REFERENCES

1. Armand M, Tarascon JM. Building better batteries. Nature 2008;451:652-7.

2. Zhang Q, Cao D, Ma Y, Natan A, Aurora P, Zhu H. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv Mater 2019;31:e1901131.

3. Xu R, Zhang S, Wang X, et al. Recent developments of all-solid-state lithium secondary batteries with sulfide inorganic electrolytes. Chemistry 2018;24:6007-18.

4. Chen S, Xie D, Liu G, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application. Energy Stor Mater 2018;14:58-74.

5. Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev 2020;120:6878-933.

6. Zhang Z, Shao Y, Lotsch B, et al. New horizons for inorganic solid state ion conductors. Energy Environ Sci 2018;11:1945-76.

7. Gao Z, Sun H, Fu L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater 2018;30:e1705702.

8. Jiang Z, Liang T, Liu Y, et al. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution. ACS Appl Mater Interfaces 2020;12:54662-70.

9. Hayashi A, Muramatsu H, Ohtomo T, Hama S, Tatsumisago M. Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles. J Mater Chem A 2013;1:6320.

10. Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 2016:1.

11. Zhou L, Assoud A, Zhang Q, Wu X, Nazar LF. New family of argyrodite thioantimonate lithium superionic conductors. J Am Chem Soc 2019;141:19002-13.

12. Patel SV, Banerjee S, Liu H, et al. Tunable lithium-ion transport in mixed-halide argyrodites Li6-xPS5-xClBrx: an unusual compositional space. Chem Mater 2021;33:1435-43.

13. Wu J, Liu S, Han F, Yao X, Wang C. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv Mater 2021;33:e2000751.

14. Bachman JC, Muy S, Grimaud A, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 2016;116:140-62.

15. Zhu Y, Mo Y. Materials design principles for air-stable lithium/sodium solid electrolytes. Angew Chem Int Ed Engl 2020;59:17472-6.

16. Minami K, Mizuno F, Hayashi A, Tatsumisago M. Lithium ion conductivity of the Li2S-P2S5 glass-based electrolytes prepared by the melt quenching method. Solid State Ionics 2007;178:837-41.

17. Hayashi A, Minami K, Mizuno F, Tatsumisago M. Formation of Li+ superionic crystals from the Li2S-P2S5 melt-quenched glasses. J Mater Sci 2008;43:1885-9.

18. Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 2014;7:627-31.

19. Xu R, Xia X, Yao Z, Wang X, Gu C, Tu J. Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries. Electrochimi Acta 2016;219:235-40.

20. Xu R, Wang X, Zhang S, et al. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries. J Power Sources 2018;374:107-12.

21. Ito S, Nakakita M, Aihara Y, Uehara T, Machida N. A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent. J Power Sources 2014;271:342-5.

22. Liu Z, Fu W, Payzant EA, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc 2013;135:975-8.

23. Yubuchi S, Uematsu M, Deguchi M, Hayashi A, Tatsumisago M. Lithium-ion-conducting argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes prepared by a liquid-phase technique using ethanol as a solvent. ACS Appl Energy Mater 2018;1:3622-9.

24. Song YB, Kim DH, Kwak H, et al. Tailoring solution-processable Li argyrodites Li6+xP1-xMxS5I (M = Ge, Sn) and their microstructural evolution revealed by cryo-TEM for all-solid-state batteries. Nano Lett 2020;20:4337-45.

25. Jung WD, Kim JS, Choi S, et al. Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth. Nano Lett 2020;20:2303-9.

26. Fukushima A, Hayashi A, Yamamura H, Tatsumisago M. Mechanochemical synthesis of high lithium ion conducting solid electrolytes in a Li2S-P2S5-Li3N system. Solid State Ionics 2017;304:85-9.

27. Boulineau S, Courty M, Tarascon J, Viallet V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 2012;221:1-5.

28. Jiang Z, Peng H, Liu Y, et al. A Versatile Li6.5In0.25P0.75S5I sulfide electrolyte triggered by ultimate-energy mechanical alloying for all-solid-state lithium metal batteries. Adv Energy Mater 2021;11:2101521.

29. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv Mater 2005;17:918-21.

30. Tao Y, Chen S, Liu D, Peng G, Yao X, Xu X. Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells. J Electrochem Soc 2015;163:A96-101.

31. Hayashi A, Hama S, Minami T, Tatsumisago M. Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses. Electrochem commun 2003;5:111-4.

32. Jiang Z, Li Z, Wang X, Gu C, Xia X, Tu J. Robust Li6PS5I interlayer to stabilize the tailored electrolyte Li9.95SnP2S11.95F0.05/Li metal interface. ACS Appl Mater Interfaces 2021;13:30739-45.

33. Adeli P, Bazak JD, Park KH, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew Chem Int Ed Engl 2019;58:8681-6.

34. Liu Y, Peng H, Su H, et al. Ultrafast synthesis of I-rich lithium argyrodite glass-ceramic electrolyte with high ionic conductivity. Adv Mater 2022;34:e2107346.

35. Xu R, Xia X, Wang X, Xia Y, Tu J. Tailored Li2S-P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. J Mater Chem A 2017;5:2829-34.

36. Mercier R, Malugani J, Fahys B, Robert G. Superionic conduction in Li2S-P2S5-LiI-glasses. Solid State Ionics 1981;5:663-6.

37. Teragawa S, Aso K, Tadanaga K, Hayashi A, Tatsumisago M. Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries. J Mater Chem A 2014;2:5095.

38. Phuc NHH, Totani M, Morikawa K, Muto H, Matsuda A. Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium. Solid State Ionics 2016;288:240-3.

39. Calpa M, Rosero-navarro NC, Miura A, Tadanaga K. Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process. RSC Adv 2017;7:46499-504.

40. Wang Y, Lu D, Bowden M, et al. Mechanism of formation of Li7P3S11 solid electrolytes through liquid phase synthesis. Chem Mater 2018;30:990-7.

41. Yubuchi S, Teragawa S, Aso K, Tadanaga K, Hayashi A, Tatsumisago M. Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. J Power Sources 2015;293:941-5.

42. Rosero-navarro NC, Miura A, Tadanaga K. Preparation of lithium ion conductive Li6PS5Cl solid electrolyte from solution for the fabrication of composite cathode of all-solid-state lithium battery. J Sol-Gel Sci Technol 2019;89:303-9.

43. Zhou L, Park K, Sun X, et al. Solvent-engineered design of argyrodite Li6PS5X (X = Cl, Br, I) solid electrolytes with high ionic conductivity. ACS Energy Lett 2019;4:265-70.

44. Yubuchi S, Uematsu M, Hotehama C, Sakuda A, Hayashi A, Tatsumisago M. An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol. J Mater Chem A 2019;7:558-66.

45. Hayashi A, Hama S, Morimoto H, Tatsumisago M, Minami T. Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling. J Am Ceram Soc 2001;84:477-79.

46. Shin BR, Nam YJ, Oh DY, Kim DH, Kim JW, Jung YS. Comparative study of TiS2/Li-in all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochimica Acta 2014;146:395-402.

47. Yamane H, Shibata M, Shimane Y, et al. Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics 2007;178:1163-7.

48. Zhao F, Liang J, Yu C, et al. A versatile Sn-substituted argyrodite sulfide electrolyte for all-solid-state Li metal batteries. Adv Energy Mater 2020;10:1903422.

49. Liang J, Chen N, Li X, et al. Li10Ge(P1-xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability. Chem Mater 2020;32:2664-72.

50. Yi J, Chen L, Liu Y, Geng H, Fan LZ. High capacity and superior cyclic performances of all-solid-state lithium-sulfur batteries enabled by a high-conductivity Li10SnP2S12 solid electrolyte. ACS Appl Mater Interfaces 2019;11:36774-81.

51. Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater 2011;10:682-6.

