REFERENCES

1. Heldin CH, Ostman A, Ronnstrand L. Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta 1998;1378:F79-113.

2. Kazlauskas A. PDGFs and their receptors. Gene 2017;614:1-7.

3. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999;79:1283-316.

4. Sil S, Periyasamy P, Thangaraj A, Chivero ET, Buch S. PDGF/PDGFR axis in the neural systems. Mol Aspects Med 2018;62:63-74.

5. Williams BP, Park JK, Alberta JA, Muhlebach SG, Hwang GY, et al. A PDGF-regulated immediate early gene response initiates neuronal differentiation in ventricular zone progenitor cells. Neuron 1997;18:553-62.

6. Smits A, Kato M, Westermark B, Nister M, Heldin CH, et al. Neurotrophic activity of platelet-derived growth factor (PDGF): rat neuronal cells possess functional PDGF beta-type receptors and respond to PDGF. Proc Natl Acad Sci U S A 1991;88:8159-63.

7. Beazely MA, Lim A, Li H, Trepanier C, Chen X, et al. Platelet-derived growth factor selectively inhibits NR2B-containing N-methyl-D-aspartate receptors in CA1 hippocampal neurons. J Biol Chem 2009;284:8054-63.

8. Yeh HJ, Ruit KG, Wang YX, Parks WC, Snider WD, et al. PDGF A-chain gene is expressed by mammalian neurons during development and in maturity. Cell 1991;64:209-16.

9. Yeh HJ, Silos-Santiago I, Wang YX, George RJ, Snider WD, et al. Developmental expression of the platelet-derived growth factor alpha-receptor gene in mammalian central nervous system. Proc Natl Acad Sci U S A 1993;90:1952-6.

10. Paul G, Zachrisson O, Varrone A, Almqvist P, Jerling M, et al. Safety and tolerability of intracerebroventricular PDGF-BB in Parkinson’s disease patients. J Clin Invest 2015;125:1339-46.

11. Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med 2018;62:75-88.

12. Ishii Y, Hamashima T, Yamamoto S, Sasahara M. Pathogenetic significance and possibility as a therapeutic target of platelet derived growth factor. Pathol Int 2017;67:235-46.

13. Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 1999;81:163-221.

14. Ghafouri M, Amini S, Khalili K, Sawaya BE. HIV-1 associated dementia: symptoms and causes. Retrovirology 2006;3:28.

15. Schouten J, Cinque P, Gisslen M, Reiss P, Portegies P. HIV-1 infection and cognitive impairment in the cART era: a review. AIDS 2011;25:561-75.

16. Thomas SA. Anti-HIV drug distribution to the central nervous system. Curr Pharm Des 2004;10:1313-24.

17. Lindl KA, Marks DR, Kolson DL, Jordan-Sciutto KL. HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. J Neuroimmune Pharmacol 2010;5:294-309.

18. Bachis A, Mocchetti I. Brain-derived neurotrophic factor is neuroprotective against human immunodeficiency virus-1 envelope proteins. Ann N Y Acad Sci 2005;1053:247-57.

19. Sanders VJ, Everall IP, Johnson RW, Masliah E. Fibroblast growth factor modulates HIV coreceptor CXCR4 expression by neural cells. HNRC Group. J Neurosci Res 2000;59:671-9.

20. Malik S, Khalique H, Buch S, Seth P. A growth factor attenuates HIV-1 Tat and morphine induced damage to human neurons: implication in HIV/AIDS-drug abuse cases. PLoS One 2011;6:e18116.

21. Peng F, Dhillon N, Callen S, Yao H, Bokhari S, et al. Platelet-derived growth factor protects neurons against gp120-mediated toxicity. J Neurovirol 2008;14:62-72.

22. Peng F, Dhillon NK, Yao H, Zhu X, Williams R, et al. Mechanisms of platelet-derived growth factor-mediated neuroprotection--implications in HIV dementia. Eur J Neurosci 2008;28:1255-64.

23. Yao H, Peng F, Dhillon N, Callen S, Bokhari S, et al. Involvement of TRPC channels in CCL2-mediated neuroprotection against tat toxicity. J Neurosci 2009;29:1657-69.

24. Yao H, Bethel-Brown C, Niu F, Yang L, Peng F, et al. Yin and Yang of PDGF-mediated signaling pathway in the context of HIV infection and drug abuse. J Neuroimmune Pharmacol 2014;9:161-7.

