REFERENCES
1. Elyan E, Jamieson L, Ali-Gombe A. Deep learning for symbols detection and classification in engineering drawings. Neural Netw 2020;129:91-102.
2. Moreno-García CF, Elyan E, Jayne C. New trends on digitisation of complex engineering drawings. Neural Comput & Applic 2019;31:1695-712.
3. Moreno-García CF, Elyan E, Jayne C. Heuristics-based detection to improve text/graphics segmentation in complex engineering drawings. In: Boracchi G, Iliadis L, Jayne C, Likas A, editors. Engineering applications of neural networks. Cham: Springer International Publishing; 2017. pp. 87-98.
4. Ali-Gombe A, Elyan E, Jayne C. Fish classification in context of noisy images. In: Boracchi G, Iliadis L, Jayne C, Likas A, editors. Engineering applications of neural networks. Cham: Springer International Publishing; 2017. pp. 216-26.
5. Schwab E, Gooßen A, Deshpande H, Saalbach A. Localization of critical findings in chest X-ray without local annotations using multi-instance learning; 2020.
6. Pomponiu V, Nejati H, Cheung NM. Deepmole: Deep neural networks for skin mole lesion classification. In: 2016 IEEE International Conference on Image Processing (ICIP); 2016. pp. 2623-27.
7. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-8.
8. Levine AB, Schlosser C, Grewal J, Coope R, Jones SJM, Yip S. Rise of the machines: advances in deep learning for cancer diagnosis. Trends Cancer 2019;5:157-69.
9. Schlemper J, Oktay O, Schaap M, et al. Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal 2019;53:197-207.
10. Vyborny CJ, Giger ML. Computer vision and artificial intelligence in mammography. AJR Am J Roentgenol 1994;162:699-708.
11. Gumbs AA, Frigerio I, Spolverato G, et al. Artificial intelligence surgery: how do we get to autonomous actions in surgery? Sensors (Basel) 2021;21: 5526.
12. Gonzalez RC, Woods RE. Digital image processing (3rd Edition). USA: Prentice-Hall, Inc.; 2006.
13. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015. pp. 1-9.
14. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2017;60:84-90.
15. Bishop CM. Pattern recognition and machine learning. Springer; 2006.
16. Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 2018;5:180161.
17. Ismael AM, Şengür A. Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst Appl 2021;164:114054.
18. Lowe DG. Distinctive image features from scale-invariant keypoints. Inter J Comput Vis 2004 Nov; 60: 91-110.
19. Bay H, Tuytelaars T, Gool LV. SURF: Speeded up robust features. In: Computer Vision - ECCV 2006. Springer Berlin Heidelberg; 2006. pp. 404-17.
20. Hearst M, Dumais S, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst Their Appl 1998;13:18-28.
22. Amato F, López A, Peña-Méndez EM, Vaňhara P, Hampl A, Havel J. Artificial neural networks in medical diagnosis. J Appl Biomed 2013;11:47-58.
23. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016. http://www.deeplearningbook.org.
24. Masek J, Burget R, Karasek J, Uher V, Güney S. Evolutionary improved object detector for ultrasound images. In: 2013 36th International Conference on Telecommunications and Signal Processing (TSP); 2013. pp. 586-90.
25. Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. vol. 1; 2001. pp. I-I.
26. Holcomb SD, Porter WK, Ault SV, Mao G, Wang J. Overview on deepmind and its alphago zero AI. In: Proceedings of the 2018 International Conference on Big Data and Education. ICBDE '18. New York, NY, USA: ACM; 2018. pp. 67-71.
27. Yang Z, Yang D, Dyer C, et al. Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, California: Association for Computational Linguistics; 2016. pp. 1480-89.
28. Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med 2019;25:24-9.
29. Shone N, Ngoc TN, Phai VD, Shi Q. A deep learning approach to network intrusion detection. IEEE Trans Emerg Top Comput Intell 2018;2:41-50.
31. Hu Z, Tang J, Wang Z, Zhang K, Zhang L, Sun Q. Deep learning for image-based cancer detection and diagnosis-a survey. Pattern Recognition 2018;83:134-49.