52. Park KH, Oh DY, Choi YE, et al. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries. Adv Mater 2016;28:1874-83.

53. Zhao BS, Wang L, Chen P, et al. Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass-ceramic electrolytes for all-solid-state lithium-sulfur batteries. ACS Appl Mater Interfaces 2021;13:34477-85.

54. Rajagopal R, Ryu K. Structural investigations, visualization, and electrolyte properties of silver halide-doped Li7P3S11 lithium superionic conductors. ACS Sustainable Chem Eng 2021;9:1105-17.

55. Kaib T, Haddadpour S, Kapitein M, et al. New lithium chalcogenidotetrelates, LiChT: synthesis and characterization of the Li+-conducting tetralithium ortho-sulfidostannate Li4SnS4. Chem Mater 2012;24:2211-9.

56. Sahu G, Rangasamy E, Li J, et al. A high-conduction Ge substituted Li3AsS4 solid electrolyte with exceptional low activation energy. J Mater Chem A 2014;2:10396-403.

57. Kanno R, Murayama M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J Electrochem Soc 2001;148:A742.

58. Bron P, Johansson S, Zick K, Schmedt auf der Günne J, Dehnen S, Roling B. Li10SnP2S12: an affordable lithium superionic conductor. J Am Chem Soc 2013;135:15694-7.

59. Bron P, Dehnen S, Roling B. Li10Si0.3Sn0.7P2S12 - a low-cost and low-grain-boundary-resistance lithium superionic conductor. J Power Sources 2016;329:530-5.

60. Liu Y, Su H, Li M, et al. In situ formation of a Li3N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. J Mater Chem A 2021;9:13531-9.

61. Chen T, Zeng D, Zhang L, et al. Sn-O dual-doped Li-argyrodite electrolytes with enhanced electrochemical performance. J Energy Chem 2021;59:530-7.

62. Dietrich C, Weber DA, Sedlmaier SJ, et al. Lithium ion conductivity in Li2S-P2S5 glasses - building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J Mater Chem A 2017;5:18111-9.

63. Pradel A, Ribes M. Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching. Solid State Ionics 1986;18-19:351-5.

64. Zhang Z, Kennedy J. Synthesis and characterization of the B2S3-Li2S, the P2S5-Li2S and the B2S3-P2S5-Li2S glass systems. Solid State Ionics 1990;38:217-24.

65. Tatsumisago M, Hirai K, Minami T, Takada K, Kondo S. Superionic conduction in rapidly quenched Li2S-SiS2-Li3PO4 glasses. J Ceram Soc Japan 1993;101:1315-7.

66. Tatsumisago M, Hirai K, Hirata T, Takahashi M, Minami T. Structure and properties of lithium ion conducting oxysulfide glasses prepared by rapid quenching. Solid State Ionics 1996;86-88:487-90.

67. Wada H, Menetrier M, Levasseur A, Hagenmuller P. Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses. Mater Res Bull 1983;18:189-93.

68. Kennedy JH, Zhang Z, Eckert H. Ionically conductive sulfide-based lithium glasses. J Non Cryst Solids 1990;123:328-38.

69. Yamauchi A, Sakuda A, Hayashi A, Tatsumisago M. Preparation and ionic conductivities of (100-x)(0.75Li2S·0.25P2S5)·xLiBH4 glass electrolytes. J Power Sources 2013;244:707-10.

70. Kudu ÖU, Famprikis T, Fleutot B, et al. A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S - P2S5 binary system. J Power Sources 2018;407:31-43.

71. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M. High lithium ion conducting glass-ceramics in the system Li2S-P2S5. Solid State Ionics 2006;177:2721-5.

72. Dietrich C, Weber DA, Culver S, et al. Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6. Inorg Chem 2017;56:6681-7.

73. Kim J, Yoon Y, Lee J, Shin D. Formation of the high lithium ion conducting phase from mechanically milled amorphous Li2S-P2S5 system. J Power Sources 2011;196:6920-3.

74. Trevey J, Jang JS, Jung YS, Stoldt CR, Lee S. Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries. Electrochem commun 2009;11:1830-3.

