REFERENCES

1. Li Y, Fu J, Zhong C, et al. Recent advances in flexible zinc-based rechargeable batteries. Adv Energy Mater 2019;9:1802605.

2. Yu P, Zeng Y, Zhang H, Yu M, Tong Y, Lu X. Flexible zn-ion batteries: recent progresses and challenges. Small 2019;15:e1804760.

3. Gao X, Zhang H, Liu X, Lu X. Flexible Zn-ion batteries based on manganese oxides: Progress and prospect. Carbon Energy 2020;2:387-407.

4. Zhao S, Zuo Y, Liu T, et al. Multi-functional hydrogels for flexible zinc-based batteries working under extreme conditions. Adv Energy Mater 2021;11:2101749.

5. Kong L, Tang C, Peng H, Huang J, Zhang Q. Advanced energy materials for flexible batteries in energy storage: A review. SmartMat 2020;1:smm2.1007.

6. Wu M, Zhang G, Yang H, et al. Aqueous Zn-based rechargeable batteries: recent progress and future perspectives. InfoMat ; doi: 10.1002/inf2.12265.

7. Ma Y, Ma Y, Diemant T, et al. Unveiling the intricate intercalation mechanism in manganese sesquioxide as positive electrode in aqueous Zn-metal battery. Adv Energy Mater 2021;11:2100962.

8. Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun 2017;8:405.

9. Huang J, Wang Z, Hou M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat Commun 2018;9:2906.

10. Chao D, Zhou W, Ye C, et al. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew Chem Int Ed Engl 2019;58:7823-8.

11. Wan F, Niu Z. Design strategies for vanadium-based aqueous Zinc-ion batteries. Angew Chem Int Ed Engl 2019;58:16358-67.

12. Wan F, Huang S, Cao H, Niu Z. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous Zinc-Ion batteries. ACS Nano 2020;14:6752-60.

13. Konarov A, Voronina N, Jo JH, Bakenov Z, Sun Y, Myung S. Present and future perspective on electrode materials for rechargeable Zinc-Ion batteries. ACS Energy Lett 2018;3:2620-40.

14. Ma L, Chen S, Li H, et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co( iii ) rich-electrode. Energy Environ Sci 2018;11:2521-30.

15. Zhao Y, Wang D, Li X, et al. Initiating a reversible aqueous Zn/Sulfur battery through a “liquid film”. Adv Mater 2020;32:e2003070.

16. Song J, Xu K, Liu N, Reed D, Li X. Crossroads in the renaissance of rechargeable aqueous zinc batteries. Materials Today 2021;45:191-212.

17. Wang X, Wang F, Wang L, et al. An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv Mater 2016;28:4904-11.

18. Yuan X, Wu X, Zeng X, et al. A fully aqueous hybrid electrolyte rechargeable battery with high voltage and high energy density. Adv Energy Mater 2020;10:2001583.

19. Zampardi G, La Mantia F. Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat Commun 2022;13:687.

20. Yuan X, Ma F, Zuo L, et al. Latest advances in high-voltage and high-energy-density aqueous rechargeable batteries. Electrochem Energ Rev 2021;4:1-34.

21. Wu K, Huang J, Yi J, et al. Recent advances in polymer electrolytes for Zinc ion batteries: mechanisms, properties, and perspectives. Adv Energy Mater 2020;10:1903977.

22. Zhang T, Tang Y, Guo S, et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ Sci 2020;13:4625-65.

23. Yuan L, Hao J, Kao C, et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ Sci 2021;14:5669-89.

24. Li C, Zhang X, Zhu Y, et al. Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries. EM 2021; doi: 10.20517/energymater.2021.21.

25. Chang H, Wu Y, Han X, Yi T. Recent developments in advanced anode materials for lithium-ion batteries. EM 2021; doi: 10.20517/energymater.2021.02.

26. Yi Z, Chen G, Hou F, Wang L, Liang J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Advanced Energy Materials 2021;11:2003065.

27. He H, Qin H, Wu J, et al. Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy Storage Materials 2021;43:317-36.

28. Dong H, Li J, Guo J, et al. Insights on flexible Zinc-ion batteries from lab research to commercialization. Adv Mater 2021;33:e2007548.

29. Li C, Wang L, Zhang J, et al. Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Storage Materials 2022;44:104-35.

30. Yin Y, Wang S, Zhang Q, et al. Dendrite-free Zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv Mater 2020;32:e1906803.

31. Wang SB, Ran Q, Yao RQ, et al. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat Commun 2020;11:1634.

32. Wippermann K, Schultze J, Kessel R, Penninger J. The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives. Corros Sci 1991;32:205-30.

33. Cai Z, Ou Y, Wang J, et al. Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries. Energy Stor Mater 2020;27:205-11.

34. Li W, Wang K, Zhou M, Zhan H, Cheng S, Jiang K. Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl Mater Interfaces 2018;10:22059-66.

35. Li Z, Wu L, Dong S, et al. Pencil drawing stable interface for reversible and durable aqueous zinc-ion batteries. Adv Funct Mater 2021;31:2006495.

36. Du Y, Liu C, Liu Y, Han Q, Chi X, Liu Y. Carbon fiber micron film guided uniform plating/stripping of metals: a universal approach for highly stable metal batteries. Electrochimica Acta 2020;339:135867.

37. Li M, He Q, Li Z, et al. A novel dendrite-free Mn 2+ /Zn 2+ hybrid battery with 2.3 V voltage window and 11000-cycle lifespan. Adv Energy Mater 2019;9:1901469.

38. Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019;366:645-8.

39. Shen C, Li X, Li N, et al. Graphene-boosted, high-performance aqueous Zn-Ion battery. ACS Appl Mater Interfaces 2018;10:25446-53.

40. Xia A, Pu X, Tao Y, Liu H, Wang Y. Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Appl Surf Sci 2019;481:852-9.

41. Liu P, Liu W, Huang Y, Li P, Yan J, Liu K. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage. Energy Storage Materials 2020;25:858-65.

42. Wu C, Xie K, Ren K, Yang S, Wang Q. Dendrite-free Zn anodes enabled by functional nitrogen-doped carbon protective layers for aqueous zinc-ion batteries. Dalton Trans 2020;49:17629-34.

43. Yuksel R, Buyukcakir O, Seong WK, Ruoff RS. Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv Energy Mater 2020;10:1904215.

44. Zhai S, Wang N, Tan X, et al. Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery. Adv Funct Mater 2021;31:2008894.