32. Aggarwal R, Sounderajah V, Martin G, et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digit Med 2021;4:65.
33. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1. NIPS'15. Cambridge, MA, USA: MIT Press; 2015. pp. 91-99. Available from: http://dl.acm.org/citation.cfm?id=2969239.2969250.
34. Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector. CoRR 2015;abs/1512.02325. Available from: http://arxiv.org/abs/1512.02325.
35. Dai J, Li Y, He K, Sun J. R-FCN: Object Detection via region-based fully convolutional networks. CoRR 2016;abs/1605.06409. Available from: http://arxiv.org/abs/1605.06409.
36. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. pp. 779-88.
37. Twinanda AP, Shehata S, Mutter D, Marescaux J, de Mathelin M, Padoy N. EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging 2017;36:86-97.
38. Yu F, Silva Croso G, Kim TS, et al. Assessment of automated identification of phases in videos of cataract surgery using machine learning and deep learning techniques. JAMA Netw Open 2019;2:e191860.
39. Khalid S, Goldenberg M, Grantcharov T, Taati B, Rudzicz F. Evaluation of deep learning models for identifying surgical actions and measuring performance. JAMA Netw Open 2020;3:e201664.
40. Tan L, Huangfu T, Wu L, Chen W. Comparison of RetinaNet, SSD, and YOLO v3 for real-time pill identification. BMC Med Inform Decis Mak 2021;21:324.
41. Sarikaya D, Corso JJ, Guru KA. Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection. IEEE Trans Med Imaging 2017;36:1542-9.
42. Lee D, Yu HW, Kwon H, Kong HJ, Lee KE, Kim HC. Evaluation of surgical skills during robotic surgery by deep learning-based multiple surgical instrument tracking in training and actual operations. J Clin Med 2020;9:1964.
43. Marban A, Srinivasan V, Samek W, Fernández J, Casals A. Estimating position amp; velocity in 3D space from monocular video sequences using a deep neural network. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW); 2017. pp. 1460-69.
44. Wadhwa A, Bhardwaj A, Singh Verma V. A review on brain tumor segmentation of MRI images. Magn Reson Imaging 2019;61:247-59.
45. Shvets AA, Rakhlin A, Kalinin AA, Iglovikov VI. Automatic instrument segmentation in robot-assisted surgery using deep learning. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA); 2018. pp. 624-28.
46. García-Peraza-Herrera LC, Li W, Gruijthuijsen C, et al. Real-time segmentation of non-rigid surgical tools based on deep learning and tracking In: Peters T, Yang GZ, Navab N, et al., editors. Computer-Assisted and Robotic Endoscopy. Cham: Springer International Publishing; 2017. pp. 84-95.
47. Ward TM, Mascagni P, Madani A, Padoy N, Perretta S, Hashimoto DA. Surgical data science and artificial intelligence for surgical education. J Surg Oncol 2021;124:221-30.
48. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016.
49. Kennedy-Metz LR, Mascagni P, Torralba A, et al. Computer vision in the operating room: opportunities and caveats. IEEE Trans Med Robot Bionics 2021;3:2-10.
50. Rajpurkar P, Irvin J, Bagul A, et al. MURA: Large dataset for abnormality detection in musculoskeletal radiographs; 2018.
51. Tajbakhsh N, Shin JY, Gurudu SR, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 2016;35: 1299-312.
52. Armato Ⅲ, Samuel G, McLennan G, Bidaut L, et al. Data from LIDC-IDRI. The Cancer Imaging Archive; 2015.
53. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med 2019;17:195.
54. Sarvamangala DR, Kulkarni RV. Convolutional neural networks in medical image understanding: a survey. Evol Intell 2021:1-22.
55. Sarker MMK, Makhlouf Y, Banu SF, Chambon S, Radeva P, Puig D. Web-based efficient dual attention networks to detect COVID-19 from X-ray images. Electron lett 2020;56:1298-301.
56. Yap J, Yolland W, Tschandl P. Multimodal skin lesion classification using deep learning. Experimental dermatology 2018;27:1261-67.
57. Kassem MA, Hosny KM, Damaševičius R, Eltoukhy MM. Machine learning and deep learning methods for skin lesion classification and diagnosis: a systematic review. Diagnostics (Basel) 2021;11:1390.