25. Zhu X, Yao H, Peng F, Callen S, Buch S. PDGF-mediated protection of SH-SY5Y cells against Tat toxin involves regulation of extracellular glutamate and intracellular calcium. Toxicol Appl Pharmacol 2009;240:286-91.

26. Yao H, Duan M, Yang L, Buch S. Platelet-derived growth factor-BB restores human immunodeficiency virus Tat-cocaine-mediated impairment of neurogenesis: role of TRPC1 channels. J Neurosci 2012;32:9835-47.

27. Funa K, Sasahara M. The roles of PDGF in development and during neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol 2014;9:168-81.

28. Chao J, Yang L, Yao H, Buch S. Platelet-derived growth factor-BB restores HIV Tat -mediated impairment of neurogenesis: role of GSK-3beta/beta-catenin. J Neuroimmune Pharmacol 2014;9:259-68.

29. Yang L, Chen X, Hu G, Cai Y, Liao K, et al. Mechanisms of platelet-derived growth factor-BB in restoring HIV tat-cocaine-mediated impairment of neuronal differentiation. Mol Neurobiol 2016;53:6377-87.

30. Sato H, Ishii Y, Yamamoto S, Azuma E, Takahashi Y, et al. PDGFR-beta plays a key role in the ectopic migration of neuroblasts in cerebral stroke. Stem Cells 2016;34:685-98.

31. Hu G, Niu F, Liao K, Periyasamy P, Sil S, et al. HIV-1 Tat-induced astrocytic extracellular vesicle miR-7 impairs synaptic architecture. J Neuroimmune Pharmacol 2019; doi: 10.1007/s11481-019-09869-8.

32. Valenzuela CF, Xiong Z, MacDonald JF, Weiner JL, Frazier CJ, et al. Platelet-derived growth factor induces a long-term inhibition of N-methyl-D-aspartate receptor function. J Biol Chem 1996;271:16151-9.

33. Lei S, Lu WY, Xiong ZG, Orser BA, Valenzuela CF, et al. Platelet-derived growth factor receptor-induced feed-forward inhibition of excitatory transmission between hippocampal pyramidal neurons. J Biol Chem 1999;274:30617-23.

34. Beazely MA, Weerapura M, MacDonald JF. Abelson tyrosine kinase links PDGFbeta receptor activation to cytoskeletal regulation of NMDA receptors in CA1 hippocampal neurons. Mol Brain 2008;1:20.

35. Zheng LS, Ishii Y, Zhao QL, Kondo T, Sasahara M. PDGF suppresses oxidative stress induced Ca2+ overload and calpain activation in neurons. Oxid Med Cell Longev 2013;2013:367206.

36. Zheng L, Ishii Y, Tokunaga A, Hamashima T, Shen J, et al. Neuroprotective effects of PDGF against oxidative stress and the signaling pathway involved. J Neurosci Res 2010;88:1273-84.

37. Tseng HC, Dichter MA. Platelet-derived growth factor-BB pretreatment attenuates excitotoxic death in cultured hippocampal neurons. Neurobiol Dis 2005;19:77-83.

38. Sims KD, Straff DJ, Robinson MB. Platelet-derived growth factor rapidly increases activity and cell surface expression of the EAAC1 subtype of glutamate transporter through activation of phosphatidylinositol 3-kinase. J Biol Chem 2000;275:5228-37.

39. Krizman-Genda E, Gonzalez MI, Zelenaia O, Robinson MB. Evidence that Akt mediates platelet-derived growth factor-dependent increases in activity and surface expression of the neuronal glutamate transporter, EAAC1. Neuropharmacology 2005;49:872-82.

40. Iihara K, Hashimoto N, Tsukahara T, Sakata M, Yanamoto H, et al. Platelet-derived growth factor-BB, but not -AA, prevents delayed neuronal death after forebrain ischemia in rats. J Cereb Blood Flow Metab 1997;17:1097-106.

41. Kawabe T, Wen TC, Matsuda S, Ishihara K, Otsuda H, et al. Platelet-derived growth factor prevents ischemia-induced neuronal injuries in vivo. Neurosci Res 1997;29:335-43.

42. Sakata M, Yanamoto H, Hashimoto N, Iihara K, Tsukahara T, et al. Induction of infarct tolerance by platelet-derived growth factor against reversible focal ischemia. Brain Res 1998;784:250-5.