45. Zhou J, Xie M, Wu F, et al. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv Mater 2021;33:e2101649.

46. Zhang X, Li J, Liu D, et al. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ Sci 2021;14:3120-9.

47. Cao J, Zhang D, Zhang X, Sawangphruk M, Qin J, Liu R. A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. J Mater Chem A 2020;8:9331-44.

48. Yang X, Li W, Lv J, et al. In situ separator modification via CVD-derived N-doped carbon for highly reversible Zn metal anodes. Nano Res ; doi: 10.1007/s12274-021-3957-z.

49. Li C, Sun Z, Yang T, et al. Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes. Adv Mater 2020;32:e2003425.

50. Cao J, Zhang D, Gu C, et al. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv Energy Mater 2021;11:2101299.

51. Liang Y, Wang Y, Mi H, et al. Functionalized carbon nanofiber interlayer towards dendrite-free, Zn-ion batteries. Chemical Engineering Journal 2021;425:131862.

52. Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Architecture of graphdiyne nanoscale films. Chem Commun (Camb) 2010;46:3256-8.

53. Li J, Chen Y, Guo J, Wang F, Liu H, Li Y. Graphdiyne oxide-based high-performance rechargeable aqueous Zn-MnO 2 battery. Adv Funct Mater 2020;30:2004115.

54. Wang F, Xiong Z, Jin W, Liu H, Liu H. Graphdiyne oxide for aqueous zinc ion full battery with ultra-long cycling stability. Nano Today 2022;44:101463.

55. Yang Q, Guo Y, Yan B, et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv Mater 2020;32:e2001755.

56. Yang Q, Li L, Hussain T, et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries. Angew Chem Int Ed Engl 2022;61:e202112304.

57. Liang P, Yi J, Liu X, et al. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv Funct Mater 2020;30:1908528.

58. Cao J, Zhang D, Gu C, et al. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy 2021;89:106322.

59. Zhou M, Guo S, Fang G, et al. Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. Journal of Energy Chemistry 2021;55:549-56.

60. Jin H, Dai S, Xie K, et al. Regulating interfacial desolvation and deposition kinetics enables durable Zn anodes with ultrahigh utilization of 80. Small 2022;18:e2106441.

61. Zhang Q, Luan J, Huang X, et al. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat Commun 2020;11:3961.

62. Liu H, Wang JG, Hua W, et al. Building ohmic contact interfaces toward ultrastable Zn metal anodes. Adv Sci (Weinh) 2021;8:e2102612.

63. Xie X, Liang S, Gao J, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ Sci 2020;13:503-10.

64. Han X, Leng H, Qi Y, et al. Hydrophilic silica spheres layer as ions shunt for enhanced Zn metal anode. Chemical Engineering Journal 2022;431:133931.

65. Zhou X, Cao P, Wei A, et al. Driving the interfacial ion-transfer kinetics by mesoporous TiO2 spheres for high-performance aqueous Zn-ion batteries. ACS Appl Mater Interfaces 2021;13:8181-90.

66. Zhao K, Wang C, Yu Y, et al. Ultrathin surface coating enables stabilized zinc metal Anode. Adv Mater Interfaces 2018;5:1800848.

67. He H, Tong H, Song X, Song X, Liu J. Highly stable Zn metal anodes enabled by atomic layer deposited Al 2 O 3 coating for aqueous zinc-ion batteries. J Mater Chem A 2020;8:7836-46.

68. Hao J, Li B, Li X, et al. An in-depth study of zn metal surface chemistry for advanced aqueous zn-ion batteries. Adv Mater 2020;32:e2003021.

69. Bhoyate S, Mhin S, Jeon JE, Park K, Kim J, Choi W. Stable and high-energy-density Zn-ion rechargeable batteries based on a MoS2-coated Zn anode. ACS Appl Mater Interfaces 2020;12:27249-57.

70. Jia H, Qiu M, Lan C, et al. Advanced Zinc anode with nitrogen-doping interface induced by plasma surface treatment. Adv Sci (Weinh) 2022;9:e2103952.

71. Zheng J, Cao Z, Ming F, et al. Preferred orientation of TiN coatings enables stable zinc anodes. ACS Energy Lett 2022;7:197-203.

72. Yang Z, Lv C, Li W, et al. Revealing the two-dimensional surface diffusion mechanism for zinc dendrite formation on zinc anode. Small 2021:e2104148.

73. Ma L, Li Q, Ying Y, et al. Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv Mater 2021;33:e2007406.

74. Yang Y, Liu C, Lv Z, et al. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv Mater 2021;33:e2007388.

75. Han J, Euchner H, Kuenzel M, et al. A thin and uniform fluoride-based artificial interphase for the zinc metal anode enabling reversible Zn/MnO 2 batteries. ACS Energy Lett 2021;6:3063-71.

76. Liang G, Zhu J, Yan B, et al. Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy Environ Sci 2022;15:1086-96.

77. Cao P, Zhou X, Wei A, et al. Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries. Adv Funct Mater 2021;31:2100398.

78. Peng H, Liu C, Wang N, et al. Intercalation of organics into layered structures enables superior interface compatibility and fast charge diffusion for dendrite-free Zn anodes. Energy Environ Sci 2022;15:1682-93.

79. Hong L, Wu X, Ma C, et al. Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries. J Mater Chem A 2021;9:16814-23.

80. Yang Y, Liu C, Lv Z, et al. Redistributing Zn-ion flux by interlayer ion channels in Mg-Al layered double hydroxide-based artificial solid electrolyte interface for ultra-stable and dendrite-free Zn metal anodes. Energy Storage Materials 2021;41:230-9.

81. Liu M, Cai J, Ao H, Hou Z, Zhu Y, Qian Y. NaTi 2 (PO 4 ) 3 Solid-state electrolyte protection layer on Zn metal anode for superior long-life aqueous zinc-ion batteries. Adv Funct Mater 2020;30:2004885.

82. Xiao P, Xue L, Guo Y, et al. On-site building of a Zn2+-conductive interfacial layer via short-circuit energization for stable Zn anode. Science Bulletin 2021;66:545-52.

83. Kang L, Cui M, Jiang F, et al. Nanoporous CaCO 3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv Energy Mater 2018;8:1801090.

84. Wu K, Yi J, Liu X, et al. Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nanomicro Lett 2021;13:79.

85. Zou P, Zhang R, Yao L, et al. Ultrahigh-rate and long-life zinc-metal anodes enabled by self-accelerated cation migration. Adv Energy Mater 2021;11:2100982.

86. Chen A, Zhao C, Guo Z, et al. Fast-growing multifunctional ZnMoO4 protection layer enable dendrite-free and hydrogen-suppressed Zn anode. Energy Storage Materials 2022;44:353-9.