58. Tian P, He B, Mu W, et al. Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images. Theranostics 2021;11:2098.
59. Singh VK, Romani S, Rashwan HA, et al. Conditional generative adversarial and convolutional networks for X-ray breast mass segmentation and shape classification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2018. pp. 833-40.
60. Hijab A, Rushdi MA, Gomaa MM, Eldeib A. Breast cancer classification in ultrasound images using transfer learning. In: 2019 Fifth International Conference on Advances in Biomedical Engineering (ICABME). IEEE; 2019. pp. 1-4.
61. Abdelaziz Ismael SA, Mohammed A, Hefny H An enhanced deep learning approach for brain cancer MRI images classification using residual networks. Artif Intell Med 2020;102: 101779.
62. Hashemzehi R, Mahdavi SJS, Kheirabadi M, Kamel SR. Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE. Biocybernetics and Biomedical Engineering 2020;40:1225-32.
63. Qureshi I, Ma J, Abbas Q. Diabetic retinopathy detection and stage classification in eye fundus images using active deep learning. Multimed Tools Appl 2021;80:11691-721.
64. Martinez-Murcia FJ, Ortiz A, Ramírez J, Górriz JM, Cruz R. Deep residual transfer learning for automatic diagnosis and grading of diabetic retinopathy. Neurocomputing 2021;452:424-34.
65. Li Z, Guo C, Nie D, et al. Automated detection of retinal exudates and drusen in ultra-widefield fundus images based on deep learning. Eye (Lond) 2021:1-6.
66. Sarker MMK, Makhlouf Y, Craig SG, et al. A means of assessing deep learning-based detection of ICOS protein expression in colon cancer. Cancers (Basel) 2021;13:3825.
67. Karimi D, Nir G, Fazli L, Black PC, Goldenberg L, Salcudean SE. Deep learning-based gleason grading of prostate cancer from histopathology images-role of multiscale decision aggregation and data augmentation. IEEE J Biomed Health Inform 2020;24:1413-26.
68. Gamble P, Jaroensri R, Wang H, et al. Determining breast cancer biomarker status and associated morphological features using deep learning. Commun Med 2021;1:1-12.
69. Ghoniem RM, Algarni AD, Refky B, Ewees AA. Multi-modal evolutionary deep learning model for ovarian cancer diagnosis. Symmetry 2021;13:643.
70. Lakshmanaprabu S, Mohanty SN, Shankar K, Arunkumar N, Ramirez G. Optimal deep learning model for classification of lung cancer on CT images. Future Generation Computer Systems 2019;92:374-82.
71. Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J. Medical applications of infrared thermography: a review. Infrared Phys Technol 2012;55:221-35.
72. Manigandan S, Wu MT, Ponnusamy VK, Raghavendra VB, Pugazhendhi A, Brindhadevi K. A systematic review on recent trends in transmission, diagnosis, prevention and imaging features of COVID-19. Process Biochem 2020;98:233-40.
73. Chiu WT, Lin PW, Chiou HY, et al. Infrared thermography to mass-screen suspected SARS patients with fever. Asia Pac J Public Health 2005;17:26-8.
74. Zhou Y, Ghassemi P, Chen M, et al. Clinical evaluation of fever-screening thermography: impact of consensus guidelines and facial measurement location. J Biomed Opt 2020;25:097002.
75. Ferrari C, Berlincioni L, Bertini M, Del Bimbo A. Inner eye canthus localization for human body temperature screening. In: 2020 25th International Conference on Pattern Recognition (ICPR). IEEE; 2021. pp. 8833-40.
76. Liu X, Dong S, An M, Bai L, Luan J. Quantitative assessment of facial paralysis using infrared thermal imaging. In: 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE; 2015. pp. 106-10.
77. Liu X, Feng J, Zhang R, Luan J, Wu Z. Quantitative assessment of Bell's palsy-related facial thermal asymmetry using infrared thermography: a preliminary study. J Therm Biol 2021;100:103070.
78. Saxena A, Ng EYK, Lim ST. Infrared (IR) thermography as a potential screening modality for carotid artery stenosis. Comput Biol Med 2019;113:103419.
79. Hoffmann N, Koch E, Steiner G, Petersohn U, Kirsch M. Learning thermal process representations for intraoperative analysis of cortical perfusion during ischemic strokes. In: Deep Learning and Data Labeling for Medical Applications. Springer; 2016. pp. 152-60.
