REFERENCES
1. Cui J, Yin J, Meng J, et al. Supermolecule cucurbituril subnanoporous carbon supercapacitor (SCSCS). Nano Lett 2021;21:2156-64.
2. Li Y, Zhang J, Chen Q, Xia X, Chen M. Emerging of heterostructure materials in energy storage: a review. Adv Mater 2021;33:e2100855.
3. Chen M, Zhang Y, Xing G, Chou S, Tang Y. Electrochemical energy storage devices working in extreme conditions. Energy Environ Sci 2021;14:3323-51.
4. Liu Z, Sato N, Gao W, et al. Demonstration of ultrahigh thermoelectric efficiency of ~7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule 2021;5:1196-208.
5. Song Z, Zhang G, Deng X, et al. Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors. Nanomicro Lett 2022;14:53.
6. Han L, Huang H, Fu X, et al. A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chem Eng J 2020;392:123733.
7. Pan G, Li J, Han L, et al. MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor. Inorg Chem Front 2022;9:1666-73.
8. Chen L, Xu X, Wan L, et al. Carbon-incorporated Fe3O4 nanoflakes: high-performance faradaic materials for hybrid capacitive deionization and supercapacitors. Mater Chem Front 2021;5:3480-8.
9. Chen C, Zhao M, Cai Y, et al. Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances. Carbon 2021;179:458-68.
10. Dao V, Vu NH, Yun S. Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy 2020;68:104324.
11. Dao V, Vu NH, Thi Dang H, Yun S. Recent advances and challenges for water evaporation-induced electricity toward applications. Nano Energy 2021;85:105979.
12. Dao V, Vu NH, Choi H. All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation. J Power Sources 2020;448:227388.
13. Dao VD. An experimental exploration of generating electricity from nature-inspired hierarchical evaporator: the role of electrode materials. Sci Total Environ 2021;759:143490.
14. Tan J, Duan J, Zhao Y, He B, Tang Q. Generators to harvest ocean wave energy through electrokinetic principle. Nano Energy 2018;48:128-33.
15. Liu S, Li X, Wang Y, et al. Magnetic switch structured triboelectric nanogenerator for continuous and regular harvesting of wind energy. Nano Energy 2021;83:105851.
16. Guo Z, Wang J, Wang Y, et al. Achieving steam and electrical power from solar energy by MoS2-based composites. Chem Eng J 2022;427:131008.
17. Khojasteh D, Lewis M, Tavakoli S, et al. Sea level rise will change estuarine tidal energy: a review. Renew Sust Energ Rev 2022;156:111855.
18. Pérez A, Ruiz B, Fuente E, Calvo LF, Paniagua S. Pyrolysis technology for Cortaderia selloana invasive species. Prospects in the biomass energy sector. Renew Energ 2021;169:178-90.
19. Pokhrel S, Sasmito AP, Sainoki A, et al. Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production. Renew Energ 2022;182:521-35.
20. Li W, Demir I, Cao D, et al. Data-driven systematic parameter identification of an electrochemical model for lithium-ion batteries with artificial intelligence. Energy Stor Mater 2022;44:557-70.
21. Liu H, Xu T, Cai C, et al. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Funct Materials 2022; doi: 10.1002/adfm.202113082.
22. Shekhar A, Parekh M, Pol V. Worldwide ubiquitous utilization of lithium-ion batteries: what we have done, are doing, and could do safely once they are dead? J Power Sources 2022;523:231015.
23. Qin W, Zhou N, Wu C, et al. Mini-review on the redox additives in aqueous electrolyte for high performance supercapacitors. ACS Omega 2020;5:3801-8.
24. Xu X, Tang J, Qian H, et al. Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl Mater Interfaces 2017;9:38737-44.
25. Zhang Y, Li J, Gong Z, Xie J, Lu T, Pan L. Nitrogen and sulfur co-doped vanadium carbide MXene for highly reversible lithium-ion storage. J Colloid Interface Sci 2021;587:489-98.
26. Li Y, Liu Y, Wang M, et al. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization. Carbon 2018;130:377-83.
27. Xu G, Zhang Y, Gong Z, Lu T, Pan L. Three-dimensional hydrated vanadium pentoxide/MXene composite for high-rate zinc-ion batteries. J Colloid Interface Sci 2021;593:417-23.
