REFERENCES

1. Bertero V. Strength and deformation capacities of buildings under extreme environments. Struct Eng Struct Mech 1977;53:29-79.

2. Paulay T. A simple seismic design strategy based on displacement and ductility compatibility. Earthq Eng Eng Seismol 1999;1:51-67. Available from: https://www.semanticscholar.org/paper/A-Simple-Seismic-Design-Strategy-Based-on-and-Paulay/cf65cb5e871dd2a18b5e645b9a73152cb8761a9f [Last accessed on 29 Jan 2024].

3. Park R. Ductile design approach for reinforced concrete frames. Earthq Spectra 1986;2:565-619.

4. Priestley MJN. Performance based seismic design. Bull N Z Soc Earthq Eng 2000;33:325-46.

5. Indirli M. The 6th April 2009 L’aquila earthquake: from ruins to reconstruction, in seismicity and earthquake engineering, l’aquila earthquake of April 2009. 2010. Available from: https://www.researchgate.net/publication/259911243_Indirli_M_The_6th_April_2009_L%27Aquila_Earthquake_from_ruins_to_reconstruction_in_Seismicity_and_Earthquake_Engineering_L%27Aquila_Earthquake_of_April_2009 [Last accessed on 25 Jan 2024].

6. Kam WY, Pampanin S. The seismic performance of RC buildings in the 22 February 2011 christchurch earthquake. Struct Concr 2011;12:223-33.

7. Wallace JW, Massone LM, Bonelli P, et al. Damage and implications for seismic design of RC structural wall buildings. Earthq Spectra 2012;28:281-99.

8. Khamesi SO, Mir Mohammad Hosseini SM. A numerical study of influential parameters on rocking response of shallow foundations of single degree of freedom (SDOF) structures. J Eng Res 2023;11:100055.

9. Anastasopoulos I, Gazetas G, Loli M, Apostolou M, Gerolymos N. Soil failure can be used for seismic protection of structures. Bull Earthq Eng 2010;8:309-26.

10. Gajan S, Kutter BL, Phalen JD, Hutchinson TC, Martin GR. Centrifuge modeling of load-deformation behavior of rocking shallow foundations. Soil Dyn Earthq Eng 2005;25:773-83.

11. Hakhamaneshi M, Kutter BL, Gavras AG, et al. Database of rocking shallow foundation performance: slow-cyclic and monotonic loading. Earthq Spectra 2020;36:1585-606.

12. Gelagoti F, Kourkoulis R, Anastasopoulos I, Gazetas G. Rocking isolation of low-rise frame structures founded on isolated footings. Earthq Engng Struct Dyn 2012;41:1177-97.

13. Kannan R, James N, Haldar P. Influence of soil types on seismic behaviour of RC framed building with shear wall on rocking foundation. Proceedings of the 17th World Conference on Earthquake Engineering. 2020. Available from: https://www.researchgate.net/publication/361136355_Influence_of_Soil_Types_on_Seismic_Behaviour_of_RC_Framed_Building_with_Shear_Wall_on_Rocking_Foundation [Last accessed on 25 Jan 2024].

14. Kannan R, James N, Haldar P. Behaviour of mid rise buildings with shear wall rocking foundation system on medium dense site. Proceedings of the second ASCE India conference on challenges of resilient and sustainable infrastructure development in emerging economies (CRSIDE2020); 2-4 March 2020; Kolkata.

15. Gajan S, Soundararajan S, Yang M, Akchurin D. Effects of rocking coefficient and critical contact area ratio on the performance of rocking foundations from centrifuge and shake table experimental results. Soil Dyn Earthq Eng 2021;141:106502.

16. Agalianos A, Psychari A, Vassiliou MF, Stojadinovic B, Anastasopoulos I. Comparative assessment of two rocking isolation techniques for a motorway overpass bridge. Front Built Environ 2017;3:47.

17. Chen X, Li J. Seismic fragility analysis for tall pier bridges with rocking foundations. Adv Bridge Eng 2021;2:7.

18. Chiou J, Chen C, Hwang Y. Pushover and shaking table tests on a rocking-governed column-footing model on dry dense sand. J Chin Inst Eng 2018;41:247-58.

19. Hung H, Liu K, Chang K. Rocking behavior of bridge piers with spread footings under cyclic loading and earthquake excitation. Earthq Struct 2014;7:1001-24.

20. Taeseri D, Laue J, Anastasopoulos I. Non-linear rocking stiffness of embedded foundations in sand. Géotechnique 2019;69:767-82.

21. Taeseri D, Laue J, Martakis P, Chatzi E, Anastasopoulos I. Static and dynamic rocking stiffness of shallow footings on sand: centrifuge modelling. Int J Phys Model Geotech 2018;18:315-39.

22. Tsatsis A, Anastasopoulos I. Performance of rocking systems on shallow improved sand: shaking table testing. Front Built Environ 2015;1:9.

23. Wium J, van der Merwe J. Rocking shear wall foundations in regions of moderate seismicity. 2009; pp. 66-75. Available from: https://structurae.net/en/literature/conference-paper/rocking-shear-wall-foundations-in-regions-of-moderate-seismicity [Last accessed on 25 Jan 2024].

24. Algie TB, Pender MJ, Orense RP, Wotherspoon LM. Dynamic field testing of shallow foundations subject to rocking. 2010. Available from: http://db.nzsee.org.nz/2010/Paper15.pdf [Last accessed on 25 Jan 2024].

25. Acikgoz S, DeJong MJ. A simple model to quantify rocking isolation. Bull N Z Soc Earthq Eng 2018;51:12-22.

26. Acikgoz S, Ma Q, Palermo A, DeJong MJ. Experimental identification of the dynamic characteristics of a flexible rocking structure. J Earthq Eng 2016;20:1199-221.

