REFERENCES
1. Chen R, Li Q, Yu X, Chen L, Li H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev 2020;120:6820-77.
2. Zu C, Yu H, Li H. Enabling the thermal stability of solid electrolyte interphase in Li-ion battery. InfoMat 2021;3:648-61.
3. Yang C, Zhang L, Liu B, et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc Natl Acad Sci U S A 2018;115:3770-5.
4. Jia M, Zhao N, Huo H, Guo X. Comprehensive investigation into garnet electrolytes toward application-oriented solid lithium batteries. Electrochem Energ Rev 2020;3:656-89.
6. Wang L, Zhang X, Wang T, et al. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers. Adv Energy Mater 2018;8:1801528.
7. Hatzell KB, Chen XC, Cobb CL, et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett 2020;5:922-34.
8. Duan H, Fan M, Chen WP, et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv Mater 2019;31:e1807789.
9. Yuan S, Kong T, Zhang Y, et al. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew Chem Int Ed Engl 2021;60:25624-38.
10. Duan H, Chen WP, Fan M, et al. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angew Chem Int Ed Engl 2020;59:12069-75.
11. Deng T, Ji X, Zhao Y, et al. Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries. Adv Mater 2020;32:e2000030.
12. Fu X, Wang T, Shen W, et al. A high-performance carbonate-free lithium|garnet interface enabled by a trace amount of sodium. Adv Mater 2020;32:e2000575.
13. Liang JY, Zeng XX, Zhang XD, et al. Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries. J Am Chem Soc 2018;140:6767-70.
14. Cao D, Zhao Y, Sun X, et al. Processing strategies to improve cell-level energy density of metal sulfide electrolyte-based all-solid-state li metal batteries and beyond. ACS Energy Lett 2020;5:3468-89.
15. Bi Z, Zhao N, Ma L, et al. Surface coating of LiMn2O4 cathodes with garnet electrolytes for improving cycling stability of solid lithium batteries. J Mater Chem A 2020;8:4252-6.
16. Yoon K, Lee S, Oh K, Kang K. Challenges and strategies towards practically feasible solid-state lithium metal batteries. Adv Mater 2022;34:e2104666.
17. Liu J, Yuan H, Liu H, et al. Unlocking the failure mechanism of solid state lithium metal batteries. Advanced Energy Materials 2022;12:2100748.
18. Zhao C, Zhao B, Yan C, et al. Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: a review. Energy Storage Materials 2020;24:75-84.
19. Bi Z, Zhao N, Ma L, et al. Interface engineering on cathode side for solid garnet batteries. Chemical Engineering Journal 2020;387:124089.
20. Wu C, Lou J, Zhang J, et al. Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes. Nano Energy 2021;87:106081.
21. Cao C, Liang F, Zhang W, et al. Commercialization-driven electrodes design for lithium batteries: basic guidance, opportunities, and perspectives. Small 2021;17:e2102233.
22. Liu Q, Geng Z, Han C, et al. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. Journal of Power Sources 2018;389:120-34.
23. Cui G. Reasonable design of high-energy-density solid-state lithium-metal batteries. Matter 2020;2:805-15.
24. Zhu J, Xiang Y, Zhao J, et al. Insights into the local structure, microstructure and ionic conductivity of silicon doped nasicon-type solid electrolyte Li1.3Al0.3Ti1.7P3O12. Energy Storage Materials 2022;44:190-6.
25. Liang F, Sun Y, Yuan Y, Huang J, Hou M, Lu J. Designing inorganic electrolytes for solid-state Li-ion batteries: a perspective of LGPS and garnet. Materials Today 2021;50:418-41.
26. Wang C, Ping W, Bai Q, et al. A general method to synthesize and sinter bulk ceramics in seconds. Science 2020;368:521-6.
27. Xu Q, Tsai C, Song D, et al. Insights into the reactive sintering and separated specific grain/grain boundary conductivities of Li1.3Al0.3Ti1.7(PO4)3. Journal of Power Sources 2021;492:229631.
