fig9

Solidification for solid-state lithium batteries with high energy density and long cycle life

Figure 9. (A) Schematic working principle of solid batteries with polymer, composite and gradient electrolytes with an asymmetric distribution of polymers and ceramic fillers[131]. Reproduced from Ref.[131] with permission. Copyright 2019 Royal Society of Chemistry. (B) Cycling performance of LFP battery at high mass loadings of 11.2 and 15.6 mg cm-2 with gradient electrolytes[131]. Reproduced from Ref.[131] with permission. Copyright 2019 Royal Society of Chemistry. (C) Structure of LiPF6-modified Al2O3/PE separator[132]. Reproduced from Ref.[132]. with permission. Copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (D) Schematic formation process of in-situ interfacial polymerization of DOL-based liquid electrolyte realized by LiPF6/Al2O3/PE separator[132]. Reproduced from Ref.[132]. with permission. Copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (E) Illustration of melt infiltration in research laboratory and industrial settings[67]. Reproduced from Ref.[67] with permission. Copyright 2021 Springer Nature. (F) Preparation of flexible and large-scale solid garnet batteries by introducing in-situ solidified gel polymer electrolytes[70]. Reproduced from Ref.[70] with permission. Copyright 2021 Elsevier Ltd. (G) Solid garnet batteries can be bent and used to power blue/green LEDs[70]. LFP: LiFePO4. Reproduced from Ref.[70] with permission. Copyright 2021 Elsevier Ltd.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/