REFERENCES
1. Liu H, Cheng X, Chong Y, Yuan H, Huang J, Zhang Q. Advanced electrode processing of lithium Ion batteries: a review of powder technology in battery fabrication. Particuology 2021;57:56-71.
2. Li M, Li W, Hu Y, et al. New insights into the high-performance black phosphorus anode for lithium-Ion batteries. Adv Mater 2021;33:e2101259.
3. Ma Q, Zhao Z, Zhao Y, et al. A self-driven alloying/dealloying approach to nanostructuring micro-silicon for high-performance lithium-ion battery anodes. Energy Storage Materials 2021;34:768-77.
5. Hu Z, Zhao L, Jiang T, et al. Trifluoropropylene carbonate-driven interface regulation enabling greatly enhanced lithium storage durability of silicon-based anodes. Adv Funct Mater 2019;29:1906548.
6. Hou Z, Dong M, Xiong Y, Zhang X, Zhu Y, Qian Y. Formation of solid-electrolyte interfaces in aqueous electrolytes by altering cation - solvation shell structure. Adv Energy Mater 2020;10:1903665.
7. Xing L, Zheng X, Schroeder M, et al. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-Ion batteries. Acc Chem Res 2018;51:282-9.
8. Aspern N, Röschenthaler GV, Winter M, Cekic-Laskovic I. Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes. Angew Chem Int Ed Engl 2019;58:15978-6000.
9. Zheng J, Yang Y, Fan X, et al. Extremely stable antimony-carbon composite anodes for potassium-Ion batteries. Energy Environ Sci 2019;12:615-23.
10. Chen J, Fan X, Li Q, et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat Energy 2020;5:386-97.
11. Shadike Z, Lee H, Borodin O, et al. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes. Nat Nanotechnol 2021;16:549-54.
12. Zhang J, Cao Z, Zhou L, et al. Model-based design of stable electrolytes for potassium Ion batteries. ACS Energy Lett 2020;5:3124-31.
13. Ming J, Cao Z, Wahyudi W, et al. New insights on graphite anode stability in rechargeable batteries: Li Ion coordination structures prevail over solid electrolyte interphases. ACS Energy Lett 2018;3:335-40.
14. Voropaeva DY, Novikova SA, Yaroslavtsev AB. Polymer electrolytes for metal-Ion batteries. Russ Chem Rev 2020;89:1132-55.
15. Zheng J, Ji G, Fan X, et al. High-fluorinated electrolytes for Li-S batteries. Adv Energy Mater 2019;9:1803774.
16. Xie J, Li X, Lai H, et al. A robust solid electrolyte interphase layer augments the Ion storage capacity of bimetallic-sulfide-containing potassium-Ion batteries. Angew Chem Int Ed Engl 2019;58:14740-7.
17. Tran N, Spindler BD, Yakovenko AA, et al. Effective electrochemical charge storage in the high-lithium compound Li8ZrO6. ACS Appl Energy Mater 2019;2:1274-87.
18. Fan L, Ma R, Zhang Q, Jia X, Lu B. Graphite anode for a potassium-Ion battery with unprecedented performance. Angew Chem Int Ed Engl 2019;58:10500-5.
19. Zhang W, Wu Z, Zhang J, et al. Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium Ion batteries. Nano Energy 2018;53:967-74.
20. Liu S, Zhang Q, Wang X, Xu M, Li W, Lucht BL. LiFSI and LiDFBOP dual-salt electrolyte reinforces the solid electrolyte interphase on a lithium metal anode. ACS Appl Mater Interfaces 2020;12:33719-28.
21. Shi P, Zhang L, Xiang H, Liang X, Sun Y, Xu W. Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries. ACS Appl Mater Interfaces 2018;10:22201-9.
22. Zhou L, Cao Z, Zhang J, et al. Engineering sodium-Ion solvation structure to stabilize sodium anodes: universal strategy for fast-charging and safer sodium-Ion batteries. Nano Lett 2020;20:3247-54.
23. Zhang J, Cao Z, Zhou L, et al. Model-based design of graphite-compatible electrolytes in potassium-ion batteries. ACS Energy Lett 2020;5:2651-61.
24. Zheng J, Yan P, Mei D, et al. Highly stable operation of lithium metal batteries enabled by the formation of a transient high-concentration electrolyte layer. Adv Energy Mater 2016;6:1502151.
25. Yamada Y, Wang J, Ko S, Watanabe E, Yamada A. Advances and issues in developing salt-concentrated battery electrolytes. Nat Energy 2019;4:269-80.
26. Zheng H, Xiang H, Jiang F, et al. Lithium difluorophosphate - based dual - salt low concentration electrolytes for lithium metal batteries. Adv Energy Mater 2020;10:2001440.
27. Li Y, Yang Y, Lu Y, et al. Ultralow-concentration electrolyte for Na-Ion batteries. ACS Energy Lett 2020;5:1156-8.
28. Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci (Weinh) 2016;3:1500213.
29. Li Q, Cao Z, Wahyudi W, et al. Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal Ion batteries. ACS Energy Lett 2021;6:69-78.
30. Hou T, Yang G, Rajput NN, et al. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy 2019;64:103881.
31. Bai P, Han X, He Y, et al. Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium Ion batteries. Energy Storage Materials 2020;25:324-33.
32. Zhang X, Chen X, Hou L, et al. Regulating anions in the solvation sheath of lithium Ions for stable lithium metal batteries. ACS Energy Lett 2019;4:411-6.
33. Zhang J, Zhou L, Ming H, et al. Lithium dendrite-free plating/stripping: a new synergistic lithium Ion solvation structure effect for reliable lithium-sulfur full batteries. Chem Commun (Camb) 2019;55:5713-6.
34. Lee SH, Hwang J, Ming J, et al. Toward the sustainable lithium metal batteries with a new electrolyte solvation chemistry. Adv Energy Mater 2020;10:2000567.
35. Zheng X, Fu H, Hu C, et al. Toward a stable sodium metal anode in carbonate electrolyte: a compact, inorganic alloy interface. J Phys Chem Lett 2019;10:707-14.
36. Xu Z, Yang J, Zhang T, et al. Stable na metal anode enabled by a reinforced multistructural SEI layer. Adv Funct Mater 2019;29:1901924.