REFERENCES
2. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 2015;7:19-29.
4. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev 2014;114:11636-82.
5. Amin K, Mao L, Wei Z. Recent progress in polymeric carbonyl-based electrode materials for lithium and sodium ion batteries. Macromol Rapid Commun 2019;40:e1800565.
7. Lee S, Kwon G, Ku K, et al. Recent progress in organic electrodes for Li and Na rechargeable batteries. Adv Mater 2018;30:e1704682.
8. Feng K, Li M, Liu W, et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 2018;14:1702737.
9. Shao Y, Jin Z, Li J, Meng Y, Huang X. Evaluation of the electrochemical and expansion performances of the Sn-Si/graphite composite electrode for the industrial use. Energy Mater 2022;2:200004 ; doi: 10.20517/energymater.2021.27.
10. Chang H, Wu Y, Han X, Yi T. Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater 2021;1:100003 ; doi: 10.20517/energymater.2021.02.
11. Huang Z, Lu H, Qian K, et al. Interfacial engineering enables Bi@C-TiO microspheres as superpower and long life anode for lithium-ion batteries. Nano Energy 2018;51:137-45.
12. Huang Z, Zhang T, Lu H, et al. Grain-boundary-rich mesoporous NiTiO3 micro-prism as high tap-density, super rate and long life anode for sodium and lithium ion batteries. Energy Storage Materials 2018;13:329-39.
13. Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem 2020;4:127-42.
14. Shea JJ, Luo C. Organic electrode materials for metal ion batteries. ACS Appl Mater Interfaces 2020;12:5361-80.
15. Huang T, Long M, Xiao JX, Liu H, Wang G. Recent research on emerging organic electrode materials for energy storage. Energy Mater 2021;1:100009 ; doi: 10.20517/energymater.2021.09.
16. Wang H, Yao C, Nie H, et al. Recent progress in carbonyl-based organic polymers as promising electrode materials for lithium-ion batteries (LIBs). J Mater Chem A 2020;8:11906-22.
17. An SY, Schon TB, Mcallister BT, Seferos DS. Design strategies for organic carbonyl materials for energy storage: small molecules, oligomers, polymers and supramolecular structures. EcoMat 2020:2.
18. Peng H, Yu Q, Wang S, et al. Molecular design strategies for electrochemical behavior of aromatic carbonyl compounds in organic and aqueous electrolytes. Adv Sci (Weinh) 2019;6:1900431.
19. Zhu L, Ding G, Xie L, et al. Conjugated carbonyl compounds as high-performance cathode materials for rechargeable batteries. Chem Mater 2019;31:8582-612.
20. Bhosale ME, Chae S, Kim JM, Choi J. Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries. J Mater Chem A 2018;6:19885-911.
21. Zhao Q, Guo C, Lu Y, Liu L, Liang J, Chen J. Rechargeable lithium batteries with electrodes of small organic carbonyl salts and advanced electrolytes. Ind Eng Chem Res 2016;55:5795-804.
22. Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US. Polymer-based organic batteries. Chem Rev 2016;116:9438-84.
23. Tong Y, Wang X, Zhang Y, Huang W. Recent advances of covalent organic frameworks in lithium ion batteries. Inorg Chem Front 2021;8:558-71.
24. Liu X, Liu C, Lai W, Huang W. Porous organic polymers as promising electrode materials for energy storage devices. Adv Mater Technol ; doi: 10.1002/admt.202000154.
25. Zhao H, Sheng L, Wang L, Xu H, He X. The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Stor Mater 2020;33:360-81.
26. Kong L, Liu M, Huang H, Xu Y, Bu X. Metal/covalent-organic framework based cathodes for metal-ion batteries. Adv Energy Mater 2022;12:2100172.
27. Song Z, Zhou H. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ Sci 2013;6:2280.
28. Schon TB, McAllister BT, Li PF, Seferos DS. The rise of organic electrode materials for energy storage. Chem Soc Rev 2016;45:6345-404.
29. Han X, Qing G, Sun J, Sun T. How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew Chem Int Ed Engl 2012;51:5147-51.
