REFERENCES

1. Giménez M, Gallix B, Costamagna G, et al. Definitions of computer-assisted surgery and intervention, image-guided surgery and intervention, hybrid operating room, and guidance systems: Strasbourg International Consensus Study. Ann Surg Open 2020;1:e021.

2. Kolanska K, Chabbert-Buffet N, Daraï E, Antoine JM. Artificial intelligence in medicine: a matter of joy or concern? J Gynecol Obstet Hum Reprod 2020;50:101962.

3. Jean A. [A brief history of artificial intelligence]. Med Sci (Paris) 2020;36:1059-67.

4. Nilsson NJ. Artificial intelligence, employment, and income. Human Systems Management 1985;5:123-35.

5. Loftus TJ, Upchurch GR Jr, Delitto D, Rashidi P, Bihorac A. Mysteries, epistemological modesty, and artificial intelligence in surgery. Front Artif Intell 2020;2:32.

6. Jarvis T, Thornburg D, Rebecca AM, Teven CM. Artificial intelligence in plastic surgery: current applications, future directions, and ethical implications. Plast Reconstr Surg Glob Open 2020;8:e3200.

7. Agrawal V, Sharma D, Yadav SK. Letter to Editor: “Artificial Intelligence, Machine Learning, Deep Learning and Big Data Analytics for Resource Optimization in Surgery”. Indian J Surg 2020;21:1-2.

8. Anderson BL, Williams S, Schulkin J. Statistical literacy of obstetrics-gynecology residents. J Grad Med Educ 2013;5:272-5.

9. Krouss M, Croft L, Morgan DJ. Physician understanding and ability to communicate harms and benefits of common medical treatments. JAMA Intern Med 2016;176:1565-67.

10. Oosterhoff JHF, Doornberg JN; Machine Learning Consortium. Artificial intelligence in orthopaedics: false hope or not? A narrative review along the line of Gartner’s hype cycle. EFORT Open Rev 2020;5:593-603.

11. Shuaib A, Arian H, Shuaib A. The increasing role of artificial intelligence in health care: will robots replace doctors in the future? Int J Gen Med 2020;3:891-96.

12. Technologies, E.G.o.E.i.S.a.N., Artificial Intelligence, Robotics and ‘Autonomous’ Systems. European Commission Directorate-General for Research and Innovation Unit RTD.01 - Scientific Advice Mechanism, 2018: 1-24. Available from: https://ec.europa.eu/research/ege/pdf/ege_ai_statement_2018.pdf [Last accessed on 29 Jan 2021].

13. Layard Horsfall H, Palmisciano P, Khan DZ, et al. Attitudes of the surgical team toward artificial intelligence in neurosurgery: international 2-stage cross-sectional survey. World Neurosurg 2020:S1878-8750(20)32373-1.

14. Moraliyage H, De Silva D, Ranasinghe W, et al. Cancer in lockdown: impact of the COVID-19 pandemic on patients with cancer. Oncologist 2020; doi: 10.1002/onco.13604.

15. Reece AG, Danforth CM. Instagram photos reveal predictive markers of depression. EPJ Data Sci 2016;6:15.

16. Guiot J, Vaidyanathan A, Deprez L, et al. Development and validation of an automated radiomic CT signature for detecting COVID-19. Diagnostics (Basel) 2020;11:41.

17. Vaidya P, Bera K, Gupta A, et al. CT derived radiomic score for predicting the added benefit of adjuvant chemotherapy following surgery in stage I, II resectable non-small cell lung cancer: a retrospective multicohort study for outcome prediction. Lancet Digit Health 2020;2:e116-28.

18. Watson MD, Lyman WB, Passeri MJ, et al. Use of artificial intelligence deep learning to determine the malignant potential of pancreatic cystic neoplasms with preoperative computed tomography imaging. Am Surg 2020:3134820953779.

19. Wesdorp NJ, Hellingman T, Jansma EP, et al. Advanced analytics and artificial intelligence in gastrointestinal cancer: a systematic review of radiomics predicting response to treatment. Eur J Nucl Med Mol Imaging 2020; doi: 10.1007/s00259-020-05142-w.

20. Han XG, Tian W. Artificial intelligence in orthopedic surgery: current state and future perspective. Chin Med J (Engl) 2019;132:2521-3.