75. Xu R, Xia X, Li S, Zhang S, Wang X, Tu J. All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor. J Mater Chem A 2017;5:6310-7.

76. Kanno R. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system. Solid State Ionics 2000;130:97-104.

77. Seo I, Martin SW. Fast lithium ion conducting solid state thin-film electrolytes based on lithium thio-germanate materials. Acta Materialia 2011;59:1839-46.

78. Kwak H, Park KH, Han D, Nam K, Kim H, Jung YS. Li+ conduction in air-stable Sb-Substituted Li4SnS4 for all-solid-state Li-Ion batteries. J Power Sources 2020;446:227338.

79. Sahu G, Lin Z, Li J, Liu Z, Dudney N, Liang C. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ Sci 2014;7:1053-8.

80. Nishino S, Fujiwara T, Yamasaki H. Nanosecond quantum molecular dynamics simulations of the lithium superionic conductor Li4-xGe1-xPxS4. Phys Rev B 2014;90:024303.

81. Kuhn A, Duppel V, Lotsch BV. Tetragonal Li10GeP2S12 and Li7GePS8 - exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ Sci 2013;6:3548.

82. Mo Y, Ong SP, Ceder G. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem Mater 2012;24:15-7.

83. Malik R, Burch D, Bazant M, Ceder G. Particle size dependence of the ionic diffusivity. Nano Lett 2010;10:4123-7.

84. Kato Y, Saito R, Sakano M, Mitsui A, Hirayama M, Kanno R. Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1-M)P2S12 (M = Si, Sn). J Power Sources 2014;271:60-4.

85. Ong SP, Mo Y, Richards WD, Miara L, Lee HS, Ceder G. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ Sci 2013;6:148-56.

86. Whiteley JM, Woo JH, Hu E, Nam K, Lee S. Empowering the lithium metal battery through a silicon-based superionic conductor. J Electrochem Soc 2014;161:A1812-7.

87. Hori S, Taminato S, Suzuki K, Hirayama M, Kato Y, Kanno R. Structure-property relationships in lithium superionic conductors having a Li10GeP2S12-type structure. Acta Crystallogr B Struct Sci Cryst Eng Mater 2015;71:727-36.

88. Deiseroth H, Kong S, Eckert H, et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem 2008;120:767-70.

89. Gaudin E, Boucher F, Petricek VV, Taulelle F, Evain M. Structures and phase transitions of the A7PSe6 (A = Ag, Cu) argyrodite-type ionic conductors. II. Beta- and gamma-Cu7PSe6. Acta Crystallogr B 2000;56:402-8.

90. Kraft MA, Culver SP, Calderon M, et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J Am Chem Soc 2017;139:10909-18.

91. Klerk NJJ, Rosłoń I, Wagemaker M. Diffusion mechanism of Li Argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder. Chem Mater 2016;28:7955-63.

92. Rao RP, Adams S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries: studies of lithium argyrodite solid electrolytes. Phys Status Solidi A 2011;208:1804-7.

93. Hanghofer I, Brinek M, Eisbacher SL, et al. Substitutional disorder: structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I. Phys Chem Chem Phys 2019;21:8489-507.

94. Chen HM, Maohua C, Adams S. Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys Chem Chem Phys 2015;17:16494-506.

95. Morgan BJ. Mechanistic origin of superionic lithium diffusion in anion-disordered Li6PS5X argyrodites. Chem Mater 2021;33:2004-18.

96. Kraft MA, Ohno S, Zinkevich T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries. J Am Chem Soc 2018;140:16330-9.

97. Minafra N, Culver SP, Krauskopf T, Senyshyn A, Zeier WG. Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. J Mater Chem A 2018;6:645-51.

98. Wang P, Liu H, Patel S, et al. Fast ion conduction and its origin in Li6-xPS5-xBr1+x. Chem Mater 2020;32:3833-40.

99. Feng X, Chien P, Wang Y, et al. Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6-xPS5-xCl1+x. Energy Stor Mater 2020;30:67-73.