28. Wu J, Yuan L, Zhang W, Li Z, Xie X, Huang Y. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ Sci 2021;14:12-36.
29. Yang X, Adair KR, Gao X, Sun X. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ Sci 2021;14:643-71.
30. Mu S, Bi Z, Gao S, Guo X. Combination of organic and inorganic electrolytes for composite membranes toward applicable solid lithium batteries. Chem Res Chin Univ 2021;37:246-53.
31. Chen L, Li Y, Li S, Fan L, Nan C, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018;46:176-84.
32. Zhang X, Liu T, Zhang S, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc 2017;139:13779-85.
33. Jia M, Zhao N, Bi Z, et al. Polydopamine-coated garnet particles homogeneously distributed in poly(propylene carbonate) for the conductive and stable membrane electrolytes of solid lithium batteries. ACS Appl Mater Interfaces 2020;12:46162-9.
34. Jia M, Bi Z, Shi C, Zhao N, Guo X. Polydopamine coated lithium lanthanum titanate in bilayer membrane electrolytes for solid lithium batteries. ACS Appl Mater Interfaces 2020;12:46231-8.
35. Liu L, Qi X, Yin S, et al. In situ formation of a stable interface in solid-state batteries. ACS Energy Lett 2019;4:1650-7.
36. Cho SM, Shim J, Cho SH, et al. Quasi-solid-state rechargeable Li-O2 batteries with high safety and long cycle life at room temperature. ACS Appl Mater Interfaces 2018;10:15634-41.
37. Hua S, Jing M, Han C, et al. A novel titania nanorods-filled composite solid electrolyte with improved room temperature performance for solid-state Li-ion battery. Int J Energy Res 2019; doi: 10.1002/er.4758.
38. Chen H, Jing M, Han C, et al. A novel organic/inorganic composite solid electrolyte with functionalized layers for improved room-temperature rate performance of solid-state lithium battery. Int J Energy Res 2019;43:5912-21.
39. Zhang J, Zang X, Wen H, et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J Mater Chem A 2017;5:4940-8.
40. Bonizzoni S, Ferrara C, Berbenni V, Anselmi-Tamburini U, Mustarelli P, Tealdi C. NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Phys Chem Chem Phys 2019;21:6142-9.
41. Liu W, Liu N, Sun J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 2015;15:2740-5.
42. Zhang J, Zhao N, Zhang M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016;28:447-54.
43. Chen H, Yang Y, Boyle DT, et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries. Nat Energy 2021;6:790-8.
44. Ye Y, Zhao Y, Zhao T, et al. An antipulverization and high-continuity lithium metal anode for high-energy lithium batteries. Adv Mater 2021:e2105029.
45. Sun Y, Li F, Hou P. Research progress on the interfaces of solid-state lithium metal batteries. J Mater Chem A 2021;9:9481-505.
46. Li C, Zhang X, Zhu Y, et al. Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries. EM 2021; doi: 10.20517/energymater.2021.21.
47. Ruan Y, Lu Y, Huang X, et al. Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state batteries. J Mater Chem A 2019;7:14565-74.
48. Ruan Y, Lu Y, Li Y, et al. A 3D Cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries. Adv Funct Mater 2021;31:2007815.
49. Pan X, Sun H, Wang Z, et al. High Voltage stable polyoxalate catholyte with cathode coating for all-solid-state Li-metal/nmc622 batteries. Adv Energy Mater 2020;10:2002416.
50. Zhu Y, He X, Mo Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 2016;4:3253-66.
51. Nolan AM, Wachsman ED, Mo Y. Computation-guided discovery of coating materials to stabilize the interface between lithium garnet solid electrolyte and high-energy cathodes for all-solid-state lithium batteries. Energy Storage Materials 2021;41:571-80.
52. Stegmaier S, Schierholz R, Povstugar I, et al. Nano-scale complexions facilitate li dendrite-free operation in LATP solid-state electrolyte. Adv Energy Mater 2021;11:2100707.
53. Mu S, Huang W, Sun W, et al. Heterogeneous electrolyte membranes enabling double-side stable interfaces for solid lithium batteries. Journal of Energy Chemistry 2021;60:162-8.