80. Singh D, Singh AK. Role of image thermography in early breast cancer detection- Past, present and future. Comput Methods Programs Biomed 2020;183:105074.
81. Ekici S, Jawzal H. Breast cancer diagnosis using thermography and convolutional neural networks. Med Hypotheses 2020;137:109542.
82. Zuluaga-gomez J, Al Masry Z, Benaggoune K, Meraghni S, Zerhouni N. A CNN-based methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 2021;9:131-45.
83. Ordun C, Raff E, Purushotham S. The use of AI for thermal emotion recognition: A review of problems and limitations in standard design and data. arXiv preprint arXiv: 200910589 2020.
84. Takemiya R, Kido S, Hirano Y, Mabu S. Detection of pulmonary nodules on chest x-ray images using R-CNN. In: International Forum on Medical Imaging in Asia 2019. vol. 11050. International Society for Optics and Photonics; 2019. p. 110500W.
85. Banu SF, Sarker M, Kamal M, et al. AWEU-Net: an attention-aware weight excitation u-net for lung nodule segmentation. Appl Sci 2021;11:10132.
86. Reiazi R, Paydar R, Ardakani AA, et al. Mammography lesion detection using faster R-CNN detector. In: CS & IT Conference Proceedings. vol. 8. CS & IT Conference Proceedings; 2018.
87. Yap MH, Goyal M, Osman F, et al. Breast ultrasound region of interest detection and lesion localisation. Artif Intell Med 2020;107:101880.
88. He K, Gkioxari G, Dollár P, Girshick R. Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision; 2017. pp. 2961-69.
89. Law H, Deng J. Cornernet: Detecting objects as paired keypoints. In: Proceedings of the European conference on computer vision (ECCV); 2018. pp. 734-50.
90. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60-88.
91. Pang S, Ding T, Qiao S, et al. A novel YOLOv3-arch model for identifying cholelithiasis and classifying gallstones on CT images. PLoS One 2019;14:e0217647.
92. Le K, Lou Z, Huo W, Tian X. Auto whole heart segmentation from CT images using an improved Unet-GAN. J Phys : Conf Ser 2021;1769:012016.
93. Kim M, Lee BD. Automatic lung segmentation on chest X-rays using self-attention deep neural network. Sensors (Basel) 2021;21:369.
94. Ranjbarzadeh R, Bagherian Kasgari A, Jafarzadeh Ghoushchi S, Anari S, Naseri M, Bendechache M. Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Sci Rep 2021;11:10930.
95. Sarker MMK, Rashwan HA, Akram F, et al. SLSNet: Skin lesion segmentation using a lightweight generative adversarial network. Expert Systems with Applications 2021;183:115433.
96. Singh VK, Abdel-nasser M, Akram F, et al. Breast tumor segmentation in ultrasound images using contextual-information-aware deep adversarial learning framework. Expert Systems with Applications 2020;162:113870.
97. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. pp. 3431-40.
98. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer; 2015. pp. 234-41.
99. Luo G, An R, Wang K, Dong S, Zhang H. A deep learning network for right ventricle segmentation in short-axis MRI. In: 2016 Computing in Cardiology Conference (CinC); 2016. pp. 485-88.
100. Dang T, Nguyen TT, Moreno-García CF, Elyan E, McCall J. Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation. In: IEEE Congress on Evolutionary Computing. IEEE; 2021. pp. 744-51.
101. Miranda E, Aryuni M, Irwansyah E. A survey of medical image classification techniques. In: 2016 International Conference on Information Management and Technology (ICIMTech); 2016. pp. 56-61.
102. Brosch T, Tam R, Initiative ADN, et al. Manifold learning of brain MRIs by deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2013. pp. 633-40.
103. Nie D, Zhang H, Adeli E, Liu L, Shen D. 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: International conference on medical image computing and computer-assisted intervention. Springer; 2016. pp. 212-20.
104. Choi JY, Yoo TK, Seo JG, et al. Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database. PloS one 2017;12:e0187336.