30. Yang P, Ma L, Bi S, et al. Superior anodic lithium storage behavior of organic pigment 2,9-dimethylquinacridone. Chemical Engineering Journal 2020;394:124924.
31. Wang H, Yuan S, Si Z, Zhang X. Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries. Energy Environ Sci 2015;8:3160-5.
32. Chen L, Liu S, Zhao L, Zhao Y. OH-substituted 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone as highly stable organic electrode for lithium ion battery. Electrochimica Acta 2017;258:677-83.
33. Park J, Lee CW, Joo SH, et al. Contorted polycyclic aromatic hydrocarbon: promising Li insertion organic anode. J Mater Chem A 2018;6:12589-97.
34. Park J, Lee CW, Park JH, et al. Capacitive organic anode based on fluorinated-contorted hexabenzocoronene: applicable to lithium-ion and sodium-ion storage cells. Adv Sci (Weinh) 2018;5:1801365.
35. Wang C, Tang W, Yao Z, Chen Y, Pei J, Fan C. Using an organic acid as a universal anode for highly efficient Li-ion, Na-ion and K-ion batteries. Org Electro 2018;62:536-41.
36. Thangavel R, Moorthy M, Ganesan BK, Lee W, Yoon WS, Lee YS. Nanoengineered organic electrodes for highly durable and ultrafast cycling of organic sodium-ion batteries. Small 2020;16:e2003688.
37. Wang Y, Lv L, Guo R, et al. The effect of carboxyl group position of pyrazinedicarboxylic acid on electrochemical performances in lithium ion batteries anode. Journal of Power Sources 2020;473:228515.
38. Wang Y, Deng Y, Qu Q, et al. Ultrahigh-capacity organic anode with high-rate capability and long cycle life for lithium-ion batteries. ACS Energy Lett 2017;2:2140-8.
39. Wang Y, Liu W, Guo R, et al. A high-capacity organic anode with self-assembled morphological transformation for green lithium-ion batteries. J Mater Chem A 2019;7:22621-30.
40. Guo R, Wang Y, Heng S, Zhu G, Battaglia VS, Zheng H. Pyromellitic dianhydride: a new organic anode of high electrochemical performances for lithium ion batteries. Journal of Power Sources 2019;436:226848.
41. Chen H, Ling M, Hencz L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem Rev 2018;118:8936-82.
42. Fang C, Lau J, Hubble D, et al. Large-molecule decomposition products of electrolytes and additives revealed by on-electrode chromatography and MALDI. Joule 2021;5:415-28.
43. Taskin OS, Hubble D, Zhu T, Liu G. Biomass-derived polymeric binders in silicon anodes for battery energy storage applications. Green Chem 2021;23:7890-901.
44. Ma C, Zhao X, Kang L, et al. Non-conjugated dicarboxylate anode materials for electrochemical cells. Angew Chem Int Ed Engl 2018;57:8865-70.
45. Walker W, Grugeon S, Vezin H, et al. Electrochemical characterization of lithium 4,4′-tolane-dicarboxylate for use as a negative electrode in Li-ion batteries. J Mater Chem 2011;21:1615-20.
46. Renault S, Oltean VA, Ebadi M, Edström K, Brandell D. Dilithium 2-aminoterephthalate as a negative electrode material for lithium-ion batteries. Solid State Ionics 2017;307:1-5.
47. Fédèle L, Sauvage F, Gottis S, et al. 2D-layered lithium carboxylate based on biphenyl core as negative electrode for organic lithium-ion batteries. Chem Mater 2017;29:546-54.
48. Renault S, Oltean VA, Araujo CM, Grigoriev A, Edström K, Brandell D. Superlithiation of organic electrode materials: the case of dilithium benzenedipropiolate. Chem Mater 2016;28:1920-6.
49. Xu Y, Chen J, Zhu C, et al. High-performance of sodium carboxylate-derived materials for electrochemical energy storage. Sci China Mater 2018;61:707-18.
50. Cabañero JM Jr, Pimenta V, Cannon KC, Morris RE, Armstrong AR. Sodium naphthalene-2,6-dicarboxylate: an anode for sodium batteries. ChemSusChem 2019;12:4522-8.
