REFERENCES

1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995;270:270-91.

2. Inganäs O. Organic photovoltaics over three decades. Adv Mater 2018;30:e1800388.

3. Hou J, Inganäs O, Friend RH, Gao F. Organic solar cells based on non-fullerene acceptors. Nat Mater 2018;17:119-28.

4. Brus VV, Lee J, Luginbuhl BR, Ko SJ, Bazan GC, Nguyen TQ. Solution-processed semitransparent organic photovoltaics: from molecular design to device performance. Adv Mater 2019;31:e1900904.

5. Fukuda K, Yu K, Someya T. The future of flexible organic solar cells. Adv Energy Mater 2020;10:2000765.

6. Zhang Y, Duan C, Ding L. Indoor organic photovoltaics. Science Bulletin 2020;65:2040-2.

7. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Recent advances in bulk heterojunction polymer solar cells. Chem Rev 2015;115:12666-731.

8. Yue Q, Liu W, Zhu X. n-Type molecular photovoltaic materials: design strategies and device applications. J Am Chem Soc 2020;142:11613-28.

9. Lai Y, Cheng Y, Hsu C. Applications of functional fullerene materials in polymer solar cells. Energy Environ Sci 2014;7:1866.

10. Kumari T, Lee SM, Kang S, Chen S, Yang C. Ternary solar cells with a mixed face-on and edge-on orientation enable an unprecedented efficiency of 12.1%. Energy Environ Sci 2017;10:258-65.

11. Lin Y, Wang J, Zhang ZG, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater 2015;27:1170-4.

12. Wang J, Zhan X. Fused-ring electron acceptors for photovoltaics and beyond. Acc Chem Res 2021;54:132-43.

13. Zhang J, Tan HS, Guo X, Facchetti A, Yan H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat Energy 2018;3:720-31.

14. Cheng P, Li G, Zhan X, Yang Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photon 2018;12:131-42.

15. Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew Chem Int Ed Engl 2017;56:3045-9.

16. Shi X, Chen J, Gao K, et al. Terthieno[3,2-b]thiophene (6T) based low bandgap fused-ring electron acceptor for highly efficient solar cells with a high short-circuit current density and low open-circuit voltage loss. Adv Energy Mater 2018;8:1702831.

17. Yan C, Barlow S, Wang Z, et al. Non-fullerene acceptors for organic solar cells. Nat Rev Mater 2018;3:18003.

18. Tang C, Ma X, Wang JY, et al. High-performance ladder-type heteroheptacene-based nonfullerene acceptors enabled by asymmetric cores with enhanced noncovalent intramolecular interactions. Angew Chem Int Ed Engl 2021;60:19314-23.

19. Ma Y, Zhang M, Wan S, et al. Efficient organic solar cells from molecular orientation control of m-series acceptors. Joule 2021;5:197-209.

20. Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019;3:1140-51.

21. Zhu C, Yuan J, Cai F, et al. Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy Environ Sci 2020;13:2459-66.

22. Cui Y, Yao H, Zhang J, et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater 2020;32:e1908205.

23. Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Science Bulletin 2020;65:272-5.

24. Chen S, Feng L, Jia T, et al. High-performance polymer solar cells with efficiency over 18% enabled by asymmetric side chain engineering of non-fullerene acceptors. Sci China Chem 2021;64:1192-9.

25. Bi P, Zhang S, Chen Z, et al. Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 2021;5:2408-19.

26. Meng H, Liao C, Deng M, Xu X, Yu L, Peng Q. 18.77 % efficiency organic solar cells promoted by aqueous solution processed cobalt(II) acetate hole transporting layer. Angew Chem Int Ed Engl 2021;60:22554-61.

27. Cui Y, Xu Y, Yao H, et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater 2021;33:e2102420.

28. Li C, Zhou J, Song J, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat Energy 2021;6:605-13.

29. Zhan L, Li S, Xia X, et al. Layer-by-layer processed ternary organic photovoltaics with efficiency over 18. Adv Mater 2021;33:e2007231.

30. Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond 2021;42:010501.

31. Jin K, Xiao Z, Ding L. D18, an eximious solar polymer! J Semicond 2021;42:010502.

32. Li X, Xu J, Xiao Z, Wang X, Zhang B, Ding L. Dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]oxadiazole-based polymer donors with deep HOMO levels. J Semicond 2021;42:060501.

33. Meng X, Jin K, Xiao Z, Ding L. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond 2021;42:100501.

34. Wang J, Zheng Z, Zu Y, et al. A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control. Adv Mater 2021;33:e2102787.

35. Wang H, Cao J, Yu J, et al. Molecular engineering of central fused-ring cores of non-fullerene acceptors for high-efficiency organic solar cells. J Mater Chem A 2019;7:4313-33.

36. Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Science Bulletin 2020;65:1231-3.

37. Dey S. Recent progress in molecular design of fused ring electron acceptors for organic solar cells. Small 2019;15:e1900134.

38. Xu YX, Chueh CC, Yip HL, et al. Improved charge transport and absorption coefficient in indacenodithieno[3,2-b]thiophene-based ladder-type polymer leading to highly efficient polymer solar cells. Adv Mater 2012;24:6356-61.

39. Shen F, Xu J, Li X, Zhan C. Nonfullerene small-molecule acceptors with perpendicular side-chains for fullerene-free solar cells. J Mater Chem A 2018;6:15433-55.

40. Yang X, Ding L. Organic semiconductors: commercialization and market. J Semicond 2021;42:090201.

41. Osedach TP, Andrew TL, Bulović V. Effect of synthetic accessibility on the commercial viability of organic photovoltaics. Energy Environ Sci 2013;6:711.

42. Li N, Mcculloch I, Brabec CJ. Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ Sci 2013;11:1355-61.

43. Yang W, Wang W, Wang Y, et al. Balancing the efficiency, stability, and cost potential for organic solar cells via a new figure of merit. Joule 2021;5:1209-30.

44. Li X, Pan F, Sun C, et al. Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nat Commun 2019;10:519.

45. Li S, Zhan L, Liu F, et al. An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Adv Mater 2018;30:1705208.

46. Peng W, Zhang G, Shao L, et al. Simple-structured small molecule acceptors constructed by a weakly electron-deficient thiazolothiazole core for high-efficiency non-fullerene organic solar cells. J Mater Chem A 2018;6:24267-76.

47. Wang K, Lv J, Duan T, et al. Simple near-infrared nonfullerene acceptors enable organic solar cells with >9% efficiency. ACS Appl Mater Interfaces 2019;11:6717-23.

48. Huang H, Guo Q, Feng S, et al. Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Nat Commun 2019;10:3038.

49. Chen YN, Li M, Wang Y, et al. A fully non-fused ring acceptor with planar backbone and near-IR absorption for high performance polymer solar cells. Angew Chem Int Ed Engl 2020;59:22714-20.

50. Pang S, Zhou X, Zhang S, et al. Nonfused nonfullerene acceptors with an A-D-A'-D-A framework and a benzothiadiazole core for high-performance organic solar cells. ACS Appl Mater Interfaces 2020;12:16531-40.

51. Liu Y, Zhang Z, Feng S, et al. Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells. J Am Chem Soc 2017;139:3356-9.

52. Fei Z, Eisner FD, Jiao X, et al. An alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses. Adv Mater 2018;30:1705209.

53. Yao H, Chen Y, Qin Y, et al. Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells. Adv Mater 2016;28:8283-7.

54. Huang C, Liao X, Gao K, et al. Highly efficient organic solar cells based on S,N-heteroacene non-fullerene acceptors. Chem Mater 2018;30:5429-34.

55. Huang H, Yang L, Facchetti A, Marks TJ. Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem Rev 2017;117:10291-318.

56. Zhang Z, Yu J, Yin X, et al. Conformation locking on fused-ring electron acceptor for high-performance nonfullerene organic solar cells. Adv Funct Mater 2018;28:1705095.

57. Feng S, Li M, Tang N, et al. Regulating the packing of non-fullerene acceptors via multiple noncovalent interactions for enhancing the performance of organic solar cells. ACS Appl Mater Interfaces 2020;12:4638-48.

58. Wang Y, Liu Z, Cui X, et al. Small molecule acceptors with a ladder-like core for high-performance organic solar cells with low non-radiative energy losses. J Mater Chem A 2020;8:12495-501.

59. Ma L, Zhang S, Zhu J, et al. Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell. Nat Commun 2021;12:5093.

60. Li S, Zhan L, Zhao W, et al. Revealing the effects of molecular packing on the performances of polymer solar cells based on A-D-C-D-A type non-fullerene acceptors. J Mater Chem A 2018;6:12132-41.

61. Zhao J, Xu X, Yu L, Li R, Li Y, Peng Q. Highly efficient non-fused-ring electron acceptors enabled by the conformational lock and structural isomerization effects. ACS Appl Mater Interfaces 2021;13:25214-23.

62. Zhang X, Qin L, Yu J, et al. High-performance noncovalently fused-ring electron acceptors for organic solar cells enabled by noncovalent intramolecular interactions and end-group engineering. Angew Chem Int Ed Engl 2021;60:12475-81.

63. Hou R, Li M, Ma X, et al. Noncovalently fused-ring electron acceptors with C2v symmetry for regulating the morphology of organic solar cells. ACS Appl Mater Interfaces 2020;12:46220-30.