105. Badar M, Shahzad M, Fraz M. Simultaneous segmentation of multiple retinal pathologies using fully convolutional deep neural network. In: Annual Conference on Medical Image Understanding and Analysis. Cham: Springer; 2018. pp. 313-24.
106. Singh VK, Rashwan HA, Saleh A, et al. REFUGE CHALLENGE 2018-Task 2: deep optic disc and cup segmentation in fundus images using U-Net and multi-scale feature matching networks. arXiv preprint arXiv: 180711433 2018.
107. Cho Y, Kim YG, Lee SM, Seo JB, Kim N. Reproducibility of abnormality detection on chest radiographs using convolutional neural network in paired radiographs obtained within a short-term interval. Sci Rep 2020;10:17417.
108. Yoo H, Kim KH, Singh R, Digumarthy SR, Kalra MK. Validation of a deep learning algorithm for the detection of malignant pulmonary nodules in chest radiographs. JAMA Netw Open 2020;3:e2017135.
109. Wang J, Zhu H, Wang S, Zhang Y. A review of deep learning on medical image analysis. Mobile Netw Appl 2021;26:351-80.
110. Hosseini-Asl E, Gimel'farb G, El-Baz A. Alzheimer's disease diagnostics by a deeply supervised adaptable 3D convolutional network. arXiv preprint arXiv: 160700556 2016.
111. Kleesiek J, Urban G, Hubert A, et al. Deep MRI brain extraction: A 3D convolutional neural network for skull stripping. Neuroimage 2016;129:460-9.
112. Ghafoorian M, Karssemeijer N, Heskes T, et al. Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin. Neuroimage Clin 2017;14:391-9.
113. Akram F, Singh VK, Rashwan HA, et al. Adversarial learning with multiscale features and kernel factorization for retinal blood vessel segmentation. arXiv preprint arXiv: 190702742 2019.
114. Su Y, Li D, Chen X. Lung nodule detection based on faster R-CNN framework. Comput Methods Programs Biomed 2021;200:105866.
115. Gupta S, Blankstein R. Detecting coronary artery calcium on chest radiographs: can we teach an old dog new tricks? Radiol Cardiothorac Imaging 2021;3:e210123.
116. Lu MY, Chen TY, Williamson DFK, et al. AI-based pathology predicts origins for cancers of unknown primary. Nature 2021;594:106-10.
117. Lu MY, Williamson DFK, Chen TY, Chen RJ, Barbieri M, Mahmood F. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat Biomed Eng 2021;5:555-70.
118. Alemi Koohbanani N, Jahanifar M, Zamani Tajadin N, Rajpoot N. NuClick: a deep learning framework for interactive segmentation of microscopic images. Med Image Anal 2020;65:101771.
119. Hu Q, Whitney HM, Giger ML. A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI. Sci Rep 2020;10:10536.
120. Lai X, Yang W, Li R. DBT masses automatic segmentation using U-net neural networks. Comput Math Methods Med 2020;2020:7156165.
121. Li J, Yu ZL, Gu Z, Liu H, Li Y. Dilated-inception net: multi-scale feature aggregation for cardiac right ventricle segmentation. IEEE Transactions on Biomedical Engineering 2019;66:3499-508.
122. Zhuang X, Li L, Payer C, et al. Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge. Med Image Anal 2019;58:101537.
123. Bai W, Suzuki H, Qin C, et al. Recurrent neural networks for aortic image sequence segmentation with sparse annotations. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2018. pp. 586-94.
124. Joyce T, Chartsias A, Tsaftaris S. Deep multi-class segmentation without ground-truth labels. In: Medical Imaging with Deep Learning: Amsterdam; 2018.
125. Gruber N, Antholzer S, Jaschke W, Kremser C, Haltmeier M. A joint deep learning approach for automated liver and tumor segmentation. In: 2019 13th International conference on Sampling Theory and Applications (SampTA). IEEE; 2019. pp. 1-5.
126. Kline TL, Korfiatis P, Edwards ME, et al. Performance of an artificial multi-observer deep neural network for fully automated segmentation of polycystic kidneys. J Digit Imaging 2017;30:442-8.
127. Gibson E, Giganti F, Hu Y, et al. Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans Med Imaging 2018;37:1822-34.
128. Zhu Y, Wang QC, Xu MD, et al. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointest Endosc 2019;89:806-815. e1.