87. Ma C, Wang X, Lu W, et al. Achieving stable Zn metal anode via a simple NiCo layered double hydroxides artificial coating for high performance aqueous Zn-ion batteries. Chemical Engineering Journal 2022;429:132576.

88. Su XH, Han CX, Zhang J, Wang ZJ. Preparation and electrochemical performance of CoNiO2/Ti3C2Tx composites. J Chin Ceram Soc 2021;49:1033-1040. DOI: 10.14062/j.issn.0454.

89. Chang C, Chen W, Chen Y, et al. Recent progress on two-dimensional materials. Acta Physico Chimica Sinica 2021;0:2108017-0.

90. Zhang N, Huang S, Yuan Z, Zhu J, Zhao Z, Niu Z. Direct self-assembly of mxene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew Chem Int Ed Engl 2021;60:2861-5.

91. Sun C, Wu C, Gu X, Wang C, Wang Q. Interface engineering via Ti3C2Tx mxene electrolyte additive toward dendrite-free zinc deposition. Nanomicro Lett 2021;13:89.

92. Li X, Li M, Luo K, et al. Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 mxenes. ACS Nano ;2021:813-22.

93. Zou K, Cai P, Deng X, et al. Highly stable zinc metal anode enabled by oxygen functional groups for advanced Zn-ion supercapacitors. Chem Commun 2021;57:528-31.

94. Li Z, Deng W, Li C, et al. Uniformizing the electric field distribution and ion migration during zinc plating/stripping. via ;8:17725-31.

95. Jiao S, Fu J, Wu M, Hua T, Hu H. Ion sieve: tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano ;2021:1013-24.

96. Du H, Zhao R, Yang Y, Liu Z, Qie L, Huang Y. High-capacity and long-life zinc electrodeposition enabled by a self-healable and desolvation shield for aqueous zinc-ion batteries. Angew Chem Int Ed Engl 2022;61:e202114789.

97. Jiao Y, Li F, Jin X, et al. Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high-performance zn-ion batteries. Adv Funct Mater 2021;31:2107652.

98. Lee D, Kim H, Kim W, et al. Water-repellent ionic liquid skinny gels customized for aqueous Zn-Ion battery anodes. Adv Funct Mater 2021;31:2103850.

99. Zou P, Nykypanchuk D, Doerk G, Xin HL. Hydrophobic molecule monolayer brush-tethered zinc anodes for aqueous zinc batteries. ACS Appl Mater Interfaces 2021;13:60092-8.

100. Hieu LT, So S, Kim IT, Hur J. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life. Chemical Engineering Journal 2021;411:128584.

101. Wang Y, Guo T, Yin J, et al. Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv Mater 2022;34:e2106937.

102. Zhao Z, Zhao J, Hu Z, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ Sci 2019;12:1938-49.

103. Chen P, Zhou W, Xiao Z, et al. An integrated configuration with robust interfacial contact for durable and flexible zinc ion batteries. Nano Energy 2020;74:104905.

104. Cao Z, Zhu X, Xu D, et al. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Materials 2021;36:132-8.

105. Park SH, Byeon SY, Park J, Kim C. Insight into the critical role of surface hydrophilicity for dendrite-free zinc metal anodes. ACS Energy Lett 2021;6:3078-85.

106. Kim S, Yang X, Cho M, Lee Y. Nanostructured conductive polymer shield for highly reversible dendrite-free zinc metal anode. Chem Eng J 2022;427:131954.

107. Chen P, Yuan X, Xia Y, et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv Sci (Weinh) 2021;8:e2100309.

108. Liu P, Zhang Z, Hao R, et al. Ultra-highly stable zinc metal anode via 3D-printed g-C3N4 modulating interface for long life energy storage systems. Chem Eng J 2021;403:126425.

109. Park JH, Kwak MJ, Hwang C, et al. Self-assembling films of covalent organic frameworks enable long-term, efficient cycling of zinc-ion batteries. Adv Mater 2021;33:e2101726.

110. Zhao Z, Wang R, Peng C, et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat Commun 2021;12:6606.

111. Zhao J, Ying Y, Wang G, et al. Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Materials 2022;48:82-9.

112. Ding J, Liu Y, Huang S, et al. In Situ construction of a multifunctional quasi-gel layer for long-life aqueous zinc metal anodes. ACS Appl Mater Interfaces 2021;13:29746-54.

113. Zhu M, Hu J, Lu Q, et al. A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv Mater 2021;33:e2007497.

114. Shin J, Lee J, Kim Y, Park Y, Kim M, Choi JW. Highly reversible, grain-directed zinc deposition in aqueous zinc-ion batteries. Adv Energy Mater 2021;11:2100676.

115. Liu M, Yang L, Liu H, et al. Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl Mater Interfaces 2019;11:32046-51.

116. Yang H, Chang Z, Qiao Y, et al. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew Chem Int Ed Engl 2020;59:9377-81.

117. He M, Shu C, Hu A, et al. Suppressing dendrite growth and side reactions on Zn metal anode via guiding interfacial anion/cation/H2O distribution by artificial multi-functional interface layer. Energy Storage Materials 2022;44:452-60.

118. Li G. Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries. Adv Energy Mater 2021;11:2002891.

119. Yuan D, Manalastas W Jr, Zhang L, et al. Lignin@Nafion membranes forming Zn solid-electrolyte interfaces enhance the cycle life for rechargeable zinc-ion batteries. ChemSusChem 2019;12:4889-900.

120. Wu B, Wu Y, Lu Z, et al. A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. J Mater Chem A 2021;9:4734-43.

121. Fang Y, Xie X, Zhang B, et al. Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv Funct Materials 2022;32:2109671.

122. Lee BS, Cui S, Xing X, et al. Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl Mater Interfaces 2018;10:38928-35.

123. Zhi J, Li S, Han M, Chen P. Biomolecule-guided cation regulation for dendrite-free metal anodes. Sci Adv 2020;6:eabb1342.

124. Wu L, Zhang Y, Shang P, Dong Y, Wu Z. Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes. J Mater Chem A 2021;9:27408-14.

125. Liu T, Hong J, Wang J, Xu Y, Wang Y. Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan. Energy Storage Materials 2022;45:1074-83.

126. Wang Z, Dong L, Huang W, et al. Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nanomicro Lett 2021;13:73.

127. Yang H, Qiao Y, Chang Z, Deng H, He P, Zhou H. A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv Mater 2020;32:e2004240.

128. Zhang L, Zhang B, Zhang T, et al. Eliminating dendrites and side reactions via a multifunctional ZnSe protective layer toward advanced aqueous Zn metal batteries. Adv Funct Materials 2021;31:2100186.