64. Yi Y, Feng H, Zheng N, et al. Small molecule acceptors with a nonfused architecture for high-performance organic photovoltaics. Chem Mater 2019;31:904-11.

65. Lee J, Ko S, Lee H, et al. Side-chain engineering of nonfullerene acceptors for near-infrared organic photodetectors and photovoltaics. ACS Energy Lett 2019;4:1401-9.

66. Wang X, Lu H, Zhou J, et al. High-performance simple nonfused ring electron acceptors with diphenylamino flanking groups. ACS Appl Mater Interfaces 2021;13:39652-9.

67. Yu H, Qi Z, Li X, et al. Modulating energy level on an A-D-A′-D-A-type unfused acceptor by a benzothiadiazole core enables organic solar cells with simple procedure and high performance. Sol RRL 2020;4:2000421.

68. Liu X, Wei Y, Zhang X, Qin L, Wei Z, Huang H. An A-D-A′-D-A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency. Sci China Chem 2021;64:228-31.

69. Zhang X, Li C, Qin L, et al. Side-chain engineering for enhancing the molecular rigidity and photovoltaic performance of noncovalently fused-ring electron acceptors. Angew Chem Int Ed Engl 2021;60:17720-5.

70. Huang J, Gao C, Fan X, Zhu X, Yang L. A-D-C-D-A type non-fullerene acceptors based on the benzotriazole (BTA) unfused core for organic solar cells. New J Chem 2021;45:12802-7.

71. Li Y, Fu H, Wu Z, et al. Regulating the aggregation of unfused non-fullerene acceptors via molecular engineering towards efficient polymer solar cells. ChemSusChem 2021;14:3579-89.

72. Luo D, Lai X, Zheng N, et al. High-performance and low-energy loss organic solar cells with non-fused ring acceptor by alkyl chain engineering. Chemical Engineering Journal 2021;420:129768.

73. Li S, Zhan L, Lau T, et al. Near-infrared nonfullerene acceptors based on benzobis(thiazole) unit for efficient organic solar cells with low energy loss. Small Methods 2019;3:1900531.

74. Ye S, Chen S, Li S, et al. Synergistic effects of chlorination and branched alkyl side chain on the photovoltaic properties of simple non-fullerene acceptors with quinoxaline as the core. ChemSusChem 2021;14:3599-606.

75. Geng S, Yang W, Gao J, et al. Non-fullerene acceptors with a thieno[3,4-c]pyrrole-4,6-dione (TPD) core for efficient organic solar cells. Chin J Polym Sci 2019;37:1005-14.

76. Miao J, Meng B, Liu J, Wang L. An A-D-A'-D-A type small molecule acceptor with a broad absorption spectrum for organic solar cells. Chem Commun (Camb) 2018;54:303-6.

77. Lv R, Geng S, Li S, et al. Influences of quinoid structures on stability and photovoltaic performance of nonfullerene acceptors. Sol RRL 2020;4:2000286.

78. Gao H, Sun Y, Cai Y, et al. Achieving both enhanced voltage and current through fine-tuning molecular backbone and morphology control in organic solar cells. Adv Energy Mater 2019;9:1901024.

79. Zhang X, Ding Y, Feng H, et al. Side chain engineering investigation of non-fullerene acceptors for photovoltaic device with efficiency over 15%. Sci China Chem 2020;63:1799-806.

80. Qian D, Ye L, Zhang M, et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules 2012;45:9611-7.

81. Zhang M, Guo X, Ma W, Ade H, Hou J. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv Mater 2015;27:4655-60.

82. Wu Z, Chen Y, Zhang L, et al. A ligand-free direct heteroarylation approach for benzodithiophenedione-based simple small molecular acceptors toward high efficiency polymer solar cells. J Mater Chem A 2021;9:3314-21.

83. Yu ZP, Liu ZX, Chen FX, et al. Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat Commun 2019;10:2152.

84. Liu ZX, Yu ZP, Shen Z, et al. Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nat Commun 2021;12:3049.

85. Wen TJ, Liu ZX, Chen Z, et al. Simple non-fused electron acceptors leading to efficient organic photovoltaics. Angew Chem Int Ed Engl 2021;60:12964-70.

86. Bao S, Yang H, Fan H, et al. Volatilizable solid additive-assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80%. Adv Mater 2021; doi: 10.1002/adma.202105301.

87. Hong L, Yao H, Wu Z, et al. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv Mater 2019;31:e1903441.

88. Zhou Y, Li M, Lu H, et al. High-efficiency organic solar cells based on a low-cost fully non-fused electron acceptor. Adv Funct Mater 2021;31:2101742.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/