21. Maffulli N, Rodriguez HC, Stone IW, et al. Artificial intelligence and machine learning in orthopedic surgery: a systematic review protocol. J Orthop Surg Res 2020;15:478.

22. Perkins ZB, Yet B, Sharrock A, et al. Predicting the outcome of limb revascularization in patients with lower-extremity arterial trauma: development and external validation of a supervised machine-learning algorithm to support surgical decisions. Ann Surg 2020;272:564-72.

23. Jayadev C, Shetty R. Artificial intelligence in laser refractive surgery - potential and promise! Indian J Ophthalmol 2020;68:2650-1.

24. Portelli M, Bianco SF, Bezzina T, Abela JE. Virtual reality training compared with apprenticeship training in laparoscopic surgery: a meta-analysis. Ann R Coll Surg Engl 2020;102:672-84.

25. Coles-Black J, Bolton D, Chuen J. Accessing 3D Printed Vascular Phantoms for Procedural Simulation. Front. Surg 2021;7:626212.

26. Bellini V, Guzzon M, Bigliardi B, Mordonini M, Filippelli S, Bignami E. Artificial intelligence: a new tool in operating room management. Role of machine learning models in operating room optimization. J Med Syst 2019;44:20.

27. Phutane P, Buc E, Poirot K, et al. Preliminary trial of augmented reality performed on a laparoscopic left hepatectomy. Surg Endosc 2018;32:514-5.

28. Schneider C, Thompson S, Totz J, et al. Comparison of manual and semi-automatic registration in augmented reality image-guided liver surgery: a clinical feasibility study. Surg Endosc 2020;34:4702-11.

29. Bertrand LR, Abdallah M, Espinel Y, et al. A case series study of augmented reality in laparoscopic liver resection with a deformable preoperative model. Surg Endosc 2020;34:5642-8.

30. Xu B, Yang Z, Jiang S, Zhou Z, Jiang B, Yin S. Design and validation of a spinal surgical navigation system based on spatial augmented reality. Spine (Phila Pa 1976) 2020;45:E1627-33.

31. Fan N, Yuan S, Du P, et al. Design of a robot-assisted system for transforaminal percutaneous endoscopic lumbar surgeries: study protocol. J Orthop Surg Res 2020;5:479.

32. Gumbs AA, de Simone B, Chouillard E. Searching for a better definition of robotic surgery: is it really different from laparoscopy? Mini-Invasive Surgery 2020;4:1-9.

33. Gumbs AA, Crovari F, Vidal C, Henri P, Gayet B. Modified robotic lightweight endoscope (ViKY) validation in vivo in a porcine model. Surg Innov 2007;14:261-4.

34. Bellorin O, Vigiola-Cruz M, Dimou F, et al. Robotic-assisted surgery enhances the learning curve while maintaining quality outcomes in sleeve gastrectomy: a preliminary, multicenter study. Surg Endosc 2021; doi: 10.1007/s00464-020-08228-6.

35. Hwang RF, Hunt KK. The emergence of robotic-assisted breast surgery: proceed with caution. Ann Surg 2020;271:1013-5.

36. Mascagni P, Fiorillo C, Urade T, et al. Formalizing video documentation of the critical view of safety in laparoscopic cholecystectomy: a step towards artificial intelligence assistance to improve surgical safety. Surg Endosc 2020;34:2709-14.

37. Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning. Ann Surg 2020; doi: 10.1097/SLA.0000000000004351.

38. Gumbs AA, Tsai TJ, Hoffman JP. Initial experience with laparoscopic hepatic resection at a comprehensive cancer center. Surg Endosc 2012;26:480-7.

39. Gumbs AA, Croner R, Rodriguez A, Zuker N, Perrakis A, Gayet B. 200 consecutive laparoscopic pancreatic resections performed with a robotically controlled laparoscope holder. Surg Endosc 2013;27:3781-91.

40. Cohen TN, Jain M, Gewertz BL. Personal communication devices among surgeons-exploring the empowerment/enslavement paradox. JAMA Surg 2020; doi: 10.1001/jamasurg.2020.5627.

41. Bucher BT, Shi J, Ferraro JP, et al. Portable automated surveillance of surgical site infections using natural language processing: development and validation. Ann Surg 2020;272:629-36.

Artificial Intelligence Surgery
ISSN 2771-0408 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/