REFERENCES

1. Ang AHS, Tang W. Probability concepts in engineering: emphasis on applications to civil and environmental engineering. John Wiley & Sons 2007.

2. Chen JB, Li J. Stochastic seismic response analysis of structures exhibiting high nonlinearity. Comput Struct 2010;88:395-412.

3. Zhou H, Li J, Ren XD. Multi-scale stochastic structural analysis towards reliability assessment for large complex reinforced concrete structures. Int J Multiscale Comput 2016;14:303-21.

4. Chen JB, Wan ZQ. A compatible probabilistic framework for quantification of simultaneous aleatory and epistemic uncertainty of basic parameters of structures by synthesizing the change of measure and change of random variables. Struct Saf 2019;78:76-87.

5. Wan ZQ, Chen JB, Li J. Probability density evolution analysis of stochastic seismic response of structures with dependent random parameters. Probabilistic Eng Mech 2020;59:103032.

6. Chen KH, Pang R, Xu B. Stochastic dynamic response and seismic fragility analysis for high concrete face rockfill dams considering earthquake and parameter uncertainties. Soil Dyn Earthq Eng 2023;167:107817.

7. Cao XY, Feng DC, Beer M. Consistent seismic hazard and fragility analysis considering combined capacity-demand uncertainties via probability density evolution method. Struct Saf 2023;103:102330.

8. Yu XH, Li S, Lu DG, Tao J. Collapse capacity of inelastic single-degree-of-freedom systems subjected to mainshock-aftershock earthquake sequences. J Earthq Eng 2020;24:803-26.

9. Feng DC, Cao XY, Wang D, Wu G. A PDEM-based non-parametric seismic fragility assessment method for RC structures under nonstationary ground motions. J Build Eng 2023;63:Part A.

10. Chen Y, Patelli E, Edwards B, Beer M. A physics-informed Bayesian framework for characterizing ground motion process in the presence of missing data. Earthq Eng Struct Dyn 2023;52:2179-95.

11. Brune JN. Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 1970;75:4997-5009.

12. Das S, Aki K. Fault plane with barriers: A versatile earthquake model. J Geophys Res 1977;82:5658-70.

13. Wang GX, Li YN. Strong ground motion simulation for recent earthquakes in China. Proceedings of the 16th World Conference on Earthquake Engineering; 2017 Jan 9-13; Santiago, Chile. Available from: http://wcee.nicee.org/wcee/article/16WCEE/WCEE2017-3036.pdf. [Last accessed on 22 April 2023].

14. Okuwaki R, Yagi Y. Role of geometric barriers in irregular-rupture evolution during the 2008 Wenchuan earthquake. Geophys J Int 2018;212:1657-64.

15. Housner GW. Characteristics of strong-motion earthquakes. Bull Seismol Soc Am 1947;37:19-31.

16. Kanai K. Semi-empirical formula for the seismic characteristics of the ground. Bull Earthq Res Inst Univ Tokyo 1957;35:309-25.

17. Tajimi H. A statistical method of determining the maximum response of a building structure during an earthquake. Proceedings of the 2nd World Conference on Earthquake Engineering; 1960 July 11-18; Tokyo, Japan. Available from: https://www.iitk.ac.in/nicee/wcee/article/vol.2_session2_781.pdf. [Last accessed on 22 April 2023].

18. Hu YX, Zhou XY. The Response of the Elastic System under the Stationary and Nonstationary Ground Motions Beijing: Science Press; 1962.

19. Ou JP, Niu DT. Parameters in the random process models of earthquake ground motion and their effects on the response of structures. J Harbin Archit Civ Eng Inst 1990;23: 24–34. Available from: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=HEBJ199002002. [Last accessed on 22 April 2023].

20. Clough RW, Penzien J. Dynamics of Structures Berkeley: Computers & Structures, Inc.; 1995.

21. Amin M, Ang AHS. Nonstationary stochastic models of earthquake motions. J Eng Mech Div 1968;94:559-84.

22. Li C, Li HN, Hao H, Bi K, Tian L. Simulation of multi-support depth-varying earthquake ground motions within heterogeneous onshore and offshore sites. Earthq Eng Eng Vib 2018;17:475-90.

23. Wang D, Li J. Physical random function model of ground motions for engineering purposes. Sci China Technol Sci 2011;54:175-82.

24. Wang D, Li J. A random physical model of seismic ground motion field on local engineering site. Sci China Technol Sci 2012;55:2057-65.

25. Ding YQ, Peng YB, Li J. A stochastic semi-physical model of seismic ground motions in time domain. J Earthq Tsunami 2018;12:1850006.

