long life Li-air battery. ACS Appl Mater Interfaces 2015;7:23798-804.
54. Liew SY, Juan JC, Lai CW, Pan G, Yang TC, Lee TK. An eco-friendly water-soluble graphene-incorporated agar gel electrolyte for magnesium-air batteries. Ionics 2019;25:1291-301.
55. Li L, Chen H, He E, et al. High-energy-density magnesium-air battery based on dual-layer gel electrolyte. Angew Chem Int Ed 2021;60:15317-22.
56. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 2009;8:621-9.
57. Galiński M, Lewandowski A, Stępniak I. Ionic liquids as electrolytes. Electrochim Acta 2006;51:5567-80.
58. Macfarlane DR, Forsyth M, Howlett PC, et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat Rev Mater 2016;1:15005.
59. Han L, Lehmann ML, Zhu J, et al. Recent developments and challenges in hybrid solid electrolytes for lithium-ion batteries. Front Energy Res 2020;8:202.
60. Karuppasamy K, Theerthagiri J, Vikraman D, et al. Ionic liquid-based electrolytes for energy storage devices: a brief review on their limits and applications. Polymers 2020;12:918.
61. Åvall G, Mindemark J, Brandell D, Johansson P. Sodium-ion battery electrolytes: modeling and simulations. Adv Energy Mater 2018;8:1703036.
62. Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN. Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci 2014;66:1-86.
63. Mandai T, Dokko K, Watanabe M. Solvate ionic liquids for Li, Na, K, and Mg batteries. Chem Rec 2018;19:708-22.
64. Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z. Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives. Adv Mater 2017;29:1604685.
65. Kang Y, Liang F, Hayashi K. Hybrid sodium-air cell with Na[FSA-C2C1im][FSA] ionic liquid electrolyte. Electrochim Acta 2016;218:119-24.
66. Xie J, Zhang Q. Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes. Small 2019;15:e1805061.
67. Dokko K, Tachikawa N, Yamauchi K, et al. Solvate ionic liquid electrolyte for Li-S batteries. J Electrochem Soc 2013;160:A1304-10.
68. Li Z, Kamei Y, Haruta M, et al. Si/Li2S battery with solvate ionic liquid electrolyte. Electrochemistry 2016;84:887-90.
69. Yan Y, Gunzelmann D, Pozo-gonzalo C, et al. Investigating discharge performance and Mg interphase properties of an Ionic Liquid electrolyte based Mg-air battery. Electrochim Acta 2017;235:270-9.
70. Khoo T, Somers A, Torriero AA, Macfarlane DR, Howlett PC, Forsyth M. Discharge behaviour and interfacial properties of a magnesium battery incorporating trihexyl(tetradecyl)phosphonium based ionic liquid electrolytes. Electrochim Acta 2013;87:701-8.
71. Zhu N, Zhang K, Wu F, Bai Y, Wu C. Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries. Energy Mater Adv 2021;2021:1-29.
72. Kar M, Ma Z, Azofra LM, Chen K, Forsyth M, MacFarlane DR. Ionic liquid electrolytes for reversible magnesium electrochemistry. Chem Commun 2016;52:4033-6.
73. Su S, Nuli Y, Wang N, Yusipu D, Yang J, Wang J. Magnesium borohydride-based electrolytes containing 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide ionic liquid for rechargeable magnesium batteries. J Electrochem Soc 2016;163:D682-8.
74. Gao X, Mariani A, Jeong S, et al. Prototype rechargeable magnesium batteries using ionic liquid electrolytes. J Power Sources 2019;423:52-9.
75. Law Y, Schnaidt J, Brimaud S, Behm R. Oxygen reduction and evolution in an ionic liquid ([BMP][TFSA]) based electrolyte: a model study of the cathode reactions in Mg-air batteries. J Power Sources 2016;333:173-83.
76. Bozorgchenani M, Fischer P, Schnaidt J, et al. Electrocatalytic oxygen reduction and oxygen evolution in Mg-free and Mg-containing ionic liquid 1-Butyl-1-Methylpyrrolidinium Bis (Trifluoromethanesulfonyl) imide. ChemElectroChem 2018;5:2600-11.
77. Jusys Z, Schnaidt J, Behm RJ. O2 reduction on a Au film electrode in an ionic liquid in the absence and presence of Mg2+ ions: product formation and adlayer dynamics. J Chem Phys 2019;150:041724.
78. Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 2004;108:17886-92.
79. Huang Z, Wang J, Peng Y, Jung C, Fisher A, Wang X. Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv Energy Mater 2017;7:1700544.
80. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 2005;56:9-35.
81. Cheng F, Chen J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 2012;41:2172-92.
82. Perez J, Gonzalez E, Ticianelli E. Oxygen electrocatalysis on thin porous coating rotating platinum electrodes. Electrochim Acta 1998;44:1329-39.
83. Huang Q, Yang H, Tang Y, Lu T, Akins DL. Carbon-supported Pt-Co alloy nanoparticles for oxygen reduction reaction. Electrochem Commun 2006;8:1220-4.
