REFERENCES
1. Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017;70:1-25.
2. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006;3:e442.
3. Dai H, Much AA, Maor E, et al. Global, regional, and national burden of ischaemic heart disease and its attributable risk factors, 1990-2017: results from the Global Burden of Disease Study 2017. Eur Heart J Qual Care Clin Outcomes 2022;8:50-60.
4. Song P, Fang Z, Wang H, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health 2020;8:e721-9.
5. Kolominsky-Rabas PL, Weber M, Gefeller O, Neundoerfer B, Heuschmann PU. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke 2001;32:2735-40.
6. Schindler A, Schinner R, Altaf N, et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: meta-analysis of individual patient data. JACC Cardiovasc Imaging 2020;13:395-406.
7. Bos D, van Dam-Nolen DHK, Gupta A, et al. Advances in multimodality carotid plaque imaging: AJR expert panel narrative review. AJR Am J Roentgenol 2021;217:16-26.
8. Cau R, Gupta A, Kooi ME, Saba L. Pearls and pitfalls of carotid artery imaging: ultrasound, computed tomography angiography, and MR imaging. Radiol Clin N Am 2023;61:405-13.
9. Saba L, Agarwal N, Cau R, et al. Review of imaging biomarkers for the vulnerable carotid plaque. JVS Vasc Sci 2021;2:149-58.
10. Saba L, Yuan C, Hatsukami TS, et al. Vessel Wall Imaging Study Group of the American Society of Neuroradiology. Carotid artery wall imaging: perspective and guidelines from the ASNR Vessel Wall Imaging Study Group and expert consensus recommendations of the American Society of Neuroradiology. Am J Neuroradiol 2018;39:E9-E31.
11. Muscogiuri G, Volpato V, Cau R, et al. Application of AI in cardiovascular multimodality imaging. Heliyon 2022;8:e10872.
12. Petersen SE, Abdulkareem M, Leiner T. Artificial intelligence will transform cardiac imaging-opportunities and challenges. Front Cardiovasc Med 2019;6:133.
13. Dey D, Slomka PJ, Leeson P, et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol 2019;73:1317-35.
14. Xu B, Kocyigit D, Grimm R, Griffin BP, Cheng F. Applications of artificial intelligence in multimodality cardiovascular imaging: a state-of-the-art review. Prog Cardiovasc Dis 2020;63:367-76.
15. Cau R, Flanders A, Mannelli L, et al. Artificial intelligence in computed tomography plaque characterization: a review. Eur J Radiol 2021;140:109767.
16. Cau R, Cherchi V, Micheletti G, et al. Potential role of artificial intelligence in cardiac magnetic resonance imaging: can it help clinicians in making a diagnosis? J Thorac Imaging 2021;36:142-8.
17. Cau R, Faa G, Nardi V, et al. Long-COVID diagnosis: from diagnostic to advanced AI-driven models. Eur J Radiol 2022;148:110164.
18. Cau R, Pisu F, Suri JS, et al. Artificial intelligence applications in cardiovascular magnetic resonance imaging : are we on the path to avoiding the administration of contrast media? Diagnostics 2023;13:2061.
19. Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT Press; 2016.
20. Leiner T, Rueckert D, Suinesiaputra A, et al. Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson 2019;21:61.
21. Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist's guide. Radiology 2019;290:590-606.
22. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation BT - medical image computing and computer-assisted intervention - MICCAI 2015. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Berlin: Springer; 2015. pp. 234-41.
23. Han N, Ma Y, Li Y, et al. Imaging and hemodynamic characteristics of vulnerable carotid plaques and artificial intelligence applications in plaque classification and segmentation. Brain Sci 2023;13:143.
24. Siddique N, Paheding S, Elkin CP, Devabhaktuni V. U-Net and its variants for medical image segmentation: a review of theory and applications. IEEE Access 2021;9:82031-57.
25. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 2021;18:203-11.
27. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. Available from: https://arxiv.org/abs/2010.11929 [Last accessed on 14 Sep 2023].
