REFERENCES

1. Chao D, Zhou W, Xie F, et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci Adv 2020;6:eaba4098.

2. Jaumaux P, Yang X, Zhang B, et al. Localized Water-in-salt electrolyte for aqueous lithium-ion batteries. Angew Chem Int Ed Engl 2021;60:19965-73.

3. Suo L, Borodin O, Wang Y, et al. “Water-in-Salt” Electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv Energy Mater 2017;7:1701189.

4. Liu T, Liu K, Wang J, et al. Achievement of a polymer-free KAc gel electrolyte for advanced aqueous K-ion battery. Energy Storage Materials 2021;41:133-40.

5. Tang Y, Li X, Lv H, et al. High-energy aqueous magnesium hybrid full batteries enabled by carrier-hosting potential compensation. Angew Chem Int Ed Engl 2021;60:5443-52.

6. Tang X, Zhou D, Zhang B, et al. A universal strategy towards high-energy aqueous multivalent-ion batteries. Nat Commun 2021;12:2857.

7. Zhao Z, Wang R, Peng C, et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat Commun 2021;12:6606.

8. Dong T, Ng KL, Wang Y, Voznyy O, Azimi G. Solid electrolyte interphase engineering for aqueous aluminum metal batteries: a critical evaluation. Adv Energy Mater 2021;11:2100077.

9. Yuan L, Hao J, Kao C, et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ Sci 2021;14:5669-89.

10. Song J, Xu K, Liu N, Reed D, Li X. Crossroads in the renaissance of rechargeable aqueous zinc batteries. Materials Today 2021;45:191-212.

11. Fang G, Zhou J, Pan A, Liang S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett 2018;3:2480-501.

12. Wang H, Chen S, Fu C, et al. Recent advances in conversion-type electrode materials for post lithium-ion batteries. ACS Materials Lett 2021;3:956-77.

13. Wang Y, Li X, Wang W, et al. Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries. Sci China Chem 2020;63:1402-15.

14. Zhang Z, Dong S, Cui Z, et al. Rechargeable magnesium batteries using conversion-type cathodes: a perspective and minireview. Small Methods 2018;2:1800020.

15. Kim J, Kim H, Kang K. Conversion-based cathode materials for rechargeable sodium batteries. Adv Energy Mater 2018;8:1702646.

16. Xin S, Chang Z, Zhang X, Guo Y. Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review 2017;4:54-70.

17. Wu F, Yushin G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ Sci 2017;10:435-59.

18. Kraytsberg A, Ein-eli Y. A critical review-promises and barriers of conversion electrodes for Li-ion batteries. J Solid State Electrochem 2017;21:1907-23.

19. Liang G, Mo F, Li H, et al. A universal principle to design reversible aqueous batteries based on deposition-dissolution mechanism. Adv Energy Mater 2019;9:1901838.

20. Chao D, Zhou W, Ye C, et al. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew Chem Int Ed Engl 2019;58:7823-8.

21. Zhong C, Liu B, Ding J, et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat Energy 2020;5:440-9.

22. Yang H, Zhou W, Chen D, et al. The origin of capacity fluctuation and rescue of dead Mn-based Zn-ion batteries: a Mn-based competitive capacity evolution protocol. Energy Environ Sci 2022;15:1106-18.

23. Zhong Z, Li J, Li L, et al. Improving performance of zinc-manganese battery via efficient deposition/dissolution chemistry. Energy Storage Materials 2022;46:165-74.

24. Li W, Ma Y, Li P, et al. Synergistic effect between s and se enhancing the electrochemical behavior of Se. Adv Funct Mater ;31:2101237.

25. Li W, Jing X, Ma Y, et al. Phosphorus-doped carbon sheets decorated with SeS2 as a cathode for aqueous Zn-SeS2 battery. Chemical Engineering Journal 2021;420:129920.

26. Wu X, Markir A, Ma L, et al. A four-electron sulfur electrode hosting a Cu2+ /Cu+ redox charge carrier. Angew Chem Int Ed Engl 2019;58:12640-5.

27. Ma L, Ying Y, Chen S, et al. Electrocatalytic iodine reduction reaction enabled by aqueous Zinc-Iodine battery with improved power and energy densities. Angew Chem Int Ed Engl 2021;60:3791-8.

28. Shang W, Zhu J, Liu Y, et al. Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes. ACS Appl Mater Interfaces 2021;13:24756-64.

29. Yang H, Qiao Y, Chang Z, Deng H, He P, Zhou H. A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv Mater 2020;32:e2004240.