129. Li TC, Lim YV, Xie X, et al. ZnSe Modified zinc metal anodes: toward enhanced zincophilicity and ionic diffusion. Small 2021;17:e2101728.

130. Yang X, Li C, Sun Z, et al. Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv Mater 2021;33:e2105951.

131. Cao P, Tang J, Wei A, et al. Manipulating uniform nucleation to achieve dendrite-free Zn anodes for aqueous Zn-ion batteries. ACS Appl Mater Interfaces 2021;13:48855-64.

132. Cui M, Xiao Y, Kang L, et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl Energy Mater 2019;2:6490-6.

133. Li Z, Gong Z, Wu X, et al. Dendrite-free and anti-corrosion Zn metal anode enabled by an artificial layer for high-performance Zn ion capacitor. Chin Chem Lett 2021; doi: 10.1016/j.cclet.2021.11.015.

134. Han D, Wu S, Zhang S, et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 2020;16:e2001736.

135. Cai Z, Ou Y, Zhang B, et al. A replacement reaction enabled interdigitated metal/solid electrolyte architecture for battery cycling at 20 mA cm-2 and 20 mAh cm-2. J Am Chem Soc 2021;143:3143-52.

136. Hu K, Guan X, Lv R, et al. Stabilizing zinc metal anodes by artificial solid electrolyte interphase through a surface ion-exchanging strategy. Chem Eng J 2020;396:125363.

137. Hong L, Wang LY, Wang Y, et al. Toward hydrogen-free and dendrite-free aqueous zinc batteries: formation of zincophilic protective layer on Zn anodes. Adv Sci (Weinh) 2022;9:e2104866.

138. Zhang Y, Wang G, Yu F, et al. Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chem Eng J 2021;416:128062.

139. Wang Y, Chen Y, Liu W, et al. Uniform and dendrite-free zinc deposition enabled by. in situ ;9:8452-61.

140. Lu Q, Liu C, Du Y, et al. Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries. ACS Appl Mater Interfaces 2021;13:16869-75.

141. Liu C, Luo Z, Deng W, et al. Liquid alloy interlayer for aqueous zinc-ion battery. ACS Energy Lett 2021;6:675-83.

142. Jia H, Wang Z, Dirican M, et al. A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. J Mater Chem A 2021;9:5597-605.

143. Gu J, Tao Y, Chen H, et al. Stress-release functional liquid metal-mxene layers toward dendrite-free zinc metal anodes. Advanced Energy Materials ; doi: 10.1002/aenm.202200115.

144. Liu C, Lu Q, Omar A, Mikhailova D. A facile chemical method enabling uniform Zn deposition for improved aqueous Zn-ion batteries. Nanomaterials (Basel) 2021;11:764.

145. Xie S, Li Y, Li X, et al. Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nanomicro Lett 2021;14:39.

146. Li S, Fu J, Miao G, et al. Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv Mater 2021;33:e2008424.

147. Guo W, Zhang Y, Tong X, et al. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Materials Today Energy 2021;20:100675.

148. Huang Y, Chang Z, Liu W, et al. Layer-by-layer zinc metal anodes to achieve long-life zinc-ion batteries. Chem Eng J 2022;431:133902.

149. Zhao R, Yang Y, Liu G, et al. Redirected Zn Electrodeposition by an Anti-Corrosion Elastic Constraint for Highly Reversible Zn Anodes. Adv Funct Mater 2021;31:2001867.

150. Cui Y, Zhao Q, Wu X, et al. An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew Chem Int Ed Engl 2020;59:16594-601.

151. He H, Liu J. Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes. J Mater Chem A 2020;8:22100-10.

152. Zhou S, Wang Y, Lu H, et al. Anti-corrosive and Zn-ion-regulating composite interlayer enabling long-life Zn metal anodes. Adv Funct Materials 2021;31:2104361.

153. Guo Z, Fan L, Zhao C, et al. A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv Mater 2022;34:e2105133.

154. Di S, Nie X, Ma G, et al. Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase. Energy Storage Materials 2021;43:375-82.

155. Wu S, Zhang S, Chu Y, Hu Z, Luo J. Stacked lamellar matrix enabling regulated deposition and superior thermo-kinetics for advanced aqueous Zn-ion system under practical conditions. Adv Funct Mater 2021;31:2107397.

156. Zhang Y, Zhu M, Wang G, et al. Dendrites-free Zn metal anodes enabled by an artificial protective layer filled with 2D anionic nanosheets. Small Methods 2021;5:e2100650.

157. Xu X, Chen Y, Zheng D, et al. Ultra-fast and scalable saline immersion strategy enabling uniform Zn nucleation and deposition for high-performance Zn-ion batteries. Small 2021;17:e2101901.

158. Mu Y, Zhou T, Li D, et al. Highly stable and durable Zn-metal anode coated by bi-functional protective layer suppressing uncontrollable dendrites growth and corrosion. Chem Eng J 2022;430:132839.

159. An Y, Tian Y, Liu C, Xiong S, Feng J, Qian Y. Rational design of sulfur-doped three-dimensional Ti3C2T. x ;15:15259-73.

160. Deng W, Zhang N, Wang X. Hybrid interlayer enables dendrite-free and deposition-modulated zinc anodes. Chem Eng J 2022;432:134378.

161. Feng G, Guo J, Tian H, et al. Probe the localized electrochemical environment effects and electrode reaction dynamics for metal batteries using in situ 3D microscopy. Adv Energy Mater 2022;12:2103484.

162. Cui B, Han X, Hu W. Micronanostructured design of dendrite-free zinc anodes and their applications in aqueous zinc-based rechargeable batteries. Small Structures 2021;2:2000128.

163. Wang J, Cai Z, Xiao R, et al. A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries. ACS Appl Mater Interfaces 2020;12:23028-34.

164. Xu Y, Wang C, Shi Y, Miao G, Fu J, Huang Y. A self-preserving pitted texture enables reversible topographic evolution and cycling on Zn metal anodes. J Mater Chem A 2021;9:25495-501.

165. Zhang Y, Han X, Liu R, et al. Manipulating the zinc deposition behavior in hexagonal patterns at the preferential Zn (100) crystal plane to construct surficial dendrite-free zinc metal anode. Small 2022;18:e2105978.

166. Wang W, Huang G, Wang Y, et al. Organic acid etching strategy for dendrite suppression in aqueous zinc-ion batteries. Advanced Energy Materials 2022;12:2102797.

167. Wang X, Meng J, Lin X, et al. Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings. Adv Funct Materials 2021;31:2106114.