28. Xu H, Zhang X, Xie T, et al. Li+ assisted fast and stable Mg2+ reversible storage in cobalt sulfide cathodes for high performance magnesium/lithium hybrid-ion batteries. Energy Stor Mater 2022;46:583-93.
29. Ma Z, Chen J, Vatamanu J, et al. Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery. Energy Stor Mater 2022;45:903-10.
30. Hubble D, Brown DE, Zhao Y, et al. Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ Sci 2022;15:550-78.
31. Wang X, Su T, Luo Y, et al. Achieving superior lithium storage performances of CoMoO4 anode for lithium-ion batteries by Si-doping dual vacancies engineering. Acta Mater 2022;225:117600.
32. Xu H, Zhu D, Zhu W, et al. Rational design of high concentration electrolytes and MXene-based sulfur host materials toward high-performance magnesium sulfur batteries. Chem Eng J 2022;428:131031.
33. Dao V. Comment on "Energy storage via polyvinylidene fluoride dielectric on the counter electrode of dye-sensitized solar cells" by Jiang et al. J Power Sources 2017;337:125-9.
34. Wang X, Wang F, Wang L, et al. An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv Mater 2016;28:4904-11.
35. Chen P, Yuan X, Xia Y, et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv Sci (Weinh) 2021;8:e2100309.
36. He L, Liu Y, Li C, et al. A low-cost Zn-based aqueous supercapacitor with high energy density. ACS Appl Energy Mater 2019;2:5835-42.
37. Li B, Dai F, Xiao Q, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 2016;9:102-6.
38. Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci (Weinh) 2017;4:1600539.
39. Zhang S, Yin B, Liu X, Gu D, Gong H, Wang Z. A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches. Nano Energy 2019;59:41-9.
40. Xu X, Liu Y, Wang M, et al. Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochim Acta 2016;193:88-95.
41. Zhang Y, Li J, Ma L, et al. Insights into the storage mechanism of 3D nanoflower-like V3S4 anode in sodium-ion batteries. Chem Eng J 2022;427:130936.
42. Liu H, Liu X, Wang S, Liu H, Li L. Transition metal based battery-type electrodes in hybrid supercapacitors: a review. Energy Stor Mater 2020;28:122-45.
43. Kim E, Kim H, Park BJ, et al. Etching-assisted crumpled graphene wrapped spiky iron oxide particles for high-performance Li-Ion hybrid supercapacitor. Small 2018;14:e1704209.
44. Wang J, Zhang Z, Zhang X, et al. Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 2017;39:647-53.
45. Deng W, Wang X, Liu C, et al. Li/K mixed superconcentrated aqueous electrolyte enables high-performance hybrid aqueous supercapacitors. Energy Stor Mater 2019;20:373-9.
46. Lim E, Kim H, Jo C, et al. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano 2014;8:8968-78.
47. Wan L, Tang Y, Chen L, et al. In-situ construction of g-C3N4/Mo2CTx hybrid for superior lithium storage with significantly improved Coulombic efficiency and cycling stability. Chem Eng J 2021;410:128349.
48. Aslam MK, Niu Y, Xu M. MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv Energy Mater 2021;11:2000681.
49. Gao H, Li Y, Zhao H, Xiang J, Cao Y. A general fabrication approach on spinel MCo2O4 (M = Co, Mn, Fe, Mg and Zn) submicron prisms as advanced positive materials for supercapacitor. Electrochim Acta 2018;262:241-51.
50. Wang Q, Wen Z, Li J. A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv Funct Mater 2006;16:2141-6.
51. Molinari A, Leufke PM, Reitz C, et al. Hybrid supercapacitors for reversible control of magnetism. Nat Commun 2017;8:15339.
52. Qi JL, Lin JH, Wang X, et al. Low resistance VFG-Microporous hybrid Al-based electrodes for supercapacitors. Nano Energy 2016;26:657-67.
53. Wang H, Ye W, Yang Y, Zhong Y, Hu Y. Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives. Nano Energy 2021;85:105942.
54. Wang H, Wang M, Tang Y. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Stor Mater 2018;13:1-7.
55. Chebrolu VT, Balakrishnan B, Chinnadurai D, Kim H. Selective growth of Zn-Co-Se nanostructures on various conductive substrates for asymmetric flexible hybrid supercapacitor with enhanced performance. Adv Mater Technol 2019;5:1900873.