30. Lee JH, Byun Y, Jeong GH, et al. High-energy efficiency membraneless flowless Zn-Br battery: utilizing the electrochemical-chemical growth of polybromides. Adv Mater 2019;31:e1904524.

31. Li X, Li N, Huang Z, et al. Confining aqueous Zn-Br halide redox chemistry by Ti3C2TX MXene. ACS Nano 2021;15:1718-26.

32. Gao L, Li Z, Zou Y, et al. A high-performance aqueous Zinc-Bromine static battery. iScience 2020;23:101348.

33. Liu J, Zhou W, Zhao R, et al. Sulfur-based aqueous batteries: electrochemistry and strategies. J Am Chem Soc 2021;143:15475-89.

34. Xing M, Zhao Z, Zhang Y, Zhao J, Cui G, Dai J. Advances and issues in developing metal-iodine batteries. Materials Today Energy 2020;18:100534.

35. Pei Z, Zhu Z, Sun D, et al. Review of the I-/I3- redox chemistry in Zn-iodine redox flow batteries. Materials Research Bulletin 2021;141:111347.

36. Ma J, Liu M, He Y, Zhang J. Iodine Redox Chemistry in Rechargeable Batteries. Angew Chem Int Ed Engl 2021;60:12636-47.

37. Li P, Li C, Guo X, Li X, Zhi C. Metal-Iodine and Metal-Bromine batteries: a review. BCSJ 2021;94:2036-42.

38. Zou Y, Liu T, Du Q, et al. A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion. Nat Commun 2021;12:170.

39. Li X, Li M, Huang Z, et al. Activating the I 0 /I + redox couple in an aqueous I 2 -Zn battery to achieve a high voltage plateau. Energy Environ Sci 2021;14:407-13.

40. Dai C, Hu L, Jin X, Zhao Y, Qu L. The emerging of aqueous Zinc-Based dual electrolytic batteries. Small 2021;17:e2008043.

41. Luo LW, Zhang C, Wu X, et al. A Zn-S aqueous primary battery with high energy and flat discharge plateau. Chem Commun (Camb) 2021;57:9918-21.

42. Dai C, Jin X, Ma H, et al. Maximizing energy storage of flexible aqueous batteries through decoupling charge carriers. Adv Energy Mater 2021;11:2003982.

43. Zhao Y, Wang D, Li X, et al. Initiating a reversible aqueous Zn/Sulfur battery through a “liquid film”. Adv Mater 2020;32:e2003070.

44. Li W, Wang K, Jiang K. A low cost aqueous Zn-S battery realizing ultrahigh energy density. Adv Sci (Weinh) 2020;7:2000761.

45. Pan H, Li B, Mei D, et al. Controlling solid-liquid conversion reactions for a highly reversible aqueous Zin-Iodine battery. ACS Energy Lett 2017;2:2674-80.

46. Bai C, Cai F, Wang L, Guo S, Liu X, Yuan Z. A sustainable aqueous Zn-I2 battery. Nano Res 2018;11:3548-54.

47. Lu K, Zhang H, Song B, et al. Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery. Electrochimica Acta 2019;296:755-61.

48. Li W, Wang K, Jiang K. A high energy efficiency and long life aqueous Zn-I 2 battery. J Mater Chem A 2020;8:3785-94.

49. Sonigara KK, Zhao J, Machhi HK, Cui G, Soni SS. Self-assembled solid-state gel catholyte combating iodide diffusion and self-discharge for a stable flexible aqueous Zn-I 2 battery. Adv Energy Mater 2020;10:2001997.

50. Yu D, Kumar A, Nguyen TA, Nazir MT, Yasin G. High-voltage and ultrastable aqueous Zinc-Iodine battery enabled by N-Doped carbon materials: revealing the contributions of nitrogen configurations. ACS Sustainable Chem Eng 2020;8:13769-76.

51. Zeng X, Meng X, Jiang W, et al. Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous Zinc-Iodine batteries. ACS Sustainable Chem Eng 2020;8:14280-5.

52. Li X, Li N, Huang Z, et al. Enhanced redox kinetics and duration of aqueous I2 /I- conversion chemistry by MXene confinement. Adv Mater 2021;33:e2006897.

53. Machhi HK, Sonigara KK, Bariya SN, Soni HP, Soni SS. Hierarchically porous metal-organic gel hosting catholyte for limiting iodine diffusion and self-discharge control in sustainable Aqueous Zinc-I2 Batteries. ACS Appl Mater Interfaces 2021;13:21426-35.