27. Pisanò F, Di Prisco C, Lancellotta R. Soi-foundation modelling in laterally loaded historical towers. Géotechnique 2014;64:1-15.

28. Sieber M, Klar S, Vassiliou MF, Anastasopoulos I. Robustness of simplified analysis methods for rocking structures on compliant soil. Earthq Engng Struct Dyn 2020;49:1388-405.

29. Lu Y, Marshall AM, Hajirasouliha I. A simplified nonlinear sway-rocking model for evaluation of seismic response of structures on shallow foundations. Soil Dyn Earthq Eng 2016;81:14-26.

30. Psycharis IN. Effect of base uplift on dynamic response of SDOF structures. J Struct Eng 1991;117:733-54.

31. Hakhamaneshi M, Kutter BL. Effect of footing shape and embedment on the settlement, recentering, and energy dissipation of shallow footings subjected to rocking. J Geotech Geoenviron Eng 2016;142:04016070.

32. Gajan S, Kutter BL. Capacity, settlement, and energy dissipation of shallow footings subjected to rocking. J Geotech Geoenviron Eng 2008;134:1129-41.

33. Gavras AG, Kutter BL, Hakhamaneshi M, et al. Database of rocking shallow foundation performance: dynamic shaking. Earthq Spectra 2020;36:960-82.

34. Sharma K, Deng L. Field testing of rocking foundations in cohesive soil: cyclic performance and footing mechanical response. Can Geotech J 2020;57:828-39.

35. Sharma K. Field investigation and performance-based seismic design of rocking shallow foundations in cohesive soil. AB, Canada: University of Alberta Edmonton; 2019. Available from: https://era.library.ualberta.ca/items/663c0caf-4975-40b7-89a2-33202249c9c1/view/0d0f7d86-eaba-4a4c-8bd7-2c324a208c13/Keshab_Sharma_201905_PhD.pdf [Last accessed on 29 Jan 2024].

36. IS 456. Plain and reinforced concrete - code of practice [CED 2: cement and concrete]. New Delhi: Bureau of Indian Standards; 2000. Available from: https://law.resource.org/pub/in/bis/S03/is.456.2000.pdf [Last accessed on 29 Jan 2024].

37. IS 875-1. Code of practice for design loads (other than earthquake) for buildings and structures. Part 1 dead loads - unit weights of building materials and stored materials. New Delhi: Bureau of Indian Standards; 1987. Available from: https://law.resource.org/pub/in/bis/S03/is.875.1.1987.html [Last accessed on 29 Jan 2024].

38. IS 875-4. Code of practice for design loads (other than earthquake) for buildings and structures, Part 4: snow loads [CED 37: structural safety]. New Delhi: Bureau of Indian Standards; 1987. Available from: https://law.resource.org/pub/in/bis/S03/is.875.4.1987.pdf [Last accessed on 29 Jan 2024].

39. IS 13920. Ductile detailing of reinforced concrete structures subjected to seismic forces - code of practice [CED 39: earthquake engineering]. New Delhi: Bureau of Indian Standards; 1993. Available from: https://law.resource.org/pub/in/bis/S03/is.13920.1993.pdf [Last accessed on 29 Jan 2024].

40. IS 1893-1. Criteria for earthquake resistant design of structures, Part 1: general provisions and buildings [CED 39: earthquake engineering]. New Delhi: Bureau of Indian Standards; 2002. Available from: https://law.resource.org/pub/in/bis/S03/is.1893.1.2002.pdf [Last accessed on 29 Jan 2024].

41. McKenna F, Fenves G, Filippou F, et al. OpenSees. Berkeley: University of California; 2010. Available from: https://opensees.berkeley.edu/wiki/index.php/OpenSees_User [Last accessed on 29 Jan 2024].

42. Vecchio F, Emara MB. Shear deformations in reinforced concrete frames. Struct J 1993;89:46-56.

43. IS 1904. Code of practice for design and construction of foundations in soils: general requirements [CED 43: soil and foundation engineering]. New Delhi: Bureau of Indian Standards; 1986. Available from: https://law.resource.org/pub/in/bis/S03/is.1904.1986.pdf [Last accessed on 29 Jan 2024].

44. IS 6403. Code of practice for determination of bearing capacity of shallow foundations. [CED 43: soil and foundation engineering]. New Delhi: Bureau of Indian Standards; 1981. Available from: https://law.resource.org/pub/in/bis/S03/is.6403.1981.pdf [Last accessed on 29 Jan 2024].

45. Bowles JE. Foundation analysis and design, fourth edition. 1988. Available from: https://trid.trb.org/view/311245 [Last accessed on 29 Jan 2024].

46. Peck RB, Hanson WE, Thornburn TH. Foundation engineering. Soil Sci 1953;75:329.

47. Prishati R. Nonlinear winkler-based shallow foundation model for performance assessment of seismically loaded structures. San Diego: University of California; 2008. Available from: https://escholarship.org/uc/item/6b7322bj [Last accessed on 29 Jan 2024].

48. FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings. Washington, DC, USA: Federal Emergency Management Agency; 2000; Available from: https://www.nehrp.gov/pdf/fema356.pdf [Last accessed on 29 Jan 2024].

49. IS 8009-1. Code of practice for calculation of settlements of foundations, Part 1: shallow foundations subjected to symmetrical static vertical loads [CED 43: soil and foundation engineering]. New Delhi: Bureau of Indian Standards; 1976. Available from: https://law.resource.org/pub/in/bis/S03/is.8009.1.1976.pdf [Last accessed on 29 Jan 2024].

Disaster Prevention and Resilience
ISSN 2832-4056 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/