84. Chen C, Kang Y, Huo Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014;343:1339-43.
85. Zhao Y, Wu Y, Liu J, Wang F. Dependent relationship between quantitative lattice contraction and enhanced oxygen reduction activity over Pt-Cu alloy catalysts. ACS Appl Mater Interfaces 2017;9:35740-8.
86. Jong Yoo S, Kim SK, Jeon TY, et al. Enhanced stability and activity of Pt-Y alloy catalysts for electrocatalytic oxygen reduction. Chem Commun 2011;47:11414-6.
87. Gao J, Zou J, Zeng X, Ding W. Carbon supported nano Pt-Mo alloy catalysts for oxygen reduction in magnesium-air batteries. RSC Adv 2016;6:83025-30.
88. Qaseem A, Chen F, Wu X, Johnston RL. Pt-free silver nanoalloy electrocatalysts for oxygen reduction reaction in alkaline media. Catal Sci Technol 2016;6:3317-40.
89. Kukunuri S, Naik K, Sampath S. Effects of composition and nanostructuring of palladium selenide phases, Pd4Se, Pd7Se4 and Pd17Se15, on ORR activity and their use in Mg-air batteries. J Mater Chem A 2017;5:4660-70.
90. Outiki O, Lamy-pitara E, Barbier J. Platinum-palladium catalysts for fuel cell oxygen electrodes. React Kinet Catal Lett 1983;23:213-20.
91. Burke LD, Casey JK. An examination of the electrochemical behavior of palladium electrodes in acid. J Electrochem Soc 1993;140:1284-91.
92. Jiang L, Hsu A, Chu D, Chen R. Oxygen reduction reaction on carbon supported Pt and Pd in alkaline solutions. J Electrochem Soc 2009;156:B370.
93. Cao Y, Yang H, Ai X, Xiao L. The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. J Electroanal Chem 2003;557:127-34.
94. Li CS, Sun Y, Lai WH, Wang JZ, Chou SL. Ultrafine Mn3O4 nanowires/three-dimensional graphene/single-walled carbon nanotube composites: superior electrocatalysts for oxygen reduction and enhanced Mg/air batteries. ACS Appl Mater Interfaces 2016;8:27710-9.
95. Lambert TN, Vigil JA, White SE, et al. Understanding the effects of cationic dopants on α-MnO2 oxygen reduction reaction electrocatalysis. J Phys Chem C 2017;121:2789-97.
96. Davis DJ, Lambert TN, Vigil JA, et al. Role of Cu-ion doping in Cu-α-MnO2 nanowire electrocatalysts for the oxygen reduction reaction. J Phys Chem C 2014;118:17342-50.
97. Wu KH, Zeng Q, Zhang B, et al. Structural origin of the activity in Mn3O4-graphene oxide hybrid electrocatalysts for the oxygen reduction reaction. ChemSusChem 2015;8:3331-9.
98. Boukoureshtlieva R, Milusheva Y, Popov I, Trifonova A, Momchilov A. Application of pyrolyzed Cobalt (II) tetramethoxyphenyl porphyrin based catalyst in metal-air systems and enzyme electrodes. Electrochim Acta 2020;353:136472.
99. Liu Y, Zhou G, Zhang Z, et al. Significantly improved electrocatalytic oxygen reduction by an asymmetrical Pacman dinuclear cobalt(ii) porphyrin-porphyrin dyad. Chem Sci 2020;11:87-96.
100. Huang J, Lu Q, Ma X, Yang X. Bio-inspired FeN5 moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. J Mater Chem A 2018;6:18488-97.
101. Liu H, Song C, Tang Y, Zhang J, Zhang J. High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts. Electrochim Acta 2007;52:4532-8.
102. Lai L, Potts JR, Zhan D, et al. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 2012;5:7936.
103. Vikkisk M, Kruusenberg I, Joost U, Shulga E, Kink I, Tammeveski K. Electrocatalytic oxygen reduction on nitrogen-doped graphene in alkaline media. Appl Catal B 2014;147:369-76.
104. Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat Commun 2014;5:4973.
105. Du J, Quinson J, Zhang D, Bizzotto F, Zana A, Arenz M. Bifunctional Pt-IrO2 catalysts for the oxygen evolution and oxygen reduction reactions: alloy nanoparticles versus nanocomposite catalysts. ACS Catal 2021;11:820-8.
106. Kang Y, Jung SC, Kim H, Han Y, Oh SH. Maximum catalytic activity of Pt3M in Li-O2 batteries: M=group V transition metals. Nano Energy 2016;27:1-7.
107. Li D, Liang J, Robertson SJ, et al. Heterogeneous bimetallic organic coordination polymer-derived Co/Fe@NC bifunctional catalysts for rechargeable Li-O2 batteries. ACS Appl Mater Interfaces 2022;14:5459-67.
108. Chen C, Li Y, Cheng D, He H, Zhou K. Graphite nanoarrays-confined Fe and Co single-atoms within graphene sponges as bifunctional oxygen electrocatalyst for ultralong lasting zinc-air battery. ACS Appl Mater Interfaces 2020;12:40415-25.