56. Xu Y, Chen X, Huang C, et al. Redox-active p-phenylenediamine functionalized reduced graphene oxide film through covalently grafting for ultrahigh areal capacitance Zn-ion hybrid supercapacitor. J Power Sources 2021;488:229426.
57. Jin J, Geng X, Chen Q, Ren TL. A better Zn-ion storage device: recent progress for Zn-ion hybrid supercapacitors. Nanomicro Lett 2022;14:64.
58. Yang Y, Chen D, Wang H, et al. Two-step nitrogen and sulfur doping in porous carbon dodecahedra for Zn-ion hybrid supercapacitors with long term stability. Chem Eng J 2022;431:133250.
59. Li J, Li J, Ding Z, et al. In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage. Chem Eng J 2019;378:122108.
60. Li J, Qin W, Xie J, et al. Rational design of MoS2-reduced graphene oxide sponges as free-standing anodes for sodium-ion batteries. Chem Eng J 2018;332:260-6.
61. Zhao J, Burke AF. Electrochemical capacitors: performance metrics and evaluation by testing and analysis. Adv Energ Mater 2021;11:2002192.
62. Zhang M, Wang W, Tan L, et al. From wood to thin porous carbon membrane: ancient materials for modern ultrafast electrochemical capacitors in alternating current line filtering. Energy Stor Mater 2021;35:327-33.
63. Cai P, Momen R, Li M, et al. Functional carbon materials processed by NH3 plasma for advanced full-carbon sodium-ion capacitors. Chem Eng J 2021;420:129647.
64. Platek-mielczarek A, Frackowiak E, Fic K. Specific carbon/iodide interactions in electrochemical capacitors monitored by EQCM technique. Energy Environ Sci 2021;14:2381-93.
65. Zhang M, Dong K, Saeedi Garakani S, et al. Bridged carbon fabric membrane with boosted performance in AC line-filtering capacitors. Adv Sci (Weinh) 2022;9:e2105072.
66. Hu X, Wang G, Li J, et al. Significant contribution of single atomic Mn implanted in carbon nanosheets to high-performance sodium-ion hybrid capacitors. Energy Environ Sci 2021;14:4564-73.
67. Chen J, Chen H, Chen M, Zhou W, Tian Q, Wong C. Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors. Chem Eng J 2022;428:131380.
68. Ando Y, Okubo M, Yamada A, Otani M. Capacitive versus pseudocapacitive storage in MXene. Adv Funct Mater 2020;30:2000820.
69. Wen Y, Chen H, Wu M, Li C. Vertically oriented MXene bridging the frequency response and capacity density gap for AC-filtering pseudocapacitors. Adv Funct Materials 2022;32:2111613.
70. Mainka J, Gao W, He N, Dillet J, Lottin O. A General Equivalent Electrical Circuit Model for the characterization of MXene/graphene oxide hybrid-fiber supercapacitors by electrochemical impedance spectroscopy - impact of fiber length. Electrochim Acta 2022;404:139740.
71. Li F, Liu Y, Wang G, et al. 3D porous H-Ti3C2T films as free-standing electrodes for zinc ion hybrid capacitors. Chem Eng J 2022;435:135052.
72. Yang B, Liu B, Chen J, et al. Realizing high-performance lithium ion hybrid capacitor with a 3D MXene-carbon nanotube composite anode. Chem Eng J 2022;429:132392.
73. Cui F, Liu Z, Ma D, et al. Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors. Chem Eng J 2021;405:127038.
74. Wang L, Zhang X, Xu Y, et al. Tetrabutylammonium-intercalated 1T-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors. Adv Funct Mater 2021;31:2104286.
75. Yuan T, Luo S, Soule L, et al. A hierarchical Ti2Nb10O29 composite electrode for high-power lithium-ion batteries and capacitors. Mater Today 2021;45:8-19.
76. Li Z, Zhao L, Zheng X, et al. Continuous PEDOT:PSS nanomesh film: towards aqueous AC line filtering capacitor with ultrahigh energy density. Chem Eng J 2022;430:133012.