43. Egawa-Tsuzuki T, Ohno M, Tanaka N, Takeuchi Y, Uramoto H, et al. The PDGF B-chain is involved in the ontogenic susceptibility of the developing rat brain to NMDA toxicity. Exp Neurol 2004;186:89-98.

44. Iihara K, Sasahara M, Hashimoto N, Uemura Y, Kikuchi H, et al. Ischemia induces the expression of the platelet-derived growth factor-B chain in neurons and brain macrophages in vivo. J Cereb Blood Flow Metab 1994;14:818-24.

45. Suzuki J, Baba S, Ohno I, Endoh M, Nawata J, et al. Immunohistochemical analysis of platelet-derived growth factor-B expression in myocardial tissues in hypertrophic cardiomyopathy. Cardiovasc Pathol 1999;8:223-31.

46. Lee JC, Kim YH, Lee TK, Kim IH, Cho JH, et al. Effects of ischemic preconditioning on PDGF-BB expression in the gerbil hippocampal CA1 region following transient cerebral ischemia. Mol Med Rep 2017;16:1627-34.

47. Ohno M, Sasahara M, Narumiya S, Tanaka N, Yamano T, et al. Expression of platelet-derived growth factor B-chain and beta-receptor in hypoxic/ischemic encephalopathy of neonatal rats. Neuroscience 1999;90:643-51.

48. Krupinski J, Issa R, Bujny T, Slevin M, Kumar P, et al. A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. Stroke 1997;28:564-73.

49. Ishii Y, Oya T, Zheng L, Gao Z, Kawaguchi M, et al. Mouse brains deficient in neuronal PDGF receptor-beta develop normally but are vulnerable to injury. J Neurochem 2006;98:588-600.

50. Nikolakopoulou AM, Zhao Z, Montagne A, Zlokovic BV. Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-beta signaling. PLoS One 2017;12:e0176225.

51. Lewandowski SA, Fredriksson L, Lawrence DA, Eriksson U. Pharmacological targeting of the PDGF-CC signaling pathway for blood-brain barrier restoration in neurological disorders. Pharmacol Ther 2016;167:108-19.

52. Shen J, Ishii Y, Xu G, Dang TC, Hamashima T, et al. PDGFR-beta as a positive regulator of tissue repair in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab 2012;32:353-67.

53. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, et al. Pericyte-mediated tissue repair through PDGFRbeta promotes peri-infarct astrogliosis, oligodendrogenesis, and functional recovery after acute ischemic stroke. eNeuro 2020;7.

54. Shen J, Xu G, Zhu R, Yuan J, Ishii Y, et al. PDGFR-beta restores blood-brain barrier functions in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab 2019;39:1501-15.

55. Niu F, Yao H, Liao K, Buch S. HIV Tat 101-mediated loss of pericytes at the blood-brain barrier involves PDGF-BB. Ther Targets Neurol Dis 2015;2:e471.

56. Niu F, Yao H, Zhang W, Sutliff RL, Buch S. Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J Neurosci 2014;34:11812-25.

57. Miners JS, Schulz I, Love S. Differing associations between Abeta accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer’s disease. J Cereb Blood Flow Metab 2018;38:103-15.

58. Padel T, Ozen I, Boix J, Barbariga M, Gaceb A, et al. Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson’s disease. Neurobiol Dis 2016;94:95-105.

59. Milesi S, Boussadia B, Plaud C, Catteau M, Rousset MC, et al. Redistribution of PDGFRbeta cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus. Neurobiol Dis 2014;71:151-8.

60. Bethel-Brown C, Yao H, Hu G, Buch S. Platelet-derived growth factor (PDGF)-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation. J Neuroinflammation 2012;9:262.

61. Jansson D, Scotter EL, Rustenhoven J, Coppieters N, Smyth LC, et al. Interferon-gamma blocks signalling through PDGFRbeta in human brain pericytes. J Neuroinflammation 2016;13:249.

62. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992;256:184-5.

63. Barroeta-Espar I, Weinstock LD, Perez-Nievas BG, Meltzer AC, Siao Tick Chong M, et al. Distinct cytokine profiles in human brains resilient to Alzheimer’s pathology. Neurobiol Dis 2019;121:327-37.

64. O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 2011;34:185-204.

65. Kim C, Jang CH, Bang JH, Jung MW, Joo I, et al. Amyloid precursor protein processing is separately regulated by protein kinase C and tyrosine kinase in human astrocytes. Neurosci Lett 2002;324:185-8.