54. Yu F, Pang L, Wang X, et al. Aqueous alkaline-acid hybrid electrolyte for zinc-bromine battery with 3V voltage window. Energy Storage Materials 2019;19:56-61.

55. Chen S, Zhang J. Redox reactions of halogens for reversible electrochemical energy storage. Dalton Trans 2020;49:9929-34.

56. Yang Y, Liang S, Zhou J. Progress and prospect of the zinc-iodine battery. Current Opinion in Electrochemistry 2021;30:100761.

57. Dai C, Hu L, Jin X, et al. A cascade battery: coupling two sequential electrochemical reactions in a single battery. Adv Mater 2021;33:e2105480.

58. Li Y, Liu L, Li H, Cheng F, Chen J. Rechargeable aqueous zinc-iodine batteries: pore confining mechanism and flexible device application. Chem Commun (Camb) 2018;54:6792-5.

59. Lin D, Rao D, Chiovoloni S, et al. Prototypical study of double-layered cathodes for aqueous rechargeable static Zn-I2 batteries. Nano Lett 2021;21:4129-35.

60. Wang F, Tseng J, Liu Z, et al. A stimulus-responsive Zinc-Iodine battery with smart overcharge self-protection function. Adv Mater 2020;32:e2000287.

61. Tian H, Zhang S, Meng Z, He W, Han W. Rechargeable Aluminum/Iodine Battery Redox Chemistry in Ionic Liquid Electrolyte. ACS Energy Lett 2017;2:1170-6.

62. Meng Z, Tian H, Zhang S, et al. Polyiodide-Shuttle Restricting Polymer Cathode for Rechargeable Lithium/Iodine Battery with Ultralong Cycle Life. ACS Appl Mater Interfaces 2018;10:17933-41.

63. Zhang Y, Tao D, Xu F, Li T. A low-cost and high-performance rechargeable magnesium battery based on povidone iodine cathode. Chemical Engineering Journal 2022;427:131592.

64. Hong JJ, Zhu L, Chen C, et al. A Dual plating battery with the Iodine/[ZnIx (OH2 )4-x ]2-x cathode. Angew Chem Int Ed Engl 2019;58:15910-5.

65. Wang J, Qiu H, Zhao Z, et al. Anti-corrosive hybrid electrolytes for rechargeable aqueous Zinc batteries. Chem Res Chin Univ 2021;37:328-34.

66. Yan M, Dong N, Zhao X, Sun Y, Pan H. Tailoring the Stability and Kinetics of Zn Anodes through Trace Organic Polymer Additives in Dilute Aqueous Electrolyte. ACS Energy Lett 2021;6:3236-43.

67. Tangthuam P, Pimoei J, Mohamad AA, et al. Carboxymethyl cellulose-based polyelectrolyte as cationic exchange membrane for zinc-iodine batteries. Heliyon 2020;6:e05391.

68. Biswas S, Senju A, Mohr R, et al. Minimal architecture zinc–bromine battery for low cost electrochemical energy storage. Energy Environ Sci 2017;10:114-20.

69. Liu B, Wang S, Wang Z, et al. Novel 3D Nanoporous Zn-Cu alloy as long-life anode toward high-voltage double electrolyte aqueous Zinc-Ion batteries. Small 2020;16:e2001323.

70. Li Y, Guo S. Material design and structure optimization for rechargeable lithium-sulfur batteries. Matter 2021;4:1142-88.

71. Chen Y, Wang T, Tian H, Su D, Zhang Q, Wang G. Advances in Lithium-Sulfur Batteries: from academic research to commercial viability. Adv Mater 2021;33:e2003666.

72. Li H, Li Y, Zhang L. Designing principles of advanced sulfur cathodes toward practical lithium-sulfur batteries. SusMat 2022;2:34-64.

73. Chen Z, Mo F, Wang T, et al. Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy Environ Sci 2021;14:2441-50.

74. Chen Z, Yang Q, Mo F, et al. Aqueous Zinc-Tellurium batteries with ultraflat discharge plateau and high volumetric capacity. Adv Mater 2020;32:e2001469.

75. Hao J, Yuan L, Johannessen B, et al. Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc-Ion Batteries. Angew Chem Int Ed Engl 2021;60:25114-21.

76. Dong H, Li J, Guo J, et al. Insights on flexible Zinc-Ion batteries from lab research to commercialization. Adv Mater 2021;33:e2007548.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/