77. Sappia LD, Pascual BS, Azzaroni O, Marmisollé W. PEDOT-based stackable paper electrodes for metal-free supercapacitors. ACS Appl Energy Mater 2021;4:9283-93.
78. Feng X, Wang X, Wang M, et al. Novel PEDOT dispersion by in-situ polymerization based on sulfated nanocellulose. Chem Eng J 2021;418:129533.
79. Seo S, Oh I, Park J, et al. Growth of transition metal dichalcogenide heterojunctions with metal oxides for metal-insulator-semiconductor capacitors. ACS Appl Nano Mater 2021;4:12017-23.
80. Hu P, Liu Y, Liu H, Wu X, Liu B. MnCo2O4 nanosheet/NiCo2S4 nanowire heterostructures as cathode materials for capacitors. ACS Appl Nano Mater 2021;4:2183-9.
81. Gao L, Chen G, Zhang L, Yan B, Yang X. Engineering pseudocapacitive MnMoO4@C microrods for high energy sodium ion hybrid capacitors. Electrochim Acta 2021;379:138185.
82. Hussain S, Vamsi Krishna B, Nagaraju G, Chandra Sekhar S, Narsimulu D, Yu JS. Porous Co-MoS2@Cu2MoS4 three-dimensional nanoflowers via in situ sulfurization of Cu2O nanospheres for electrochemical hybrid capacitors. Chem Eng J 2021;403:126319.
83. Ma Y, Xu M, Liu R, et al. Molecular tailoring of MnO2 by bismuth doping to achieve aqueous zinc-ion battery with capacitor-level durability. Energy Stor Mater 2022;48:212-22.
84. Soltani H, Bahiraei H, Ghasemi S. Effect of electrodeposition time on the super-capacitive performance of electrodeposited MnO2 on g-C3N4 nanosheets. J Alloy Compd 2022;904:163565.
85. Wang S, Li T, Yin Y, Chang N, Zhang H, Li X. High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive. Nano Energy 2022;96:107120.
86. Liu P, Fan X, Ouyang B, et al. A Zn-ion hybrid capacitor with enhanced energy density for anode-free. J Power Sources 2022;518:230740.
87. Cao Y, Tang X, Liu M, et al. Thin-walled porous carbon tile-packed paper for high-rate Zn-ion capacitor cathode. Chem Eng J 2022;431:133241.
88. Yi Z, Chen G, Hou F, Wang L, Liang J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater 2021;11:2003065.
89. Dong L, Ma X, Li Y, et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Stor Mater 2018;13:96-102.
90. Chao D, Zhou W, Xie F, et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci Adv 2020;6:eaba4098.
91. Liu Z, Hu Y, Zheng W, et al. Untying the bundles of solution-synthesized graphene nanoribbons for highly capacitive micro-supercapacitorsrs. Adv Funct Mater 2022;32:2109543.
92. Cao Z, Fu J, Wu M, Hua T, Hu H. Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. Energy Stor Mater 2021;40:10-21.
93. Zhu M, Ji S, Luo Y, et al. A mechanically interlocking strategy based on conductive microbridges for stretchable electronics. Adv Mater 2022;34:e2101339.
94. Gu C, Xie X, Liang Y, et al. Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn-air batteries working from -50 to 100 °C. Energy Environ Sci 2021;14:4451-62.
95. Jin X, Song L, Yang H, et al. Stretchable supercapacitor at -30 °C. Energy Environ Sci 2021; 14:3075-85.
96. Ma L, Zhao Y, Ji X, et al. A usage scenario independent "air chargeable" flexible zinc ion energy storage device. Adv Energy Mater 2019;9:1900509.
97. Deka BK, Hazarika A, Kwak M, et al. Triboelectric nanogenerator-integrated structural supercapacitor with in situ MXene-dispersed N-doped Zn-Cu selenide nanostructured woven carbon fiber for energy harvesting and storage. Energy Stor Mater 2021;43:402-10.
98. Zhang C, Peng Z, Huang C, et al. High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems. Nano Energy 2021;81:105609.
99. Shi B, Li, Chen A, Jen TC, Liu X, Shen G. Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with improved performance. Nanomicro Lett 2021;14:34.
100. Zhang P, Li Y, Wang G, et al. Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv Mater 2019;31:e1806005.
101. Liu W, Jiang K, Chen D, Qu F, Shen G. In-situ annealed Ti3C2Tx MXene based all-solid-state flexible Zn-ion hybrid micro supercapacitor array with enhanced stability. Nanomicro Lett 2021;13:100.