168. Zhou M, Guo S, Li J, et al. Surface-preferred crystal plane for a stable and reversible zinc anode. Adv Mater 2021;33:e2100187.

169. Zheng J, Deng Y, Yin J, et al. Textured electrodes: manipulating built-in crystallographic heterogeneity of metal electrodes via severe plastic deformation. Adv Mater 2022;34:e2106867.

170. Wang J, Zhang B, Cai Z, et al. Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Science Bulletin 2022;67:716-24.

171. Chen K, Guo H, Li W, Wang Y. Dual porous 3D zinc anodes toward dendrite-free and long cycle life zinc-ion batteries. ACS Appl Mater Interfaces 2021;13:54990-6.

172. Liu H, Li J, Zhang X, et al. Ultrathin and ultralight Zn micromesh-induced spatial-selection deposition for flexible high-specific-energy Zn-ion batteries. Adv Funct Materials 2021;31:2106550.

173. Xiao R, Cai Z, Zhan R, et al. Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chem Eng J 2021;420:129642.

174. Li C, Shi X, Liang S, et al. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem Eng J 2020;379:122248.

175. Zhang Q, Luan J, Huang X, et al. Simultaneously regulating the ion distribution and electric field to achieve dendrite-free Zn anode. Small 2020;16:e2000929.

176. Zeng Y, Sun PX, Pei Z, et al. Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv Mater 2022:e2200342.

177. An Y, Tian Y, Xiong S, Feng J, Qian Y. Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano ;2021:11828-42.

178. Zhang G, Zhang X, Liu H, Li J, Chen Y, Duan H. 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn-ion batteries. Adv Energy Mater 2021;11:2003927.

179. Shen Z, Luo L, Li C, et al. Stratified zinc-binding strategy toward prolonged cycling and flexibility of aqueous fibrous zinc metal batteries. Adv Energy Mater 2021;11:2100214.

180. Jian Q, Guo Z, Zhang L, Wu M, Zhao T. A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes. Chem Eng J 2021;425:130643.

181. Qian Y, Meng C, He J, Dong X. A lightweight 3D Zn@Cu nanosheets@activated carbon cloth as long-life anode with large capacity for flexible zinc ion batteries. Journal of Power Sources 2020;480:228871.

182. Zeng Y, Zhang X, Qin R, et al. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv Mater 2019;31:e1903675.

183. Chen T, Wang Y, Yang Y, et al. Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries. Adv Funct Mater 2021;31:2101607.

184. Zheng J, Bock DC, Tang T, et al. Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal-substrate bonding. Nat Energy 2021;6:398-406.

185. Hong C, Yang G, Wang C. Highly reversible Zn electrodeposition enabled by an artificial 3D defect-rich conductive scaffold. ACS Appl Mater Interfaces 2021;13:54088-95.

186. Xie F, Li H, Wang X, et al. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv Energy Mater 2021;11:2003419.

187. Wan F, Hao Z, Wang S, et al. A Universal compensation strategy to anchor polar organic molecules in bilayered hydrated vanadates for promoting aqueous zinc-ion storage. Adv Mater 2021;33:e2102701.

188. Cao Q, Gao H, Gao Y, et al. Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv Funct Mater 2021;31:2103922.

189. Tian Y, An Y, Wei C, et al. Flexible and free-standing Ti3C2T. x ;13:11676-85.

190. Tian Y, An Y, Liu C, Xiong S, Feng J, Qian Y. Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Materials 2021;41:343-53.

191. Zhou J, Xie M, Wu F, et al. Encapsulation of metallic Zn in a hybrid mxene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv Mater 2022;34:e2106897.

192. Wang Z, Huang J, Guo Z, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 2019;3:1289-300.

193. Sun PX, Cao Z, Zeng YX, et al. Formation of super-assembled TiOx /Zn/N-doped carbon inverse opal towards dendrite-free Zn anodes. Angew Chem Int Ed Engl 2022;61:e202115649.

194. Zhang Y, Howe JD, Ben-yoseph S, Wu Y, Liu N. Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries. ACS Energy Lett 2021;6:404-12.

195. Tian H, Li Z, Feng G, et al. Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nat Commun 2021;12:237.

196. Wang L, Huang W, Guo W, et al. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv Funct Materials 2022;32:2108533.

197. Zhou L, Yang F, Zeng S, et al. Zincophilic Cu sites induce dendrite-free Zn anodes for robust alkaline/neutral aqueous batteries. Adv Funct Materials 2022;32:2110829.

198. Wan F, Wang X, Bi S, Niu Z, Chen J. Freestanding reduced graphene oxide/sodium vanadate composite films for flexible aqueous zinc-ion batteries. Sci China Chem 2019;62:609-15.

199. Olbasa BW, Fenta FW, Chiu S, et al. High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes. ACS Appl Energy Mater 2020;3:4499-508.

200. Liu Z, Yang Y, Liang S, Lu B, Zhou J. pH-buffer contained electrolyte for self-adjusted cathode-free Zn-MnO 2 batteries with coexistence of dual mechanisms. Small Structures 2021;2:2100119.

201. Chuai M, Yang J, Wang M, et al. High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience 2021;1:178-85.

202. Du M, Zhang F, Zhang X, et al. Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries. Sci China Chem 2020;63:1767-76.

203. Song X, He H, Aboonasr Shiraz MH, Zhu H, Khosrozadeh A, Liu J. Enhanced reversibility and electrochemical window of Zn-ion batteries with an acetonitrile/water-in-salt electrolyte. Chem Commun (Camb) 2021;57:1246-9.

204. Luo LW, Zhang C, Wu X, et al. A Zn-S aqueous primary battery with high energy and flat discharge plateau. Chem Commun (Camb) 2021;57:9918-21.

205. Sun T, Yuan X, Wang K, et al. An ultralow-temperature aqueous zinc-ion battery. J Mater Chem A 2021;9:7042-7.

206. Wang L, Zhang Y, Hu H, et al. A Zn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc Batteries. ACS Appl Mater Interfaces 2019;11:42000-5.

207. Kasiri G, Trócoli R, Bani Hashemi A, La Mantia F. An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochimica Acta 2016;222:74-83.

208. Zhang N, Cheng F, Liu Y, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc 2016;138:12894-901.

209. Zhang Q, Xia K, Ma Y, et al. Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett 2021;6:2704-12.

210. Zhang Y, Zhao L, Liang Y, Wang X, Yao Y. Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries. eScience 2022; doi: 10.1016/j.esci.2022.01.002.

211. Huang Y, Gu Q, Guo Z, et al. Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study. Energy Storage Materials 2022;46:243-51.