54. Jiang T, He P, Liang Y, Fan L. All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries. Chemical Engineering Journal 2021;421:129965.
55. Wang C, Yu R, Duan H, et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes. ACS Energy Lett 2022;7:410-6.
56. Han F, Westover AS, Yue J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy 2019;4:187-96.
57. Han F, Yue J, Chen C, et al. Interphase engineering enabled all-ceramic lithium battery. Joule 2018;2:497-508.
58. Wang C, Sun Q, Liu Y, et al. Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: interfacial properties and effects of liquid electrolytes. Nano Energy 2018;48:35-43.
59. Liu B, Gong Y, Fu K, et al. Garnet solid electrolyte protected li-metal batteries. ACS Appl Mater Interfaces 2017;9:18809-15.
60. Randau S, Weber DA, Kötz O, et al. Benchmarking the performance of all-solid-state lithium batteries. Nat Energy 2020;5:259-70.
61. Zhou W, Wang Z, Pu Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv Mater 2019;31:e1805574.
62. Kim JH, Go K, Lee KJ, Kim HS. Improved performance of all-solid-state lithium metal batteries via physical and chemical interfacial control. Adv Sci (Weinh) 2022;9:e2103433.
63. Liu W, Yi C, Li L, et al. Designing polymer-in-salt electrolyte and fully infiltrated 3d electrode for integrated solid-state lithium batteries. Angew Chem Int Ed Engl 2021;60:12931-40.
64. Bi Z, Mu S, Zhao N, Sun W, Huang W, Guo X. Cathode supported solid lithium batteries enabling high energy density and stable cyclability. Energy Storage Materials 2021;35:512-9.
65. Alarco PJ, Abu-Lebdeh Y, Abouimrane A, Armand M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat Mater 2004;3:476-81.
66. Xin C, Wen K, Xue C, et al. Composite cathodes with succinonitrile-based ionic conductors for long-cycle-life solid-state lithium metal batteries. Batteries & Supercaps 2022;5:e202100162.
67. Xiao Y, Turcheniuk K, Narla A, et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nat Mater 2021;20:984-90.
68. Kerman K, Luntz A, Viswanathan V, Chiang Y, Chen Z. Review - practical challenges hindering the development of solid state li ion batteries. J Electrochem Soc 2017;164:A1731-44.
69. Chai J, Liu Z, Ma J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 Lithium Batteries. Adv Sci (Weinh) 2017;4:1600377.
70. Bi Z, Huang W, Mu S, Sun W, Zhao N, Guo X. Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes. Nano Energy 2021;90:106498.
71. Choi K, Cho S, Kim S, Kwon YH, Kim JY, Lee S. Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv Funct Mater 2014;24:44-52.
72. Lv Z, Zhou Q, Zhang S, et al. Cyano-reinforced in-situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries. Energy Storage Materials 2021;37:215-23.
73. Liu X, Ding G, Zhou X, et al. An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries. J Mater Chem A 2017;5:11124-30.
74. Cho YG, Hwang C, Cheong DS, Kim YS, Song HK. Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems. Adv Mater 2019;31:e1804909.
75. Zhang J, Yang J, Wu H, et al. Research progress of in situ generated polymer electrolyte for rechargeable batteries. Acta Polymerica Sinica 2019;50:890-914.
76. Nolan AM, Liu Y, Mo Y. Solid-state chemistries stable with high-energy cathodes for lithium-ion batteries. ACS Energy Lett 2019;4:2444-51.
78. Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater 2019;31:e1902029.
79. Hou J, Yang M, Wang D, Zhang J. Fundamentals and challenges of lithium ion batteries at temperatures between -40 and 60 °C. Adv Energy Mater 2020;10:1904152.
80. Gao Y, Wang D, Li YC, Yu Z, Mallouk TE, Wang D. Salt-based organic-inorganic nanocomposites: towards a stable lithium metal/Li10 GeP2S12 solid electrolyte interface. Angew Chem Int Ed Engl 2018;57:13608-12.
81. Umeshbabu E, Zheng B, Zhu J, Wang H, Li Y, Yang Y. Stable cycling lithium-sulfur solid batteries with enhanced Li/Li10GeP2S12 solid electrolyte interface stability. ACS Appl Mater Interfaces 2019;11:18436-47.
