REFERENCES

1. World hypertension day: taking action against the silent epidemic of high blood pressure. Available from: https://world-heart-federation.org/news/world-hypertension-day-taking-action-against-the-silent-epidemic-of-high-blood-pressure/ [Last accessed on 7 Sep 2023].

2. Ringrose JS, Padwal R. The current state of blood pressure measurement and emerging technologies. Conn Health Telemed 2023;2:200002.

3. Mancia G, Fagard R, Narkiewicz K, et al. Task Force for the Management of Arterial Hypertension of the European Society of Hypertension and the European Society of Cardiology. 2013 ESH/ESC practice guidelines for the management of arterial hypertension. Blood Press 2014;23:3-16.

4. O'Brien E, Parati G, Stergiou G, et al. European Society of Hypertension Working Group on Blood Pressure Monitoring. European Society of hypertension position paper on ambulatory blood pressure monitoring. J Hypertens 2013;31:1731-68.

5. Setia S, Subramaniam K, Teo BW, Tay JC. Ambulatory and home blood pressure monitoring: gaps between clinical guidelines and clinical practice in Singapore. Int J Gen Med 2017;10:189-97.

6. George J, MacDonald T. Home blood pressure monitoring. Eur Cardiol 2015;10:95-101.

7. Imai Y, Obara T, Asamaya K, Ohkubo T. The reason why home blood pressure measurements are preferred over clinic or ambulatory blood pressure in Japan. Hypertens Res 2013;36:661-72.

8. Arrieta A, Woods JR, Qiao N, Jay SJ. Cost-benefit analysis of home blood pressure monitoring in hypertension diagnosis and treatment: an insurer perspective. Hypertension 2014;64:891-6.

9. Jaeger BC, Bress AP, Bundy JD, et al. Longer-term all-cause and cardiovascular mortality with intensive blood pressure control: a secondary analysis of a randomized clinical trial. JAMA Cardiol 2022;7:1138-46.

10. Plange N, Kaup M, Daneljan L, Predel HG, Remky A, Arend O. 24-h blood pressure monitoring in normal tension glaucoma: night-time blood pressure variability. J Hum Hypertens 2006;20:137-42.

11. Ding XR, Zhao N, Yang GZ, et al. Continuous blood pressure measurement from invasive to unobtrusive: celebration of 200th birth anniversary of carl ludwig. IEEE J Biomed Health Inform 2016;20:1455-65.

12. Schutte AE, Kollias A, Stergiou GS. Blood pressure and its variability: classic and novel measurement techniques. Nat Rev Cardiol 2022;19:643-54.

13. Dai Y, Wang Y, Xie Y, et al. Short-term and long-term blood pressure changes and the risk of all-cause and cardiovascular mortality. Biomed Res Int 2019;2019:5274097.

14. Mamun MMR, Sherif A. Advancement in the cuffless and noninvasive measurement of blood pressure: a review of the literature and open challenges. Bioengineering 2022;10:27.

15. Mancia G, Cappuccio FP, Burnier M, et al. Perspectives on improving blood pressure control to reduce the clinical and economic burden of hypertension. J Intern Med 2023;294:251-68.

16. Ding X, Dai W, Luo N, Liu J, Zhao N, Zhang Y. A flexible tonoarteriography-based body sensor network for cuffless measurement of arterial blood pressure. 2015 IEEE 12th international conference on wearable and implantable body sensor networks (BSN). Cambridge, USA; 2015. pp. 1-4.

17. Smith IB. The impact of Stephen Hales on medicine. J R Soc Med 1993;86:349-52.

18. Valentinuzzi ME, Beneke K, González GE. Ludwig: the bioengineer. IEEE Pulse 2012;3:68-9, 72, 74.

19. Peterson LH, Dripps RD, Risman GC. A method for recording the arterial pressure pulse and blood pressure in man. Am Heart J 1949;37:771-82.

20. Pascual JL, Horak J, Gracias VH, Neligan PJ. Chapter 19-volume status and cardiac function. Monitoring in neurocritical care. Elsevier; 2013. pp. 176-88.e3.

21. Rook WH, Turner JD, Clutton-Brock TH. Analysis of damping characteristics of arterial catheter blood pressure monitoring in a large intensive care unit. South Afr J Crit Car 2017;33:8-10. Available from: https://www.ajol.info/index.php/sajcc/article/view/159671 [Last accessed on 7 Sep 2023]

22. Yeomanson CW, Evans DH. The frequency response of external transducer blood pressure measurement systems: a theoretical and experimental study. Clin Phys Physiol Meas 1983;4:435-49.

23. Lam S, Liu H, Jian Z, Settels J, Bohringer C. Intraoperative invasive blood pressure monitoring and the potential pitfalls of invasively measured systolic blood pressure. Cureus 2021;13:e17610.

24. Romagnoli S, Ricci Z, Quattrone D, et al. Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study. Crit Care 2014;18:644.

25. Alexander B, Cannesson M, Quill TJ. Chapter 12-Blood pressure monitoring. Anesthesia equipment. Elsevier; 2013. pp. 273-82.

26. Ismail SNA, Nayan NA, Jaafar R, May Z. Recent advances in non-invasive blood pressure monitoring and prediction using a machine learning approach. Sensors 2022;22:6195.

27. Pressman GL, Newgard PM. A transducer for the continuous external measurement of arterial blood pressure. IEEE Trans Biomed Eng 1963;10:73-81.

28. Penaz J. Photoelectric measurement of blood pressure, volume and flow in the finger. In: digest of the 10th international conference on medical and biological engineering (in Japanese). Available from: https://cir.nii.ac.jp/crid/1570854174382447616 [Last accessed on 7 Sep 2023]

29. Saugel B, Meidert AS, Hapfelmeier A, Eyer F, Schmid RM, Huber W. Non-invasive continuous arterial pressure measurement based on radial artery tonometry in the intensive care unit: a method comparison study using the T-Line TL-200pro device. Br J Anaesth 2013;111:185-90.