51. Gu T, Gao S, Wang J, et al. Electrochemical properties and kinetics of asymmetric sodium benzene-1,2,4-tricarboxylate as an anode material for sodium-organic batteries. ChemElectroChem 2020;7:3517-21.
52. Long R, Wang G, Hu Z, Sun P, Zhang L. Gradually activated lithium uptake in sodium citrate toward high-capacity organic anode for lithium-ion batteries. Rare Met 2021;40:1366-72.
53. Wang L, Zhao M, Qiu J, Gao P, Xue J, Li J. Metal organic framework-derived cobalt dicarboxylate as a high-capacity anode material for lithium-ion batteries. Energy Technol 2017;5:637-42.
54. Wang L, Zou J, Chen S, et al. Zinc terephthalates ZnC8H4O4 as anodes for lithium ion batteries. Electrochimica Acta 2017;235:304-10.
55. Wang S, Wang L, Zhang K, Zhu Z, Tao Z, Chen J. Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett 2013;13:4404-9.
56. Wan F, Wu X, Guo J, et al. Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy 2015;13:450-7.
57. Wang Y, Ding Y, Pan L, et al. Understanding the size-dependent sodium storage properties of Na2C6O6-based organic electrodes for sodium-ion batteries. Nano Lett 2016;16:3329-34.
58. Choi A, Kim YK, Kim TK, Kwon M, Lee KT, Moon HR. 4,4′-Biphenyldicarboxylate sodium coordination compounds as anodes for Na-ion batteries. J Mater Chem A 2014;2:14986-93.
59. Wang C, Xu Y, Fang Y, et al. Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries. J Am Chem Soc 2015;137:3124-30.
60. Abouimrane A, Weng W, Eltayeb H, et al. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy Environ Sci 2012;5:9632.
61. Zhao H, Wang J, Zheng Y, et al. Organic thiocarboxylate electrodes for a room-temperature sodium-ion battery delivering an ultrahigh capacity. Angew Chem Int Ed Engl 2017;56:15334-8.
62. Wang J, Zhao H, Xu L, Yang Y, He G, Du Y. Three-electron redox enabled dithiocarboxylate electrode for superior lithium storage performance. ACS Appl Mater Interfaces 2018;10:35469-76.
63. Fédèle L, Sauvage F, Bécuwe M. Hyper-conjugated lithium carboxylate based on a perylene unit for high-rate organic lithium-ion batteries. J Mater Chem A 2014;2:18225-8.
64. Zhang S, Ren S, Han D, Xiao M, Wang S, Meng Y. Aqueous sodium alginate as binder: dramatically improving the performance of dilithium terephthalate-based organic lithium ion batteries. J Power Sources 2019;438:227007.
65. Zhao R, Cao Y, Ai X, Yang H. Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li- and Na-ion batteries. J Electroanal Chem 2013;688:93-7.
66. Veerababu M, Varadaraju U, Kothandaraman R. Improved electrochemical performance of lithium/sodium perylene-3,4,9,10-tetracarboxylate as an anode material for secondary rechargeable batteries. Int J Hydrog Energy 2015;40:14925-31.
67. Mihali VA, Renault S, Nyholm L, Brandell D. Benzenediacrylates as organic battery electrode materials: Na versus Li. RSC Adv 2014;4:38004-11.
68. Medabalmi V, Wang G, Ramani VK, Ramanujam K. Lithium salt of biphenyl tetracarboxylate as an anode material for Li/Na-ion batteries. Applied Surface Science 2017;418:9-16.
69. Wang S, Wang L, Zhu Z, Hu Z, Zhao Q, Chen J. All organic sodium-ion batteries with Na4C8H2O6. Angew Chem Int Ed Engl 2014;53:5892-6.
70. Hu P, Wang H, Yang Y, Yang J, Lin J, Guo L. Renewable-biomolecule-based full lithium-ion batteries. Adv Mater 2016;28:3486-92.
71. Wu D, Luo K, Du S, Hu X. A low-cost non-conjugated dicarboxylate coupled with reduced graphene oxide for stable sodium-organic batteries. J Power Sources 2018;398:99-105.