100. Brinek M, Hiebl C, Wilkening HMR. Understanding the origin of enhanced Li-ion transport in nanocrystalline argyrodite-type Li6PS5I. Chem Mater 2020;32:4754-66.

101. Sun Y, Suzuki K, Hara K, et al. Oxygen substitution effects in Li10GeP2S12 solid electrolyte. J Power Sources 2016;324:798-803.

102. Bai Y, Zhao Y, Li W, Meng L, Bai Y, Chen G. New Insight for solid sulfide electrolytes LSiPSI by using Si/P/S as the raw materials and I doping. ACS Sustainable Chem Eng 2019;7:12930-7.

103. Han F, Zhu Y, He X, Mo Y, Wang C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater 2016;6:1501590.

104. Han F, Gao T, Zhu Y, Gaskell KJ, Wang C. A battery made from a single material. Adv Mater 2015;27:3473-83.

105. Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G. Interface stability in solid-state batteries. Chem Mater 2016;28:266-73.

106. Zhu Y, He X, Mo Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 2015;7:23685-93.

107. Zhang Z, Zhang L, Liu Y, et al. Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries. J Alloys Compounds 2018;747:227-35.

108. Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 2011;182:116-9.

109. Hayashi A, Muramatsu H, Ohtomo T, Hama S, Tatsumisago M. Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. J Alloys Compounds 2014;591:247-50.

110. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114:11503-618.

111. Xiao Y, Wang Y, Bo S, Kim JC, Miara LJ, Ceder G. Understanding interface stability in solid-state batteries. Nat Rev Mater 2020;5:105-26.

112. Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater 2019;18:1278-91.

113. Chen B, Ju J, Ma J, et al. An insight into intrinsic interfacial properties between Li metals and Li10GeP2S12 solid electrolytes. Phys Chem Chem Phys 2017;19:31436-42.

114. Swamy T, Park R, Sheldon BW, et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet. J Electrochem Soc 2018;165:A3648-55.

115. Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. Phys Chem Chem Phys 2013;15:18600-6.

116. Kasemchainan J, Zekoll S, Spencer Jolly D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat Mater 2019;18:1105-11.

117. Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J. Interphase formation on lithium solid electrolytes - an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics 2015;278:98-105.

118. Wenzel S, Randau S, Leichtweiß T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater 2016;28:2400-7.

119. Zhang L, Yang T, Du C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat Nanotechnol 2020;15:94-8.

120. Hagopian A, Doublet M, Filhol J. Thermodynamic origin of dendrite growth in metal anode batteries. Energy Environ Sci 2020;13:5186-97.

121. Fan X, Ji X, Han F, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci Adv 2018;4:eaau9245.

122. Kazyak E, Garcia-mendez R, Lepage WS, et al. Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter 2020;2:1025-48.

123. Liu H, Cheng X, Huang J, et al. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett 2020;5:833-43.

124. Shen F, Dixit MB, Xiao X, Hatzell KB. Effect of Pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography. ACS Energy Lett 2018;3:1056-61.

125. Han F, Westover AS, Yue J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy 2019;4:187-96.

126. Brissot C, Rosso M, Chazalviel JN, Lascaud S. Dendritic growth mechanisms in lithiumrpolymer cells. J Power Sources 1999;81-82:925-9.

127. Cao L, Gao X, Zhang B, Ou X, Zhang J, Luo WB. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 2020;14:3610-20.

128. Wang L, Zhou Z, Yan X, et al. Engineering of lithium-metal anodes towards a safe and stable battery. Energy Stor Mater 2018;14:22-48.

129. Li Y, Gu Q, Johannessen B, et al. Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution. Nano Energy 2021;84:105898.

130. Zhao C, Zhao B, Yan C, et al. Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: a review. Energy Stor Mater 2020;24:75-84.

131. Zhang JG, Xu W, Xiao J, Cao X, Liu J. Lithium metal anodes with nonaqueous electrolytes. Chem Rev 2020;120:13312-48.