30. Jagadeesh AM, Singh NG, Mahankali S. A comparison of a continuous noninvasive arterial pressure (CNAP™) monitor with an invasive arterial blood pressure monitor in the cardiac surgical ICU. Ann Card Anaesth 2012;15:180-4.

31. Drzewiecki GM, Melbin J, Noordergraaf A. Arterial tonometry: review and analysis. J Biomech 1983;16:141-52.

32. Wu H, Ji Z, Li M. Non-invasive continuous blood-pressure monitoring models based on photoplethysmography and electrocardiography. Sensors 2019;19:5543.

33. Curran T, McDuff D, Liu X, et al. Camera-based remote photoplethysmography for blood pressure measurement: current evidence, clinical perspectives, and future applications. Conn Health Telemed 2023;2:200004.

34. Li S, Zhang C, Xu Z, et al. Cuffless Blood Pressure Monitoring: Academic Insights and Perspectives Analysis. Micromachines 2022;13:1225.

35. Zheng D, Zhang Y. A ring-type device for the noninvasive measurement of arterial blood pressure. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439). Cancun, Mexico; 2003. pp. 3184-87.

36. Poon CC, Wong YM, Zhang YT. M-health: the development of cuff-less and wearable blood pressure meters for use in body sensor networks. 2006 IEEE/NLM Life Science Systems and Applications Workshop. Bethesda, USA; 2006, pp. 1-2.

37. Zhang YT, Poon CCY, Chan C, Tsang MWW, Wu K. A health-shirt using e-textile materials for the continuous and cuffless monitoring of arterial blood pressure. 2006 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors, Cambridge, USA; 2006, pp. 86-89,

38. Poon C, Zhang YT, Bao S. A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health. IEEE Commun Mag 2006;44:73-81.

39. Wu K, Chan C, Zhang YT. Contactless and cuffless monitoring of blood pressure on a chair using e-textile materials. 2006 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors. Cambridge, USA; 2006. pp. 98-100.

40. Gu WB, Poon CC, Leung HK, Sy MY, Wong MY, Zhang YT. A novel method for the contactless and continuous measurement of arterial blood pressure on a sleeping bed. Annu Int Conf IEEE Eng Med Biol Soc 2009;2009:6084-6.

41. Zheng Y, Leung B, Sy S, Zhang Y, Poon CC. A clip-free eyeglasses-based wearable monitoring device for measuring photoplethysmograhic signals. Annu Int Conf IEEE Eng Med Biol Soc 2012;2012:5022-5.

42. Zheng YL, Yan BP, Zhang YT, Poon CC. An armband wearable device for overnight and cuff-less blood pressure measurement. IEEE Trans Biomed Eng 2014;61:2179-86.

43. Liu J, Li Y, Ding XR, Dai WX, Zhang YT. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG. Annu Int Conf IEEE Eng Med Biol Soc 2015;2015:5973-6.

44. Liu J, Yan BP, Zhang YT, Ding XR, Su P, Zhao N. Multi-wavelength photoplethysmography enabling continuous blood pressure measurement with compact wearable electronics. IEEE Trans Biomed Eng 2019;66:1514-25.

45. Liu ZD, Li Y, Zhang YT, et al. Cuffless blood pressure measurement using smartwatches: a large-scale validation study. IEEE J Biomed Health Inform 2023;27:4216-27.

46. Mukkamala R, Yavarimanesh M, Natarajan K, et al. Evaluation of the accuracy of cuffless blood pressure measurement devices: challenges and proposals. Hypertension 2021;78:1161-67.

47. IEEE standard for wearable, cuffless blood pressure measuring devices-amendment 1. IEEE Std 1708a-2019 (Amendment to IEEE Std 1708-2014);2019.pp.1-35.

48. Watanabe N, Bando YK, Kawachi T, et al. Development and validation of a novel cuff-less blood pressure monitoring device. JACC Basic Transl Sci 2017;2:631-42.

49. Nachman D, Gepner Y, Goldstein N, et al. Comparing blood pressure measurements between a photoplethysmography-based and a standard cuff-based manometry device. Sci Rep 2020;10:16116.

50. Schoettker P, Degott J, Hofmann G, et al. Blood pressure measurements with the OptiBP smartphone app validated against reference auscultatory measurements. Sci Rep 2020;10:17827.

51. Liu Z, Zhou B, Li Y, Tang M, Miao F. Continuous blood pressure estimation from electrocardiogram and photoplethysmogram during arrhythmias. Front Physiol 2020;11:575407.

52. Ding XR, Zhang YT, Liu J, Dai WX, Tsang HK. Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio. IEEE Trans Biomed Eng 2016;63:964-72.

53. Zheng YL, Ding XR, Poon CC, et al. Unobtrusive sensing and wearable devices for health informatics. IEEE Trans Biomed Eng 2014;61:1538-54.

54. Liu ZJ, Xiang T, Ji N, Zhang YT. Optical sensor array-based multi-channel wearable tonoarteriogram (TAG) imaging system. 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2023.

55. Sharma M, Barbosa K, Ho V, et al. Cuff-less and continuous blood pressure monitoring: a methodological review. Technologies 2017;5:21.

56. Stergiou GS, Avolio AP, Palatini P, et al. European society of hypertension recommendations for the validation of cuffless blood pressure measuring devices: european society of hypertension working group on blood pressure monitoring and cardiovascular variability. J Hypertens 2023:online ahead of print.

Connected Health And Telemedicine
ISSN 2993-2920 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/