109. Xu N, Nie Q, Luo L, et al. Controllable hortensia-like MnO2 synergized with carbon nanotubes as an efficient electrocatalyst for long-term metal-air batteries. ACS Appl Mater Interfaces 2019;11:578-87.
110. Débart A, Paterson AJ, Bao J, Bruce PG. Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed 2008;47:4521-4.
111. Zhu L, Scheiba F, Trouillet V, et al. MnO2 and reduced graphene oxide as bifunctional electrocatalysts for Li-O2 batteries. ACS Appl Energy Mater 2019;2:7121-31.
112. Kim K, Kim J. Unique designed structure of bimetallic cobalt and nickel oxide nanocages with nitrogen doping as bifunctional catalysts. Ionics 2021;27:845-52.
113. Fan L; College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, No.42, Wenhua Street, Qiqihar 161006, PR China. A novel Sm0.5Sr0.5Co1-xFexO3-δ/acetylene black composite as bifunctional electrocatalyst for oxygen reduction/evolution reactions. Int J Electrochem Sci 2021;16:210722.
114. Xu M, Hou X, Yu X, Ma Z, Yang J, Yuan X. Spinel NiCo2S4 as excellent bi-functional cathode catalysts for rechargeable Li-O2 batteries. J Electrochem Soc 2019;166:F406-13.
115. Wu X, Li S, Liu J, Yu M. Mesoporous hollow nested nanospheres of Ni, Cu, Co-based mixed sulfides for electrocatalytic oxygen reduction and evolution. ACS Appl Nano Mater 2019;2:4921-32.
116. Sun D, Shen Y, Zhang W, et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries. J Am Chem Soc 2014;136:8941-6.
117. Deng H, Qiao Y, Zhang X, et al. Killing two birds with one stone: a Cu ion redox mediator for a non-aqueous Li-O2 battery. J Mater Chem A 2019;7:17261-5.
118. Sheng C, Yu F, Wu Y, Peng Z, Chen Y. Disproportionation of sodium superoxide in metal-air batteries. Angew Chem Int Ed 2018;57:9906-10.
119. Bhauriyal P, Rawat KS, Bhattacharyya G, Garg P, Pathak B. First-principles study of magnesium peroxide nucleation for Mg-air battery. Chem Asian J 2018;13:3198-203.
120. Kwak W, Park J, Kim H, et al. Oxidation stability of organic redox mediators as mobile catalysts in lithium-oxygen batteries. ACS Energy Lett 2020;5:2122-9.
121. Sun Y, Yang T, Ji H, et al. Boosting the optimization of lithium metal batteries by molecular dynamics simulations: a perspective. Adv Energy Mater 2020;10:2002373.
122. Butler KT, Sai Gautam G, Canepa P. Designing interfaces in energy materials applications with first-principles calculations. npj Comput Mater 2019;5:19.
123. Chen T, Ceder G, Sai Gautam G, Canepa P. Evaluation of Mg compounds as coating materials in Mg batteries. Front Chem 2019;7:24.
124. Chen T, Sai Gautam G, Canepa P. Ionic transport in potential coating materials for Mg batteries. Chem Mater 2019;31:8087-99.
125. Clark S, Latz A, Horstmann B. A review of model-based design tools for metal-air batteries. Batteries 2018;4:5.
126. Wan LF, Prendergast D. The solvation structure of Mg ions in dichloro complex solutions from first-principles molecular dynamics and simulated X-ray absorption spectra. J Am Chem Soc 2014;136:14456-64.
127. Rajput NN, Qu X, Sa N, Burrell AK, Persson KA. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics. J Am Chem Soc 2015;137:3411-20.
128. Canepa P, Gautam GS, Malik R, et al. Understanding the initial stages of reversible Mg deposition and stripping in inorganic nonaqueous electrolytes. Chem Mater 2015;27:3317-25.
129. Xu N, Zhang Y, Zhang T, Liu Y, Qiao J. Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries. Nano Energy 2019;57:176-85.
130. Qian Z, Li X, Sun B, et al. Unraveling the promotion effects of a soluble cobaltocene catalyst with respect to Li-O2 battery discharge. J Phys Chem Lett 2020;11:7028-34.
131. Lai J, Chen N, Zhang F, et al. Imidazolium bromide: a tri-functional additive for rechargeable Li-O2 batteries. Energy Stor Mater 2022;49:401-8.
132. Hasvold Ø, Henriksen H, Melv˦r E, et al. Sea-water battery for subsea control systems. J Power Sources 1997;65:253-61.
133. Yang W, Yang S, Sun G, Xin Q. Development and application of magnesium fuel cell. CHIN J Power Sources 2005;29:182-6. Available from: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2005&filename=DYJS200503016&uniplatform=NZKPT&v=_6xHLZPTn7KQ_L4mR5bbwgUe_uVm87EUswW0qD1_FUXTjubNllHPuVXXJUsbKzBw [Last accessed on 24 Jun 2022].