212. Yuan D, Zhao J, Ren H, et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew Chem Int Ed Engl 2021;60:7213-9.

213. Polu AR, Kumar R, Joshi GM. Effect of zinc salt on transport, structural, and thermal properties of PEG-based polymer electrolytes for battery application. Ionics 2014;20:675-9.

214. Karan S, Sahu TB, Sahu M, Agrawal R. .

215. Wang W, Zhao L, Yan B, Tan X, Qi Y, He B. Effects of concentration and freeze-thaw on the first hydration shell structure of Zn2+ ions. Trans Tianjin Univ 2011;17:381-5.

216. Zhang C, Holoubek J, Wu X, et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem Commun (Camb) 2018;54:14097-9.

217. Zhang L, Rodríguez-pérez IA, Jiang H, et al. ZnCl 2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv Funct Mater 2019;29:1902653.

218. Tang X, Wang P, Bai M, et al. Unveiling the reversibility and stability origin of the aqueous V2 O5 -Zn batteries with a ZnCl2 “water-in-salt” electrolyte. Adv Sci (Weinh) 2021;8:e2102053.

219. Wu X, Xu Y, Zhang C, et al. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J Am Chem Soc 2019;141:6338-44.

220. Dong Y, Jia M, Wang Y, et al. Long-life zinc/vanadium pentoxide battery enabled by a concentrated aqueous ZnSO 4 electrolyte with proton and zinc ion Co-intercalation. ACS Appl Energy Mater 2020;3:11183-92.

221. Patil N, Cruz C, Ciurduc D, Mavrandonakis A, Palma J, Marcilla R. An ultrahigh performance zinc-organic battery using poly(catechol) cathode in Zn(TFSI) 2 -based concentrated aqueous electrolytes. Adv Energy Mater 2021;11:2100939.

222. Olbasa BW, Huang C, Fenta FW, et al. Highly reversible Zn metal anode stabilized by dense and anion-derived passivation layer obtained from concentrated hybrid aqueous electrolyte. Adv Funct Materials 2022;32:2103959.

223. Huang J, Chi X, Wu J, Liu J, Liu Y. High-concentration dual-complex electrolyte enabled a neutral aqueous zinc-manganese electrolytic battery with superior stability. Chem Eng J 2022;430:133058.

224. Ao H, Zhu W, Liu M, et al. High-voltage and super-stable aqueous sodium-zinc hybrid ion batteries enabled by double solvation structures in concentrated electrolyte. Small Methods 2021;5:e2100418.

225. Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater 2018;17:543-9.

226. Zhang Y, Wan G, Lewis NHC, et al. Water or anion? ACS Energy Lett 2021;6:3458-63.

227. Chen S, Lan R, Humphreys J, Tao S. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Materials 2020;28:205-15.

228. Wan F, Zhang L, Dai X, Wang X, Niu Z, Chen J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat Commun 2018;9:1656.

229. Guo X, Zhang Z, Li J, et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett 2021;6:395-403.

230. Zhu M, Wang X, Tang H, et al. Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv Funct Mater 2019;30:1907218.

231. Wu H, Gu X, Huang P, et al. Polyoxometalate driven dendrite-free zinc electrodes with synergistic effects of cation and anion cluster regulation. J Mater Chem A 2021;9:7025-33.

232. Jian Q, Wu M, Jiang H, Lin Y, Zhao T. A trifunctional electrolyte for high-performance zinc-iodine flow batteries. J Power Sources 2021;484:229238.

233. Han D, Wang Z, Lu H, et al. A self-regulated interface toward highly reversible aqueous zinc batteries. Adv Energy Mater 2022;12:2102982.

234. Li Y, Wu P, Zhong W, et al. A progressive nucleation mechanism enables stable zinc stripping–plating behavior. Energy Environ Sci 2021;14:5563-71.

235. Yuan W, Ma G, Nie X, et al. In-situ construction of a hydroxide-based solid electrolyte interphase for robust zinc anodes. Chem Eng J 2022;431:134076.

236. Xiao Y, Xu R, Xu L, Ding J, Huang J. Recent advances on anion-derived sei for fast-charging and stable lithium batteries. EM 2021; doi: 10.20517/energymater.2021.17.

237. Zeng X, Mao J, Hao J, et al. Electrolyte design for in situ construction of highly Zn2+ -conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv Mater 2021;33:e2007416.

238. Li D, Cao L, Deng T, Liu S, Wang C. Design of a solid electrolyte interphase for aqueous Zn batteries. Angew Chem Int Ed Engl 2021;60:13035-41.

239. Chu Y, Zhang S, Wu S, Hu Z, Cui G, Luo J. In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ Sci 2021;14:3609-20.

240. Otani T, Fukunaka Y, Homma T. Effect of lead and tin additives on surface morphology evolution of electrodeposited zinc. Electrochimica Acta 2017;242:364-72.

241. Cao L, Li D, Soto FA, et al. Highly reversible aqueous zinc batteries enabled by zincophilic-zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew Chem Int Ed Engl 2021;60:18845-51.

242. Liu Z, Ren J, Wang F, et al. Tuning surface energy of Zn anodes via Sn heteroatom doping enabled by a codeposition for ultralong life span dendrite-free aqueous Zn-ion batteries. ACS Appl Mater Interfaces 2021;13:27085-95.

243. Ouyang K, Ma D, Zhao N, et al. A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv Funct Materials 2022;32:2109749.

244. Hao J, Yuan L, Ye C, et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew Chem Int Ed Engl 2021;60:7366-75.

245. Zhang Y, Zhu M, Wu K, et al. An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte. J Mater Chem A 2021;9:4253-61.

246. Qin R, Wang Y, Zhang M, et al. Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 2021;80:105478.

247. Li F, Yu L, Hu Q, et al. Fabricating low-temperature-tolerant and durable Zn-ion capacitors via modulation of co-solvent molecular interaction and cation solvation. Sci China Mater 2021;64:1609-20.

248. Xu W, Zhao K, Huo W, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 2019;62:275-81.

249. Cui J, Liu X, Xie Y, et al. Improved electrochemical reversibility of Zn plating/stripping: a promising approach to suppress water-induced issues through the formation of H-bonding. Mater Today Energy 2020;18:100563.

250. Feng R, Chi X, Qiu Q, et al. Cyclic ether-water hybrid electrolyte-guided dendrite-free lamellar zinc deposition by tuning the solvation structure for high-performance aqueous zinc-ion batteries. ACS Appl Mater Interfaces 2021;13:40638-47.