72. Zhang H, Lin Y, Chen L, Wang D, Hu H, Shen C. Synthesis and electrochemical characterization of lithium carboxylate 2D compounds as high-performance anodes for Li-ion batteries. ChemElectroChem 2019;7:306-13.
73. Wu J, Rui X, Wang C, et al. Nanostructured conjugated ladder polymers for stable and fast lithium storage anodes with high-capacity. Adv Energy Mater 2015;5:1402189.
74. Wu J, Rui X, Long G, Chen W, Yan Q, Zhang Q. Pushing up lithium storage through nanostructured polyazaacene analogues as anode. Angew Chem Int Ed Engl 2015;54:7354-8.
75. Xie J, Rui X, Gu P, et al. Novel conjugated ladder-structured oligomer anode with high lithium storage and long cycling capability. ACS Appl Mater Interfaces 2016;8:16932-8.
76. Yang L, Wei W, Ma Y, Xu Y, Chang G. Intermolecular channel expansion induced by cation-π interactions to enhance lithium storage in a crosslinked π-conjugated organic anode. J Power Sources 2020;449:227551.
77. Xie J, Wang Z, Gu P, Zhao Y, Xu ZJ, Zhang Q. A novel quinone-based polymer electrode for high performance lithium-ion batteries. Sci China Mater 2016;59:6-11.
78. Wu D, Huang Y, Hu X. A sulfurization-based oligomeric sodium salt as a high-performance organic anode for sodium ion batteries. Chem Commun (Camb) 2016;52:11207-10.
79. Li K, Xu S, Han D, Si Z, Wang HG. Carbonyl-rich poly(pyrene-4,5,9,10-tetraone Sulfide) as anode materials for high-performance Li and Na-ion batteries. Chem Asian J 2021;16:1973-8.
80. Yamamoto R, Yabuuchi N, Miyasaka M. Synthesis of conjugated carbonyl containing polymer negative electrodes for sodium ion batteries. J Electrochem Soc 2018;165:A434-8.
81. Wang Y, Liu Z, Liu H, Liu H, Li B, Guan S. A novel high-capacity anode material derived from aromatic imides for lithium-ion batteries. Small 2018;14:e1704094.
82. He J, Liao Y, Hu Q, et al. Multi carbonyl polyimide as high capacity anode materials for lithium ion batteries. J Power Sources 2020;451:227792.
83. Zhang C, He Y, Mu P, et al. Toward high performance thiophene-containing conjugated microporous polymer anodes for lithium-ion batteries through structure design. Adv Funct Mater 2018;28:1705432.
84. Castillo-Martínez E, Carretero-González J, Armand M. Polymeric Schiff bases as low-voltage redox centers for sodium-ion batteries. Angew Chem Int Ed Engl 2014;53:5341-5.
85. López-herraiz M, Castillo-martínez E, Carretero-gonzález J, Carrasco J, Rojo T, Armand M. Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers. Energy Environ Sci 2015;8:3233-41.
86. Sun Y, Sun Y, Pan Q, et al. A hyperbranched conjugated Schiff base polymer network: a potential negative electrode for flexible thin film batteries. Chem Commun (Camb) 2016;52:3000-2.
87. Ye H, Jiang F, Li H, Xu Z, Yin J, Zhu H. Facile synthesis of conjugated polymeric Schiff base as negative electrodes for lithium ion batteries. Electrochimica Acta 2017;253:319-23.
88. Sun T, Li ZJ, Wang HG, Bao D, Meng FL, Zhang XB. A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew Chem Int Ed Engl 2016;55:10662-6.
89. Zhang S, Huang W, Hu P, et al. Conjugated microporous polymers with excellent electrochemical performance for lithium and sodium storage. J Mater Chem A 2015;3:1896-901.
90. Deng W, Liang X, Wu X, et al. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci Rep 2013;3:2671.
91. Li G, Zhang B, Wang J, et al. Electrochromic poly(chalcogenoviologen)s as anode materials for high-performance organic radical lithium-ion batteries. Angew Chem Int Ed Engl 2019;58:8468-73.
92. Kang H, Liu H, Li C, et al. Polyanthraquinone-triazine-a promising anode material for high-energy lithium-ion batteries. ACS Appl Mater Interfaces 2018;10:37023-30.