132. Park KH, Bai Q, Kim DH, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv Energy Mater 2018;8:1800035.

133. Taklu BW, Su W, Nikodimos Y, et al. Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano Energy 2021;90:106542.

134. Zhao F, Sun Q, Yu C, et al. Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. ACS Energy Lett 2020;5:1035-43.

135. Han F, Yue J, Zhu X, Wang C. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv Energy Mater 2018;8:1703644.

136. Su Y, Ye L, Fitzhugh W, et al. A more stable lithium anode by mechanical constriction for solid state batteries. Energy Environ Sci 2020;13:908-16.

137. Ji X, Hou S, Wang P, et al. Solid-state electrolyte design for lithium dendrite suppression. Adv Mater 2020;32:e2002741.

138. Wan H, Liu S, Deng T, et al. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery. ACS Energy Lett 2021;6:862-8.

139. Peng J, Wu D, Song F, et al. High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode. Adv Funct Materials 2022;32:2105776.

140. Ye L, Li X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 2021;593:218-22.

141. Wang Z, Jiang Y, Wu J, et al. Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface. Nano Energy 2021;84:105906.

142. Zhao R, Kmiec S, Hu G, Martin SW. Lithium thiosilicophosphate glassy solid electrolytes synthesized by high-energy ball-milling and melt-quenching: improved suppression of lithium dendrite growth by Si doping. ACS Appl Mater Interfaces 2020;12:2327-37.

143. Zhang Z, Zhang L, Yan X, et al. All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune. J Power Sources 2019;410-411:162-70.

144. Liu G, Weng W, Zhang Z, Wu L, Yang J, Yao X. Densified Li6PS5Cl nanorods with high ionic conductivity and improved critical current density for all-solid-state lithium batteries. Nano Lett 2020;20:6660-5.

145. Zhao Q, Stalin S, Zhao C, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater 2020;5:229-52.

146. Zhu Y, He X, Mo Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 2016;4:3253-66.

147. Lepley ND, Holzwarth NAW. Modeling interfaces between solids: application to Li battery materials. Phys Rev B 2015;92:214201.

148. Peng Z, Zhao N, Zhang Z, et al. Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains. Nano Energy 2017;39:662-72.

149. Sakuma M, Suzuki K, Hirayama M, Kanno R. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ionics 2016;285:101-5.

150. Liang X, Pang Q, Kochetkov IR, et al. A facile surface chemistry route to a stabilized lithium metal anode. Nat Energy 2017:2-17119.

151. Santhosha AL, Medenbach L, Buchheim JR, Adelhelm P. The Indium-lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batteries Supercaps 2019;2:524-9.

152. Il’ina EA, Lylin ED, Plekhanov MS. Investigation of Li-In alloy application as anode for all-solid-state batteries. J Phys Conf Ser 2021;1967:012012.

153. Nagao M, Hayashi A, Tatsumisago M. Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S-P2S5 solid electrolyte. Electrochemistry 2012;80:734-6.

154. Lee Y, Fujiki S, Jung C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat Energy 2020;5:299-308.

155. Tan DHS, Chen YT, Yang H, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021;373:1494-9.

156. Choi HJ, Kang DW, Park JW, et al. In situ formed Ag-Li intermetallic layer for stable cycling of all-solid-state lithium batteries. Adv Sci (Weinh) 2022;9:e2103826.

157. Yamada Y, Wang J, Ko S, Watanabe E, Yamada A. Advances and issues in developing salt-concentrated battery electrolytes. Nat Energy 2019;4:269-80.

158. Zhang Z, Chen S, Yang J, et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl Mater Interfaces 2018;10:2556-65.

159. Liang J, Li X, Zhao Y, et al. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries. Adv Energy Mater 2019;9:1902125.

160. Yang M, Liu Y, Nolan AM, Mo Y. Interfacial atomistic mechanisms of lithium metal stripping and plating in solid-state batteries. Adv Mater 2021;33:e2008081.

161. Chen Y, Li W, Sun C, et al. Sustained release-driven formation of ultrastable SEI between Li6PS5Cl and lithium anode for sulfide-based solid-state batteries. Adv Energy Mater 2021;11:2002545.