251. Chen S, Nian Q, Zheng L, et al. Highly reversible aqueous zinc metal batteries enabled by fluorinated interphases in localized high concentration electrolytes. J Mater Chem A 2021;9:22347-52.

252. Du H, Wang K, Sun T, et al. Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte. Chem Eng J 2022;427:131705.

253. Sun P, Ma L, Zhou W, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew Chem Int Ed Engl 2021;60:18247-55.

254. Qiu M, Ma L, Sun P, Wang Z, Cui G, Mai W. Manipulating Interfacial stability via absorption-competition mechanism for long-lifespan Zn anode. Nanomicro Lett 2021;14:31.

255. Dong Y, Miao L, Ma G, et al. Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem Sci 2021;12:5843-52.

256. Liu S, Mao J, Pang WK, et al. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv Funct Mater 2021;31:2104281.

257. Lu H, Zhang X, Luo M, et al. Amino acid-induced interface charge engineering enables highly reversible Zn anode. Adv Funct Mater 2021;31:2103514.

258. Zhang Q, Luan J, Fu L, et al. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew Chem Int Ed Engl 2019;58:15841-7.

259. Yan M, Dong N, Zhao X, Sun Y, Pan H. Tailoring the stability and kinetics of Zn anodes through trace organic polymer additives in dilute aqueous electrolyte. ACS Energy Lett 2021;6:3236-43.

260. Hao J, Long J, Li B, et al. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv Funct Mater 2019;29:1903605.

261. Bayaguud A, Luo X, Fu Y, Zhu C. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett 2020;5:3012-20.

262. Zhang Q, Ma Y, Lu Y, et al. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew Chem Int Ed Engl 2021;60:23357-64.

263. Zhang S, Hao J, Luo D, et al. Dual-function electrolyte additive for highly reversible Zn anode. Adv Energy Mater 2021;11:2102010.

264. Xi M, Liu Z, Ding J, Cheng W, Jia D, Lin H. Saccharin anion acts as a “traffic assistant” of Zn2+ to achieve a long-life and dendritic-free zinc plate anode. ACS Appl Mater Interfaces 2021;13:29631-40.

265. Wang N, Zhai S, Ma Y, et al. Tridentate citrate chelation towards stable fiber zinc-polypyrrole battery with hybrid mechanism. Energy Stor Mater 2021;43:585-94.

266. Qian L, Yao W, Yao R, et al. Cations coordination-regulated reversibility enhancement for aqueous Zn-ion battery. Adv Funct Mater 2021;31:2105736.

267. Chen Z, Chen H, Che Y, et al. Arginine cations inhibiting charge accumulation of dendrites and boosting Zn metal reversibility in aqueous rechargeable batteries. ACS Sustainable Chem Eng 2021;9:6855-63.

268. Zhang L, Miao L, Xin W, Peng H, Yan Z, Zhu Z. Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode. Energy Storage Materials 2022;44:408-15.

269. Sun KE, Hoang TK, Doan TN, et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl Mater Interfaces 2017;9:9681-7.

270. Guan K, Tao L, Yang R, et al. Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv Energy Mater 2022;12:2103557.

271. Yao R, Qian L, Sui Y, et al. A versatile cation additive enabled highly reversible zinc metal anode. Adv Energy Mater 2022;12:2102780.

272. Li R, Li M, Chao Y, et al. Hexaoxacyclooctadecane induced interfacial engineering to achieve dendrite-free Zn ion batteries. Energy Stor Mater 2022;46:605-12.

273. Li C, Kingsbury R, Zhou L, Shyamsunder A, Persson KA, Nazar LF. Tuning the solvation structure in aqueous zinc batteries to maximize Zn-ion intercalation and optimize dendrite-free zinc plating. ACS Energy Lett 2022;7:533-40.

274. Huang Z, Wang T, Li X, et al. Small-dipole-molecule-containing electrolytes for high-voltage aqueous rechargeable batteries. Adv Mater 2022;34:e2106180.

275. Hou Z, Lu Z, Chen Q, Zhang B. Realizing wide-temperature Zn metal anodes through concurrent interface stability regulation and solvation structure modulation. Energy Stor Mater 2021;42:517-25.

276. Cao L, Li D, Pollard T, et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat Nanotechnol 2021;16:902-10.

277. Zeng X, Xie K, Liu S, et al. Bio-inspired design of an. in situ ;14:5947-57.

278. Ma L, Pollard TP, Zhang Y, et al. Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes. Angew Chem Int Ed Engl 2021;60:12438-45.

279. Feng D, Cao F, Hou L, Li T, Jiao Y, Wu P. Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small 2021;17:e2103195.

280. Cao L, Li D, Hu E, et al. Solvation structure design for aqueous Zn metal batteries. J Am Chem Soc 2020;142:21404-9.

281. Ballesteros J, Díaz-arista P, Meas Y, Ortega R, Trejo G. Zinc electrodeposition in the presence of polyethylene glycol 20000. Electrochimica Acta 2007;52:3686-96.

282. Mitha A, Yazdi AZ, Ahmed M, Chen P. Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. Chem Electro Chem 2018;5:2409-18.

283. Cao Z, Zhu X, Gao S, et al. Ultrastable zinc anode by simultaneously manipulating solvation sheath and inducing oriented deposition with PEG stability promoter. Small 2022;18:e2103345.

284. Wu Y, Zhu Z, Shen D, et al. Electrolyte engineering enables stable Zn-ion deposition for long-cycling life aqueous Zn-ion batteries. Energy Stor Mater 2022;45:1084-91.

285. Huang S, Zhu J, Tian J, Niu Z. Recent progress in the electrolytes of aqueous zinc-ion batteries. Chemistry 2019;25:14480-94.

286. Zhao J, Sonigara KK, Li J, et al. A smart flexible zinc battery with cooling recovery ability. Angew Chem Int Ed Engl 2017;56:7871-5.

287. Kumar G. Electrochemical characterization of poly(vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries. Solid State Ionics 2003;160:289-300.

288. Kumar G, Sampath S. Spectroscopic characterization of a gel polymer electrolyte of zinc triflate and polyacrylonitrile. Polymer 2004;45:2889-95.

289. Zeng Y, Zhang X, Meng Y, et al. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv Mater 2017;29:1700274.

290. Li Q, Cui X, Pan Q. Self-healable hydrogel electrolyte toward high-performance and reliable quasi-solid-state Zn-MnO2 batteries. ACS Appl Mater Interfaces 2019;11:38762-70.

291. Liu J, Long J, Shen Z, et al. A self-healing flexible quasi-solid zinc-ion battery using all-in-one electrodes. Adv Sci (Weinh) 2021;8:2004689.