82. Caradant L, Verdier N, Foran G, et al. Extrusion of polymer blend electrolytes for solid-state lithium batteries: a study of polar functional groups. ACS Appl Polym Mater 2021;3:6694-704.
83. Li L, Deng Y, Duan H, Qian Y, Chen G. LiF and LiNO3 as synergistic additives for PEO-PVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dual-interfaces stability. Journal of Energy Chemistry 2022;65:319-28.
84. Qiu J, Liu X, Chen R, et al. Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte. Adv Funct Mater 2020;30:1909392.
85. Liang J, Hwang S, Li S, et al. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano Energy 2020;78:105107.
86. Chen X, He W, Ding L, Wang S, Wang H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ Sci 2019;12:938-44.
87. Lin Y, Wu M, Sun J, Zhang L, Jian Q, Zhao T. A high-capacity, long-cycling all-solid-state lithium battery enabled by integrated cathode/ultrathin solid electrolyte. Adv Energy Mater 2021;11:2101612.
88. Lin Y, Liu K, Wu M, Zhao C, Zhao T. Enabling solid-state li metal batteries by in situ forming ionogel interlayers. ACS Appl Energy Mater 2020;3:5712-21.
89. Wei Z, Chen S, Wang J, et al. Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. J Mater Chem A 2018;6:13438-47.
90. Wei Z, Chen S, Wang J, et al. A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode. Journal of Power Sources 2018;394:57-66.
91. Nie K, Wang X, Qiu J, et al. Increasing poly(ethylene oxide) stability to 4.5 v by surface coating of the cathode. ACS Energy Lett 2020;5:826-32.
92. Lu J, Zhou J, Chen R, et al. 4.2 V poly(ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance. Energy Storage Materials 2020;32:191-8.
93. Ma J, Liu Z, Chen B, et al. A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries. J Electrochem Soc 2017;164:A3454-61.
94. Kim DH, Oh DY, Park KH, et al. Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett 2017;17:3013-20.
95. Xiao Y, Xu R, Xu L, Ding J, Huang J. Recent advances on anion-derived SEI for fast-charging and stable lithium batteries. Energy Mater 2021;1:100013.
96. Zhang Q, Pan K, Jia M, et al. Ionic liquid additive stabilized cathode/electrolyte interface in LiCoO2 based solid-state lithium metal batteries. Electrochimica Acta 2021;368:137593.
97. Chen Y, Huo F, Chen S, Cai W, Zhang S. In-built quasi-solid-state poly-ether electrolytes enabling stable cycling of high-voltage and wide-temperature Li metal batteries. Adv Funct Mater 2021;31:2102347.
98. Feng W, Yang P, Dong X, Xia Y. A Low temperature soldered all ceramic lithium battery. ACS Appl Mater Interfaces 2022;14:1149-56.
99. Qiu J, Yang L, Sun G, Yu X, Li H, Chen L. A stabilized PEO-based solid electrolyte via a facile interfacial engineering method for a high voltage solid-state lithium metal battery. Chem Commun (Camb) 2020;56:5633-6.
100. Huang W, Bi Z, Zhao N, Sun Q, Guo X. Chemical interface engineering of solid garnet batteries for long-life and high-rate performance. Chemical Engineering Journal 2021;424:130423.
101. Zhao CZ, Zhao Q, Liu X, et al. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode. Adv Mater 2020;32:e1905629.
102. Zhang S, Zeng Z, Zhai W, Hou G, Chen L, Ci L. Bifunctional in situ polymerized interface for stable LAGP-based lithium metal batteries. Adv Materials Inter 2021;8:2100072.
103. Zeng XX, Yin YX, Li NW, Du WC, Guo YG, Wan LJ. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J Am Chem Soc 2016;138:15825-8.
104. Duan H, Yin YX, Shi Y, et al. Dendrite-free li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J Am Chem Soc 2018;140:82-5.