28. Lin Y, Huang J, Xu W, Cui C, Xu W, Li Z. Method for carotid artery 3-D ultrasound image segmentation based on CSWin transformer. Ultrasound Med Biol 2023;49:645-56.
29. Petch J, Di S, Nelson W. Opening the black box: the promise and limitations of explainable machine learning in cardiology. Can J Cardiol 2022;38:204-13.
30. Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of machine learning interpretability methods. Entropy 2020;23:18.
31. Guthikonda S, Haynes WG. Homocysteine: role and implications in atherosclerosis. Curr Atheroscler Rep 2006;8:100-6.
33. von Eckardstein A. Risk factors for atherosclerotic vascular disease. In: von Eckardstein A, editor. Atherosclerosis: diet and drugs. Berlin: Springer; 2005. pp. 71-105.
34. Singh RB, Mengi SA, Xu Y-J, Arneja AS, Dhalla NS. Pathogenesis of atherosclerosis: a multifactorial process. Exp Clin Cardiol 2002;7:40-53.
35. Saba L, Saam T, Jäger HR, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications. Lancet Neurol 2019;18:559-72.
36. Sillesen H, Sartori S, Sandholt B, Baber U, Mehran R, Fuster V. Carotid plaque thickness and carotid plaque burden predict future cardiovascular events in asymptomatic adult Americans. Eur Heart J Cardiovasc Imaging 2018;19:1042-50.
37. Kakkos SK, Griffin MB, Nicolaides AN, et al. Asymptomatic Carotid Stenosis and Risk of Stroke (ACSRS) Study Group. The size of juxtaluminal hypoechoic area in ultrasound images of asymptomatic carotid plaques predicts the occurrence of stroke. J Vasc Surg 2013;57:609-618.
38. Nicolaides AN, Griffin M. Atherosclerotic disease risk stratification using ultrasonographic measurements of plaque. JACC Cardiovasc Imaging 2022;15:1136-8.
39. Nicolaides AN, Panayiotou AG, Griffin M, et al. Arterial ultrasound testing to predict atherosclerotic cardiovascular events. J Am Coll Cardiol 2022;79:1969-82.
40. Cademartiri F, Balestrieri A, Cau R, et al. Insight from imaging on plaque vulnerability: similarities and differences between coronary and carotid arteries-implications for systemic therapies. Cardiovasc Diagn Ther 2020;10:1150-62.
41. Saba L, Moody AR, Saam T, et al. Vessel wall-imaging biomarkers of carotid plaque vulnerability in stroke prevention trials: a viewpoint from the carotid imaging consensus group. JACC Cardiovasc Imaging 2020;13:2445-56.
42. Gupta A, Baradaran H, Schweitzer AD, et al. Carotid plaque MRI and stroke risk: a systematic review and meta-analysis. Stroke 2013;44:3071-7.
43. Saba L, Anzidei M, Sanfilippo R, et al. Imaging of the carotid artery. Atherosclerosis 2012;220:294-309.
44. Saba L, Loewe C, Weikert T, et al. State-of-the-art CT and MR imaging and assessment of atherosclerotic carotid artery disease: the reporting-a consensus document by the European Society of Cardiovascular Radiology (ESCR). Eur Radiol 2023;33:1088-101.
45. Cademartiri F, Meloni A, Pistoia L, et al. Dual-source photon-counting computed tomography - Part I : clinical overview of cardiac ct and coronary CT angiography applications. J Clin Med 2023;12:3627.
46. Meloni A, Cademartiri F, Pistoia L, et al. Dual-source photon-counting computed tomography - Part III : clinical overview of vascular applications beyond cardiac and neuro imaging. J Clin Med 2023;12:3798.
47. Cademartiri F, Meloni A, Pistoia L, et al. Dual source photon-counting computed tomography - Part II : clinical overview of neurovascular applications. J Clin Med 2023;12:3626.
48. Saba L, Antignani PL, Gupta A, et al. International Union of Angiology (IUA) consensus paper on imaging strategies in atherosclerotic carotid artery imaging: from basic strategies to advanced approaches. Atherosclerosis 2022;354:23-40.