93. Lei Z, Yang Q, Xu Y, et al. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat Commun 2018;9:576.
94. Lei Z, Chen X, Sun W, Zhang Y, Wang Y. Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv Energy Mater 2019;9:1801010.
95. Chen X, Li Y, Wang L, et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv Mater 2019;31:e1901640.
96. Haldar S, Roy K, Nandi S, et al. High and reversible lithium ion storage in self-exfoliated triazole-triformyl phloroglucinol-based covalent organic nanosheets. Adv Energy Mater 2018;8:1702170.
97. Liu W, Luo X, Bao Y, et al. A two-dimensional conjugated aromatic polymer via C-C coupling reaction. Nat Chem 2017;9:563-70.
98. Lin Z, Xie J, Zhang B, et al. Solution-processed nitrogen-rich graphene-like holey conjugated polymer for efficient lithium ion storage. Nano Energy 2017;41:117-27.
99. Yang H, Zhang S, Han L, et al. High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl Mater Interfaces 2016;8:5366-75.
100. Patra BC, Das SK, Ghosh A, et al. Covalent organic framework based microspheres as an anode material for rechargeable sodium batteries. J Mater Chem A 2018;6:16655-63.
101. Wang X, Zhang C, Xu Y, et al. Conjugated microporous polytetra(2-Thienyl)ethylene as high performance anode material for lithium- and sodium-ion batteries. Macromol Chem Phys 2018;219:1700524.
102. Luo C, Zhu Y, Xu Y, et al. Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes. J Power Sources 2014;250:372-8.
103. Cao T, Lv W, Zhang SW, et al. A reduced graphene oxide/disodium terephthalate hybrid as a high-performance anode for sodium-ion batteries. Chemistry 2017;23:16586-92.
104. Dong C, Xu L. Cobalt- and cadmium-based metal-organic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries. ACS Appl Mater Interfaces 2017;9:7160-8.
105. Mou C, Wang L, Deng Q, Huang Z, Li J. Calcium terephthalate/graphite composites as anode materials for lithium-ion batteries. Ionics 2015;21:1893-9.
106. Zhao L, Zhao J, Hu Y, et al. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater 2012;2:962-5.
107. Wang Y, Zheng X, Qu Q, Liu G, Battglia VS, Zheng H. A novel maleic acid/graphite composite anode for lithium ion batteries with high energy and power density. Carbon 2018;132:420-9.
108. Guo R, Wang Y, Shan X, Han Y, Cao Z, Zheng H. A novel itaconic acid-graphite composite anode for enhanced lithium storage in lithium ion batteries. Carbon 2019;152:671-9.
109. Guo R, Huang W, Wang Y, Wang W, Lv L, Zheng H. A high-performance maleic acid/graphene/graphite composite anode under the effect of synergistic lithium storage mechanism. J Power Sources 2020;479:229112.
110. Ge D, Peng J, Qu G, et al. Nanostructured Co( ii )-based MOFs as promising anodes for advanced lithium storage. New J Chem 2016;40:9238-44.
111. Li T, Tong Y, Li J, et al. Hericium erinaceus -like copper-based MOFs as anodes for high performance lithium ion batteries. ACS Appl Energy Mater 2021;4:11400-7.
112. Gou L, Liu P, Lei H, et al. Isostructural metal organic frameworks based on 1,4-naphthalene dicarboxylate as anodes for lithium ion battery. Materials Technology 2017;32:630-7.
113. Li C, Hu X, Tong W, et al. Ultrathin manganese-based metal-organic framework nanosheets: low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities. ACS Appl Mater Interfaces 2017;9:29829-38.
114. Yin C, Xu L, Pan Y, Pan C. Metal-organic framework as anode materials for lithium-ion batteries with high capacity and rate performance. ACS Appl Energy Mater 2020;3:10776-86.
115. Yang GP, Luo XX, Liu YF, Li K, Wu XL. [Co3(μ3-O)]-based metal-organic frameworks as advanced anode materials in K- and Na-ion batteries. ACS Appl Mater Interfaces 2021;13:46902-8.