66. Gianni D, Zambrano N, Bimonte M, Minopoli G, Mercken L, et al. Platelet-derived growth factor induces the beta-gamma-secretase-mediated cleavage of Alzheimer’s amyloid precursor protein through a Src-Rac-dependent pathway. J Biol Chem 2003;278:9290-7.

67. Zambrano N, Gianni D, Bruni P, Passaro F, Telese F, et al. Fe65 is not involved in the platelet-derived growth factor-induced processing of Alzheimer’s amyloid precursor protein, which activates its caspase-directed cleavage. J Biol Chem 2004;279:16161-9.

68. Friedman R, Pellarin R, Caflisch A. Amyloid aggregation on lipid bilayers and its impact on membrane permeability. J Mol Biol 2009;387:407-15.

69. Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, et al. Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 2002;22:RC221.

70. Minano-Molina AJ, Espana J, Martin E, Barneda-Zahonero B, Fado R, et al. Soluble oligomers of amyloid-beta peptide disrupt membrane trafficking of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor contributing to early synapse dysfunction. J Biol Chem 2011;286:27311-21.

71. Liu H, Saffi GT, Vasefi MS, Choi Y, Kruk JS, et al. Amyloid-beta inhibits PDGFbeta receptor activation and prevents PDGF-BBInduced neuroprotection. Curr Alzheimer Res 2018;15:618-27.

72. Vasefi MS, Kruk JS, Heikkila JJ, Beazely MA. 5-Hydroxytryptamine type 7 receptor neuroprotection against NMDA-induced excitotoxicity is PDGFbeta receptor dependent. J Neurochem 2013;125:26-36.

73. Paul G, Sullivan AM. Trophic factors for Parkinson’s disease: where are we and where do we go from here? Eur J Neurosci 2019;49:440-52.

74. Tome D, Fonseca CP, Campos FL, Baltazar G. Role of neurotrophic factors in Parkinson’s disease. Curr Pharm Des 2017;23:809-38.

75. Lue LF, Schmitz CT, Snyder NL, Chen K, Walker DG, et al. Converging mediators from immune and trophic pathways to identify Parkinson disease dementia. Neurol Neuroimmunol Neuroinflamm 2016;3:e193.

76. Cabezas R, Avila MF, Gonzalez J, El-Bacha RS, Barreto GE. PDGF-BB protects mitochondria from rotenone in T98G cells. Neurotox Res 2015;27:355-67.

77. Cabezas R, Vega-Vela NE, Gonzalez-Sanmiguel J, Gonzalez J, Esquinas P, et al. PDGF-BB preserves mitochondrial morphology, attenuates ROS production, and upregulates neuroglobin in an astrocytic model under rotenone insult. Mol Neurobiol 2018;55:3085-95.

78. Miyazaki I, Asanuma M. Therapeutic strategy of targeting astrocytes for neuroprotection in Parkinson’s disease. Curr Pharm Des 2017;23:4936-47.

79. Cabezas R, Baez-Jurado E, Hidalgo-Lanussa O, Echeverria V, Ashrad GM, et al. Growth factors and neuroglobin in astrocyte protection against neurodegeneration and oxidative stress. Mol Neurobiol 2019;56:2339-51.

80. Okada T, Hirai C, Badawy SMM, Zhang L, Kajimoto T, et al. Impairment of PDGF-induced chemotaxis by extracellular alpha-synuclein through selective inhibition of Rac1 activation. Sci Rep 2016;6:37810.

81. Tang Z, Arjunan P, Lee C, Li Y, Kumar A, et al. Survival effect of PDGF-CC rescues neurons from apoptosis in both brain and retina by regulating GSK3beta phosphorylation. J Exp Med 2010;207:867-80.

82. Shah BH, Catt KJ. GPCR-mediated transactivation of RTKs in the CNS: mechanisms and consequences. Trends Neurosci 2004;27:48-53.

83. Kruk JS, Kouchmeshky A, Grimberg N, Rezkella M, Beazely MA. Transactivation of receptor tyrosine kinases by dopamine receptors. Dopamine Receptor Technologies. New York, NY: Springer New York; 2015. pp. 211-27.

84. Gill RS, Hsiung MS, Sum CS, Lavine N, Clark SD, et al. The dopamine D4 receptor activates intracellular platelet-derived growth factor receptor beta to stimulate ERK1/2. Cell Signal 2010;22:285-90.