102. Cheng W, Fu J, Hu H, Ho D. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density. Adv Sci (Weinh) 2021;8:e2100775.
103. Tian W, Li Y, Zhou J, et al. Implantable and biodegradable micro-supercapacitor based on a superassembled three-dimensional network Zn@PPy hybrid electrode. ACS Appl Mater Interfaces 2021;13:8285-93.
104. Mu C, Wang X, Ma Z, Liu X, Li W. Redox and conductive underwater adhesive: an innovative electrode material for convenient construction of flexible and stretchable supercapacitors. J Mater Chem A 2022;10:7207-17.
105. Kang MS, Heo I, Cho KG, et al. Coarsening-induced hierarchically interconnected porous carbon polyhedrons for stretchable ionogel-based supercapacitors. Energy Stor Mater 2022;45:380-8.
106. Sun Q, Wang L, Ren G, et al. Smart band-aid: multifunctional and wearable electronic device for self-powered motion monitoring and human-machine interaction. Nano Energy 2022;92:106840.
107. Lu Z, Foroughi J, Wang C, Long H, Wallace GG. Superelastic hybrid CNT/graphene fibers for wearable energy storage. Adv Energy Mater 2018;8:1702047.
108. Chen X, Qiu L, Ren J, et al. Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater 2013;25:6436-41.
109. Li H, Lv T, Sun H, et al. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte. Nat Commun 2019;10:536.
110. Tian Z, Tong X, Sheng G, et al. Printable magnesium ion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units. Nat Commun 2019;10:4913.
111. Paolella A, Faure C, Bertoni G, et al. Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries. Nat Commun 2017;8:14643.
112. Boruah BD, Mathieson A, Wen B, Jo C, Deschler F, De Volder M. Photo-rechargeable zinc-ion capacitor using 2D graphitic carbon nitride. Nano Lett 2020;20:5967-74.
113. Zhao J, Cong Z, Hu J, et al. Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system. Nano Energy 2022;93:106893.
114. Zhang D, Liu Y, Liu Y, et al. A general crosslinker strategy to realize intrinsic frozen resistance of hydrogels. Adv Mater 2021;33:e2104006.
115. Mo F, Liang G, Meng Q, et al. A flexible rechargeable aqueous zinc manganese-dioxide battery working at -20 °C. Energy Environ Sci 2019;12:706-15.
116. Xu Z, Ma R, Wang X. Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors. Energy Stor Mater 2022;46:233-42.
117. Yang G, Huang J, Wan X, et al. A low cost, wide temperature range, and high energy density flexible quasi-solid-state zinc-ion hybrid supercapacitors enabled by sustainable cathode and electrolyte design. Nano Energy 2021;90:106500.
118. Li Z, Chen D, An Y, et al. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Stor Mater 2020;28:307-14.
119. Jiang Y, Ma K, Sun M, Li Y, Liu J. All-climate stretchable dendrite-free Zn-ion hybrid supercapacitors enabled by hydrogel electrolyte engineering. Energy Environ Mater 2022; doi: 10.1002/eem2.12357.
120. Liu J, Khanam Z, Ahmed S, Wang T, Wang H, Song S. Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes. ACS Appl Mater Interfaces 2021;13:16454-68.
121. Lv J, Song Y, Jiang L, Wang J. Bio-inspired strategies for anti-icing. ACS Nano 2014;8:3152-69.
122. He Z, Wu C, Hua M, et al. Bioinspired multifunctional anti-icing hydrogel. Matter 2020;2:723-34.
123. Raymond JA, DeVries AL. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 1977;74:2589-93.
124. Mo F, Li Q, Liang G, et al. A self-healing crease-free supramolecular all-polymer supercapacitor. Adv Sci (Weinh) 2021;8:2100072.
125. Zhang N, Chen X, Yu M, Niu Z, Cheng F, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev 2020;49:4203-19.
126. Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019;366:645-8.
127. Li Z, Guo D, Wang D, Sun M, Sun H. Exploration of Metal/Ti3C2 MXene-derived composites as anode for high-performance zinc-ion supercapacitor. J Power Sources 2021;506:230197.