129. Mahbod A, Schaefer G, Wang C, Dorffner G, Ecker R, Ellinger I. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification. Comput Methods Programs Biomed 2020;193:105475.
130. Lim ZV, Akram F, Ngo CP, et al. Automated grading of acne vulgaris by deep learning with convolutional neural networks. Skin Res Technol 2020;26:187-92.
131. Huang K, Jiang Z, Li Y, et al. The classification of six common skin diseases based on xiangya-derm: development of a chinese database for artificial intelligence. J Med Internet Res 2021;23:e26025.
132. Hashimoto DA, Rosman G, Witkowski ER, et al. Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg 2019;270:414-21.
133. Aggarwal N, Garg M, Dwarakanathan V, et al. Diagnostic accuracy of non-contact infrared thermometers and thermal scanners: a systematic review and meta-analysis. J Travel Med 2020;27:taaa193.
134. Ulhaq A, Born J, Khan A, Gomes DPS, Chakraborty S, Paul M. Covid-19 control by computer vision approaches: a survey. IEEE Access 2020;8:179437-56.
135. 80601-2-59: 2017 I. Medical electrical equipment — Part 2-59: Particular requirements for the basic safety and essential performance of screening thermographs for human febrile temperature screening. Geneva, CH: International Organization for Standardization; 2017.
136. Howell KJ, Mercer JB, Smith RE. Infrared thermography for mass fever screening: repeating the mistakes of the past. J Med Virol 2020;30:5-6.
137. Vuttipittayamongkol P, Elyan E. Neighbourhood-based undersampling approach for handling imbalanced and overlapped data. Information Sciences 2020;509:47-70.
138. Vuttipittayamongkol P, Elyan E. Overlap-based undersampling method for classification of imbalanced medical datasets. In: IFIP International Conference on Artificial Intelligence Applications and Innovations. Cham: Springer International Publishing; 2020. pp. 358-69.
139. Maji P, Mondal HK, Roy AP, Poddar S, Mohanty SP. iKardo: an intelligent ECG device for automatic critical beat identification for smart healthcare. IEEE Trans Consumer Electron 2021;67:235-43.
140. Vuttipittayamongkol P, Tung A, Elyan E. A data-driven decision support tool for offshore oil and gas decommissioning. IEEE Access 2021;9:137063-82.
141. Le T, Hoang Son L, Vo M, Lee M, Baik S. A cluster-based boosting algorithm for bankruptcy prediction in a highly imbalanced dataset. Symmetry 2018;10:250.
142. Li Z, Huang M, Liu G, Jiang C. A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection. Expert Systems with Applications 2021;175:114750.
143. Vuttipittayamongkol P, Elyan E. Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and parkinson's disease. Int J Neural Syst 2020;30:2050043.
144. Friedman E, Patino MO, Abdel Razek AAK. MR imaging of salivary gland tumors. Magn Reson Imaging Clin N Am 2022;30:135-49.
145. Sun S, Mo JQ, Levy ML, Crawford J. Atypical giant suprasellar prolactinoma presenting with visual field changes in the absence of symptoms of hyperprolactinemia. Cureus 2021;13:e19632.
146. Lang SM, Mills AM, Cantrell LA. Malignant Brenner tumor of the ovary: review and case report. Gynecol Oncol Rep 2017;22:26-31.
147. Liu T, Fan W, Wu C. A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset. Artif Intell Med 2019;101:101723.
148. Zhu M, Xia J, Jin X, et al. Class weights random forest algorithm for processing class imbalanced medical data. IEEE Access 2018;6:4641-52.
149. Kalantari A, Kamsin A, Shamshirband S, Gani A, Alinejad-rokny H, Chronopoulos AT. Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions. Neurocomputing 2018;276:2-22.
150. Vuttipittayamongkol P, Elyan E, Petrovski A. On the class overlap problem in imbalanced data classification. Knowledge-Based Systems 2021;212:106631.
151. E Elyan, C F Moreno-García, C Jayne. CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification. Neural Comput & Applic 2021;33:2839-51.
152. Luo H, Liao J, Yan X, LiU L. Oversampling by a constraint-based causal network in medical imbalanced data classification. In: 2021 IEEE International Conference on Multimedia and Expo (ICME). IEEE; 2021. pp. 1-6.