26. Ding YQ, Xu YZ, Miao HQ. A seismic checking method of engineering structures based on the stochastic semi-physical model of seismic ground motions. Buildings 2022;12:488.

27. Li C, Hao H, Li HN, Bi KM. Theoretical modeling and numerical simulation of seismic motions at seafloor. Soil Dyn Earthq Eng 2015;77:220-25.

28. Li C, Hao H, Li HN, Bi KM, Chen BK. Modeling and simulation of spatially correlated ground motions at multiple onshore and offshore sites. J Earthq Eng 2017;21:359-83.

29. Li C, Li HN, Hao H, Bi KM, Chen BK. Seismic fragility analyses of sea-crossing cable-stayed bridges subjected to multi-support ground motions on offshore sites. Eng Struct 2018;165:441-56.

30. Li C, Li HN, Hao H, Bi KM. Simulation of spatially varying seafloor motions using onshore earthquake recordings. J Eng Mech 2018;144:04018085.

31. Li J, Ai XQ. Study on random model of earthquake ground motion based on physical process. Earthq Eng Eng Vib 2006;26:21-26.

32. Li J, Wang D. Parametric statistic and certification of physical stochastic model of seismic ground motion for engineering purposes. Earthq Eng Eng Vib 2013;33:81-88.

33. Li ZC, Liu W. Parametric statistics and validation of Wenchuan earthquake based on physical stochastic model of ground motion. Struct Eng 2015;31:69-74.

34. Saltelli A, Tarantola S, Campolongo F, Ratto M. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models New York: John Wiley & Sons; 2004.

35. Sobol' IM. Sensitivity estimates for nonlinear mathematical models. Math Model Comput Expe 1993;1:407-14.

36. Wei PF, Lu ZZ, Song JW. A new variance-based global sensitivity analysis technique. Comput Phys Commun 2013;184:2540-51.

37. Borgonovo E. A new uncertainty importance measure. Reliab Eng Syst Saf 2007;92:771-84.

38. Wei PF, Lu ZZ, Yuan XK. Monte Carlo simulation for moment-independent sensitivity analysis. Reliab Eng Syst Saf 2013;110:60-7.

39. Dubourg V, Sudret B. Meta-model-based importance sampling for reliability sensitivity analysis. Struct Saf 2014;49:27-36.

40. Song JW, Wei PF, Valdebenito MA, Faes M, Beer M. Data-driven and active learning of variance-based sensitivity indices with Bayesian probabilistic integration. Mech Syst Signal Process 2022;163:108106.

41. Phoon KK, Ching JY. Risk and Reliability in Geotechnical Engineering Boca Raton: Taylor & Francis Group; 2015.

42. Chen JB, Yang JS, Jensen H. Structural optimization considering dynamic reliability constraints via probability density evolution method and change of probability measure. Struct Multidiscipl Optim 2020;62:2499-516.

43. Chen JB, Wan ZQ, Beer M. A global sensitivity index based on Fréchet derivative and its efficient numerical analysis. Probabilistic Eng Mech 2020;62:103096.

44. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for Seismic Design of Buildings GB 50011-2010 Beijing: China Architecture & Building Press; 2016.

45. Li J, Chen JB. Stochastic Dynamics of Structures. Singapore: John Wiley & Sons; 2009.

46. Li J, Chen JB. The principle of preservation of probability and the generalized density evolution equation. Struct Saf 2008;30:65-77.

47. Chen JB, Ghanem R, Li J. Partition of the probability-assigned space in probability density evolution analysis of nonlinear stochastic structures. Probabilistic Eng Mech 2009;24:27-42.

48. Chen JB, Yang JY, Li J. A GF-discrepancy for point selection in stochastic seismic response analysis of structures with uncertain parameters. Struct Saf 2016;59:20-31.

49. Wan ZQ, Hong X, Tao WF. Improvements to the probability density evolution method integrated with the change of probability measure on quantifying hybrid uncertainties. Struct Saf 2023;103:102342.

50. Wan ZQ, Chen JB, Beer M. Functional perspective of uncertainty quantification for stochastic parametric systems and global sensitivity analysis. Chin J Theor Appl Mech 2021;53:837-54.

51. Wan ZY, Ren XD, Li J. The implementation of uniaxial concrete constitutive model based on OpenSees. Struct Eng 2015;31:93-99.

52. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for Design of Concrete Structures GB 50010-2010 Beijing: China Architecture & Building Press; 2010.

53. Filippou FC, Popov EP, Bertero VV. Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints. Berkeley: University of California; 1983. Available from: https://nehrpsearch.nist.gov/static/files/NSF/PB84192020.pdf. [Last accessed on 22 April 2023].

Disaster Prevention and Resilience
ISSN 2832-4056 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/