292. Chen M, Zhou W, Wang A, et al. Anti-freezing flexible aqueous Zn-MnO 2 batteries working at -35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J Mater Chem A 2020;8:6828-41.

293. Zhou W, Chen J, Chen M, et al. An environmentally adaptive quasi-solid-state zinc-ion battery based on magnesium vanadate hydrate with commercial-level mass loading and anti-freezing gel electrolyte. J Mater Chem A 2020;8:8397-409.

294. Li H, Liu Z, Liang G, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018;12:3140-8.

295. Wang D, Wang L, Liang G, et al. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano 2019;13:10643-52.

296. Li H, Han C, Huang Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci 2018;11:941-51.

297. Jin X, Song L, Dai C, et al. A self-healing zinc ion battery under -20 °C. Energy Stor Mater 2022;44:517-26.

298. Mo F, Liang G, Meng Q, et al. A flexible rechargeable aqueous zinc manganese-dioxide battery working at -20 °C. Energy Environ Sci 2019;12:706-15.

299. Wang Z, Mo F, Ma L, et al. Highly compressible cross-linked polyacrylamide hydrogel-enabled compressible Zn-MnO2 battery and a flexible battery-sensor system. ACS Appl Mater Interfaces 2018;10:44527-34.

300. Han Q, Chi X, Zhang S, et al. Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries. J Mater Chem A 2018;6:23046-54.

301. Huang Y, Liu J, Zhang J, et al. Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte. RSC Adv 2019;9:16313-9.

302. Mo F, Chen Z, Liang G, et al. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO 2 batteries with superior rate capabilities. Adv Energy Mater 2020;10:2000035.

303. Leng K, Li G, Guo J, et al. A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries. Adv Funct Mater 2020;30:2001317.

304. Wang J, Huang Y, Liu B, et al. Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte. Energy Storage Materials 2021;41:599-605.

305. Zhang S, Yu N, Zeng S, et al. An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. J Mater Chem A 2018;6:12237-43.

306. Chen M, Chen J, Zhou W, Han X, Yao Y, Wong CP. Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv Mater 2021;33:e2007559.

307. Wei T, Ren Y, Li Z, Zhang X, Ji D, Hu L. Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from -20 to 60 °C. Chem Eng J 2022;434:134646.

308. Tang Y, Liu C, Zhu H, et al. Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Stor Mater 2020;27:109-16.

309. Cong J, Shen X, Wen Z, et al. Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte. Energy Stor Mater 2021;35:586-94.

310. Zhang B, Qin L, Fang Y, et al. Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Science Bulletin 2022; doi: 10.1016/j.scib.2022.01.027.

311. Hao Y, Feng D, Hou L, Li T, Jiao Y, Wu P. Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode. Adv Sci (Weinh) 2022;9:e2104832.

312. Xu P, Wang C, Zhao B, Zhou Y, Cheng H. A high-strength and ultra-stable halloysite nanotubes-crosslinked polyacrylamide hydrogel electrolyte for flexible zinc-ion batteries. J Power Sources 2021;506:230196.

313. Cao F, Wu B, Li T, Sun S, Jiao Y, Wu P. Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance. Nano Res 2022;15:2030-9.

314. Nguyen TN, Iranpour B, Cheng E, Madden JDW. Washable and stretchable Zn–MnO 2 rechargeable cell. Adv Energy Mater 2022;12:2103148.

315. Liu D, Tang Z, Luo L, et al. Self-healing solid polymer electrolyte with high ion conductivity and super stretchability for all-solid zinc-ion batteries. ACS Appl Mater Interfaces 2021;13:36320-9.

316. Martinolich AJ, Lee C, Lu I, et al. Solid-state divalent ion conduction in ZnPS 3. Chem Mater 2019;31:3652-61.

317. Wang Z, Hu J, Han L, et al. A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 2019;56:92-9.

318. Gao J, Xie X, Liang S, Lu B, Zhou J. Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nanomicro Lett 2021;13:69.

319. Cao J, Zhang D, Yue Y, et al. Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 2022;93:106839.

320. Xing Z, Xu G, Xie X, et al. Highly reversible zinc-ion battery enabled by suppressing vanadium dissolution through inorganic Zn2+ conductor electrolyte. Nano Energy 2021;90:106621.

321. Johnsi M, Suthanthiraraj SA. Compositional effect of ZrO2 nanofillers on a PVDF-co-HFP based polymer electrolyte system for solid state zinc batteries. Chin J Polym Sci 2016;34:332-43.

322. Zhao Z, Wang J, Lv Z, et al. In-situ formed all-amorphous poly (ethylene oxide)-based electrolytes enabling solid-state Zn electrochemistry. Chem Eng J 2021;417:128096.

323. Johnsi M, Suthanthiraraj SA. Preparation, zinc ion transport properties, and battery application based on poly(vinilydene fluoride-. co ;27:877-85.

324. Pucic I, Turkovic A. Radiation modification of (PEO)ZnCl polyelectrolyte and nanocomposite. Solid State Ionics 2005;176:1797-800.

325. Nancy AC, Suthanthiraraj SA. Effect of Al2O3 nanofiller on the electrical, thermal and structural properties of PEO:PPG based nanocomposite polymer electrolyte. Ionics 2017;23:1439-49.

326. Chen Z, Li X, Wang D, et al. Grafted mxene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ Sci 2021;14:3492-501.

327. Karan S, Sahu TB, Sahu M, Mahipal YK, Agrawal RC. Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films: [PEO: Zn(CF3SO3)2]. Ionics 2017;23:2721-6.

328. Liu J, Khanam Z, Muchakayala R, Song S. Fabrication and characterization of Zn-ion-conducting solid polymer electrolyte films based on PVdF-HFP/Zn(Tf)2 complex system. J Mater Sci: Mater Electron 2020;31:6160-73.

329. Qiu H, Hu R, Du X, et al. Eutectic crystallization activates solid-state zinc-ion conduction. Angew Chem Int Ed Engl 2022;61:e202113086.

330. Adams BD, Zheng J, Ren X, Xu W, Zhang J. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv Energy Mater 2018;8:1702097.

331. Xiao J, Li Q, Bi Y, et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat Energy 2020;5:561-8.

332. Ma L, Schroeder MA, Pollard TP, et al. Critical factors dictating reversibility of the zinc metal anode. Energy Environ Mater 2020;3:516-21.

333. Ma L, Schroeder MA, Borodin O, et al. Realizing high zinc reversibility in rechargeable batteries. Nat Energy 2020;5:743-9.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/