105. Chai J, Chen B, Xian F, et al. Dendrite-free lithium deposition via flexible-rigid coupling composite network for LiNi0.5Mn1.5O4 /Li metal batteries. Small 2018;14:e1802244.
106. Zhang X, Chen X, Hou L, et al. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries. ACS Energy Lett 2019;4:411-6.
107. Zheng B, Zhu J, Wang H, et al. Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer. ACS Appl Mater Interfaces 2018;10:25473-82.
108. Tong Z, Wang SB, Jena A, et al. Matchmaker of marriage between a Li metal anode and NASICON-structured solid-state electrolyte: plastic crystal electrolyte and three-dimensional host structure. ACS Appl Mater Interfaces 2020;12:44754-61.
109. Zhu X, Chang Z, Yang H, He P, Zhou H. Highly safe and stable lithium-metal batteries based on a quasi-solid-state electrolyte. J Mater Chem A 2022;10:651-63.
110. Cao W, Yang Y, Deng J, Li Y, Cui C, Zhang T. Localization of electrons within interlayer stabilizes NASICON-type solid-state electrolyte. Materials Today Energy 2021;22:100875.
111. Liu Q, Yu Q, Li S, et al. Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in-situ solidification. Energy Storage Materials 2020;25:613-20.
112. Wang C, Adair KR, Liang J, et al. Solid-state plastic crystal electrolytes: effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv Funct Mater 2019;29:1900392.
113. Ma C, Cui W, Liu X, Ding Y, Wang Y. In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives. InfoMat 2022;4:e1223.
114. Castillo J, Qiao L, Santiago A, et al. Perspective of polymer-based solid-state Li-S batteries. Energy Mater 2022;2:200003.
115. Lin Z, Guo X, Wang Z, et al. A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery. Nano Energy 2020;73:104786.
116. Wang P, Chai J, Zhang Z, et al. An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries. J Mater Chem A 2019;7:5295-304.
117. Ma Y, Ma J, Chai J, et al. Two players make a formidable combination: in situ generated poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) cross-linking gel polymer electrolyte toward 5 V high-voltage batteries. ACS Appl Mater Interfaces 2017;9:41462-72.
118. Li Z, Zhou X, Guo X. High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes. Energy Storage Materials 2020;29:149-55.
119. Zhou D, He Y, Cai Q, et al. Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode-electrolyte interfacial fabrication in lithium-ion battery. J Mater Chem A 2014;2:20059-66.
120. Sun M, Zeng Z, Peng L, et al. Ultrathin polymer electrolyte film prepared by in situ polymerization for lithium metal batteries. Materials Today Energy 2021;21:100785.
121. Liu Q, Cai B, Li S, et al. Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte. J Mater Chem A 2020;8:7197-204.
122. Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat Energy 2019;4:365-73.
123. Cheng H, Zhu J, Jin H, et al. In situ initiator-free gelation of highly concentrated lithium bis(fluorosulfonyl)imide-1,3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries. Materials Today Energy 2021;20:100623.
124. Liu FQ, Wang WP, Yin YX, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci Adv 2018;4:eaat5383.
125. Wu H, Tang B, Du X, et al. LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries. Adv Sci (Weinh) 2020;7:2003370.
126. Ju J, Wang Y, Chen B, et al. Integrated interface strategy toward room temperature solid-state lithium batteries. ACS Appl Mater Interfaces 2018;10:13588-97.
127. Li Z, Xie H, Zhang X, Guo X. In situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries. J Mater Chem A 2020;8:3892-900.
128. Tan S, Yue J, Tian Y, et al. In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. Energy Storage Materials 2021;39:186-93.
129. Fan W, Li NW, Zhang X, et al. A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries. Adv Sci (Weinh) 2018;5:1800559.
130. Wu J, Ling S, Yang Q, Li H, Xu X, Chen L. Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3 -polypropylene (PP) based separator for Li-ion batteries. Chinese Phys B 2016;25:078204.
131. Liu J, Zhou J, Wang M, Niu C, Qian T, Yan C. A functional-gradient-structured ultrahigh modulus solid polymer electrolyte for all-solid-state lithium metal batteries. J Mater Chem A 2019;7:24477-85.