153. Khushi M, Shaukat K, Alam TM, et al. A comparative performance analysis of data resampling methods on imbalance medical data. IEEE Access 2021;9:109960-75.
154. Rahman MM, Davis DN. Addressing the class imbalance problem in medical datasets. Inter J Machine Learning Comput 2013;3:224.
155. Huang C, Huang X, Fang Y, et al. Sample imbalance disease classification model based on association rule feature selection. Pattern Recognition Letters 2020;133:280-6.
156. Krawczyk B, Galar M, Jeleń Ł, Herrera F. Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Applied Soft Computing 2016;38:714-26.
157. Bria A, Marrocco C, Tortorella F. Addressing class imbalance in deep learning for small lesion detection on medical images. Comput Biol Med 2020;120:103735.
158. Yuan X, Xie L, Abouelenien M. A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data. Pattern Recognition 2018;77:160-72.
159. Zhou Q, Ren C, Qi S. An imbalanced R-STDP learning rule in spiking neural networks for medical image classification. IEEE Access 2020;8:224162-77.
160. Ali-Gombe A, Elyan E. MFC-GAN: class-imbalanced dataset classification using multiple fake class generative adversarial network. Neurocomputing 2019;361:212-21.
161. Ali-Gombe A, Elyan E, Jayne C. Multiple fake classes GAN for data augmentation in face image dataset. In: 2019 International joint conference on neural networks (IJCNN). IEEE; 2019. pp. 1-8.
162. Qasim AB, Ezhov I, Shit S, Set al. Red-GAN: Attacking class imbalance via conditioned generation. Yet another medical imaging perspective. In: Medical Imaging with Deep Learning. PMLR; 2020. pp. 655-68.
163. Rezaei M, Uemura T, Näppi J, Yoshida H, Lippert C, et al. Generative synthetic adversarial network for internal bias correction and handling class imbalance problem in medical image diagnosis. In: Medical Imaging 2020: Computer-Aided Diagnosis. vol. 11314. International Society for Optics and Photonics; 2020. p. 113140E.
164. European Parliament and Council. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation); 2016.
165. Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng 2018;2:719-31.
166. Tizhoosh HR, Pantanowitz L. Artificial intelligence and digital pathology: challenges and opportunities. J Pathol Inform 2018;9:38.
167. Miller T. Explanation in artificial intelligence: insights from the social sciences. Artificial Intelligence 2019;267:1-38.
168. Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak 2020;20:310.
169. Mohseni S, Zarei N, Ragan ED. A multidisciplinary survey and framework for design and evaluation of explainable AI systems. ACM Trans Interact Intell Syst 2021;11:1-45.
170. Stewart JE, Rybicki FJ, Dwivedi G. Medical Medical specialties involved in artificial intelligence research: is there a leader. Tas Med J 2020;2:20-7.
171. Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 2019;1:206-15.
172. Ribeiro MT, Singh S, Guestrin C. " Why should i trust you?" Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining; 2016. pp. 1135-44.
173. Lundberg SM, Lee SI. A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems 2017;30:4765-74.
174. Adebayo J, Gilmer J, Muelly M, et al. Sanity checks for saliency maps. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems; 2018. pp. 9525-36.
175. Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artificial intelligence in health care. The Lancet Digital Health 2021;3:e745-50.
176. Barnett AJ, Schwartz FR, Tao C, et al. Interpretable mammographic image classification using cased-based reasoning and deep learning. arXiv preprint arXiv: 210705605 2021.
177. Zhang Z, Xie Y, Xing F, McGough M, Yang L. Mdnet: A semantically and visually interpretable medical image diagnosis network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. pp. 6428-36.
178. Sun J, Darbehani F, Zaidi M, Wang B. Saunet: shape attentive u-net for interpretable medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2020. pp. 797-806.
179. Zhou XY, Guo Y, Shen M, Yang GZ. Application of artificial intelligence in surgery. Frontiers of Medicine 2020;14:417-30.
180. Dodge S, Karam L. A study and comparison of human and deep learning recognition performance under visual distortions. In: 2017 26th International Conference on Computer Communication and Networks (ICCCN); 2017. pp. 1-7.