85. Heeneman S, Haendeler J, Saito Y, Ishida M, Berk BC. Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein Shc. J Biol Chem 2000;275:15926-32.

86. Shen Y, Monsma FJ Jr, Metcalf MA, Jose PA, Hamblin MW, et al. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem 1993;268:18200-4.

87. Thomas DR, Hagan JJ. 5-HT7 receptors. Curr Drug Targets CNS Neurol Disord 2004;3:81-90.

88. Speranza L, Labus J, Volpicelli F, Guseva D, Lacivita E, et al. Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons. J Neurochem 2017;141:647-61.

89. Vasefi MS, Kruk JS, Liu H, Heikkila JJ, Beazely MA. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor beta receptor expression. Neurosci Lett 2012;511:65-9.

90. Samarajeewa A, Goldemann L, Vasefi MS, Ahmed N, Gondora N, et al. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation. Front Behav Neurosci 2014;8:391.

91. Kotecha SA, Oak JN, Jackson MF, Perez Y, Orser BA, et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 2002;35:1111-22.

92. Vasefi MS, Yang K, Li J, Kruk JS, Heikkila JJ, et al. Acute 5-HT7 receptor activation increases NMDA-evoked currents and differentially alters NMDA receptor subunit phosphorylation and trafficking in hippocampal neurons. Mol Brain 2013;6:24.

93. Kanki H, Sasaki T, Matsumura S, Yokawa S, Yukami T, et al. beta-arrestin-2 in PAR-1-biased signaling has a crucial role in endothelial function via PDGF-beta in stroke. Cell Death Dis 2019;10:100.

94. Abassi M, Morawski BM, Nakigozi G, Nakasujja N, Kong X, et al. Cerebrospinal fluid biomarkers and HIV-associated neurocognitive disorders in HIV-infected individuals in Rakai, Uganda. J Neurovirol 2017;23:369-75.

95. Jung KH, Chu K, Lee ST, Bahn JJ, Jeon D, et al. Multipotent PDGFRbeta-expressing cells in the circulation of stroke patients. Neurobiol Dis 2011;41:489-97.

96. Bjorkqvist M, Ohlsson M, Minthon L, Hansson O. Evaluation of a previously suggested plasma biomarker panel to identify Alzheimer’s disease. PLoS One 2012;7:e29868.

97. Rocha de Paula M, Gomez Ravetti M, Berretta R, Moscato P. Differences in abundances of cell-signalling proteins in blood reveal novel biomarkers for early detection of clinical Alzheimer’s disease. PLoS One 2011;6:e17481.

98. Hu WT, Chen-Plotkin A, Arnold SE, Grossman M, Clark CM, et al. Novel CSF biomarkers for Alzheimer’s disease and mild cognitive impairment. Acta Neuropathol 2010;119:669-78.

99. Mahlknecht P, Stemberger S, Sprenger F, Rainer J, Hametner E, et al. An antibody microarray analysis of serum cytokines in neurodegenerative Parkinsonian syndromes. Proteome Sci 2012;10:71.

100. Furukawa T, Matsui N, Fujita K, Nodera H, Shimizu F, et al. CSF cytokine profile distinguishes multifocal motor neuropathy from progressive muscular atrophy. Neurol Neuroimmunol Neuroinflamm 2015;2:e138.

101. Frydecka D, Krzystek-Korpacka M, Lubeiro A, Stramecki F, Stanczykiewicz B, et al. Profiling inflammatory signatures of schizophrenia: A cross-sectional and meta-analysis study. Brain Behav Immun 2018;71:28-36.

102. Zai G, Zai C, Tiwari A, King N, Braithwaite J, van Tol H, et al. Weak association of the platelet-derived growth factor beta (PDGFB) and PDGF receptor beta (PDGFRB) genes with schizophrenia and schizoaffective disorder. World J Biol Psychiatry 2011;12:127-33.

103. Vanlandewijck M, Lebouvier T, Andaloussi Mae M, Nahar K, Hornemann S, et al. Functional characterization of germline mutations in PDGFB and PDGFRB in primary familial brain calcification. PLoS One 2015;10:e0143407.

104. Nicolas G, Charbonnier C, de Lemos RR, Richard AC, Guillin O, et al. Brain calcification process and phenotypes according to age and sex: lessons from SLC20A2, PDGFB, and PDGFRB mutation carriers. Am J Med Genet B Neuropsychiatr Genet 2015;168:586-94.

Vessel Plus
ISSN 2574-1209 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/