162. Li J, Su H, Li M, et al. Fluorinated interface layer with embedded zinc nanoparticles for stable lithium-metal anodes. ACS Appl Mater Interfaces 2021;13:17690-8.

163. Klerk NJJ, Wagemaker M. Space-charge layers in all-solid-state batteries; important or negligible? ACS Appl Energy Mater 2018;1:5609-18.

164. Yu C, Ganapathy S, de Klerk NJ, et al. Unravelling Li-ion transport from picoseconds to seconds: bulk versus interfaces in an argyrodite Li6PS5Cl-Li2S all-solid-state Li-ion battery. J Am Chem Soc 2016;138:11192-201.

165. Wang L, Xie R, Chen B, et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat Commun 2020;11:5889.

166. Yu C, Ganapathy S, Eck ERHV, et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface. Nat Commun 2017;8:1086.

167. Walther F, Koerver R, Fuchs T, et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem Mater 2019;31:3745-55.

168. Koerver R, Aygün I, Leichtweiß T, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem Mater 2017;29:5574-82.

169. Zhang J, Zheng C, Li L, et al. Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries. Adv Energy Mater 2020;10:1903311.

170. Auvergniot J, Cassel A, Ledeuil J, Viallet V, Seznec V, Dedryvère R. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem Mater 2017;29:3883-90.

171. Zheng B, Liu X, Zhu J, et al. Unraveling (electro)-chemical stability and interfacial reactions of Li10SnP2S12 in all-solid-state Li batteries. Nano Energy 2020;67:104252.

172. Zhang W, Leichtweiß T, Culver SP, et al. The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl Mater Interfaces 2017;9:35888-96.

173. Liu X, Zheng B, Zhao J, et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries. Adv Energy Mater 2021;11:2003583.

174. Ohno S, Koerver R, Dewald G, et al. Observation of chemomechanical failure and the influence of cutoff potentials in all-solid-state Li-S batteries. Chem Mater 2019;31:2930-40.

175. Wang S, Zhang W, Chen X, et al. Influence of crystallinity of lithium thiophosphate solid electrolytes on the performance of solid-state batteries. Adv Energy Mater 2021;11:2100654.

176. Minnmann P, Quillman L, Burkhardt S, Richter FH, Janek J. Editors’ choice-quantifying the impact of charge transport bottlenecks in composite cathodes of all-solid-state batteries. J Electrochem Soc 2021;168:040537.

177. Li X, Jin L, Song D, et al. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J Energy Chem 2020;40:39-45.

178. Peng L, Ren H, Zhang J, et al. LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures. Energy Stor Mater 2021;43:53-61.

179. Banerjee A, Tang H, Wang X, et al. Revealing nanoscale solid-solid interfacial phenomena for long-life and high-energy all-solid-state batteries. ACS Appl Mater Interfaces 2019;11:43138-45.

180. Li X, Jiang Z, Cai D, et al. Single-crystal-layered Ni-rich oxide modified by phosphate coating boosting interfacial stability of Li10SnP2S12-based all-solid-state Li batteries. Small 2021;17:e2103830.

181. Wang Y, Lv Y, Su Y, Chen L, Li H, Wu F. 5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries. Nano Energy 2021;90:106589.

182. Randau S, Weber DA, Kötz O, et al. Benchmarking the performance of all-solid-state lithium batteries. Nat Energy 2020;5:259-70.

183. Wang S, Zhang X, Liu S, et al. High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. J Materiomics 2020;6:70-6.

184. Liu G, Shi J, Zhu M, et al. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Stor Mater 2021;38:249-54.

185. Zhu G, Zhao C, Peng H, et al. A self-limited free-standing sulfide electrolyte thin film for all-solid-state lithium metal batteries. Adv Funct Mater 2021;31:2101985.

186. Zhang Z, Wu L, Zhou D, Weng W, Yao X. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries. Nano Lett 2021;21:5233-9.

187. Xu J, Li Y, Lu P, et al. Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-conducting protection layer. Adv Energy Mater 2022;12:2102348.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/