49. Johri AM, Nambi V, Naqvi TZ, et al. Recommendations for the assessment of carotid arterial plaque by ultrasound for the characterization of atherosclerosis and evaluation of cardiovascular risk: from the American Society of Echocardiography. J Am Soc Echocardiogr 2020;33:917-33.
50. Saba L, Anzidei M, Marincola BC, et al. Imaging of the carotid artery vulnerable plaque. Cardiovasc Intervent Radiol 2014;37:572-85.
52. Jain PK, Sharma N, Giannopoulos AA, Saba L, Nicolaides A, Suri JS. Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery B-mode ultrasound. Comput Biol Med 2021;136:104721.
53. Menchón-Lara RM, Bastida-Jumilla MC, Morales-Sánchez J, Sancho-Gómez JL. Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks. Med Biol Eng Comput 2014;52:169-81.
54. Zhou T, Tan T, Pan X, Tang H, Li J. Fully automatic deep learning trained on limited data for carotid artery segmentation from large image volumes. Quant Imaging Med Surg 2021;11:67-83.
55. Huang W, Gao W, Hou C, Zhang X, Wang X, Zhang J. Simultaneous vessel segmentation and unenhanced prediction using self-supervised dual-task learning in 3D CTA (SVSUP). Comput Methods Programs Biomed 2022;224:107001.
56. Bortsova G, Bos D, Dubost F, et al. Automated segmentation and volume measurement of intracranial internal carotid artery calcification at noncontrast CT. Radiol Artif Intell 2021;3:e200226.
57. Dos Santos FL, Kolasa M, Terada M, Salenius J, Eskola H, Paci M. VASIM: an automated tool for the quantification of carotid atherosclerosis by computed tomography angiography. Int J Cardiovasc Imaging 2019;35:1149-59.
58. Wu J, Xin J, Yang X, et al. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI. Med Phys 2019;46:5544-61.
59. Ziegler M, Alfraeus J, Bustamante M, et al. Automated segmentation of the individual branches of the carotid arteries in contrast-enhanced MR angiography using DeepMedic. BMC Med Imaging 2021;21:38.
60. Jain PK, Sharma N, Saba L, et al. Unseen artificial intelligence-deep learning paradigm for segmentation of low atherosclerotic plaque in carotid ultrasound: a multicenter cardiovascular study. Diagnostics 2021;11:2257.
61. Zhang L, Lyu Q, Ding Y, Hu C, Hui P. Texture analysis based on vascular ultrasound to identify the vulnerable carotid plaques. Front Neurosci 2022;16:885209.
62. Akkus Z, Van Burken G, Van Den Oord SCH, et al. Carotid intraplaque neovascularization quantification software (CINQS). IEEE J Biomed Heal 2014;19:332-8.
63. Guang Y, He W, Ning B, et al. Deep learning-based carotid plaque vulnerability classification with multicentre contrast-enhanced ultrasound video: a comparative diagnostic study. BMJ Open 2021;11:e047528.
64. Saba L, Sanagala SS, Gupta SK, et al. A multicenter study on carotid ultrasound plaque tissue characterization and classification using six deep artificial intelligence models: a stroke application. IEEE Trans Instrum Meas 2021;70:1-12.
65. Cilla S, Macchia G, Lenkowicz J, et al. CT angiography-based radiomics as a tool for carotid plaque characterization: a pilot study. Radiol Med 2022;127:743-53.
66. Buckler AJ, Gotto AM Jr, Rajeev A, et al. Atherosclerosis risk classification with computed tomography angiography: A radiologic-pathologic validation study. Atherosclerosis 2023;366:42-8.
67. Kigka VI, Sakellarios AI, Mantzaris MD, et al. A machine learning model for the identification of high risk carotid atherosclerotic plaques. Annu Int Conf IEEE Eng Med Biol Soc 2021;2021:2266-9.
68. Zhang R, Zhang Q, Ji A, et al. Identification of high-risk carotid plaque with MRI-based radiomics and machine learning. Eur Radiol 2021;31:3116-26.